Hydrogeochemistry of Surface Waters in the Iron Quadrangle, Brazil: High-Resolution Mapping of Potentially Toxic Elements in the Velhas and Paraopeba River Basins
Abstract
1. Introduction
2. Study Area
- (i)
- Metamorphic Complexes are units that form the Precambrian crystalline basement and are characterized by deformed tonalitic gneisses, granites, granodiorites, and mafic to ultramafic intrusions [37,38]. These rocks belong to the Bonfim, Belo Horizonte, and Divinópolis complexes (Upper Paraopeba basin), as well as the Bação, Caeté, and Santa Bárbara complexes (Upper Rio das Velhas basin) [39].
- (ii)
- The Rio das Velhas Supergroup, composed of metavolcanic and metasedimentary sequences, is divided into the Nova Lima and Maquiné groups. The Nova Lima Group is predominantly composed of volcano-sedimentary rocks such as carbonaceous schists, banded iron formations (BIFs), phyllites, and metacherts. The overlying Maquiné Group begins with metaconglomerates and transitions into thick beds of sericitic quartzites, phyllites, and quartz-rich schists. These formations mark an early Paleoproterozoic stage in the geological evolution of the region [36].
- (iii)
- The Minas Supergroup, which lies unconformably over the Rio das Velhas Supergroup, comprises predominantly pelitic and quartz-rich metasediments organized into four lithostratigraphic groups [40]. The basal Caraça Group consists of metaconglomerates and metarenites deposited in fluvial to shallow marine settings. It is overlain by the Itabira Group, dominated by chemical sedimentary rocks and iron-rich itabirites. Next is the Piracicaba Group, composed mainly of metapelites and interbedded chemical layers. The sequence concludes with the Sabará Group, consisting of terrigenous sediments including basal conglomeratic phyllites, possibly deposited during tectonically active stages of basin evolution [40].
- (iv)
- (v)
3. Materials and Methods
3.1. Sampling
3.2. Chemical Analyses and Quality Control
3.3. Data Analysis
3.4. Geochemical Maps
4. Results
4.1. Elemental Concentrations and Comparative Data
4.2. Physicochemical Parameters
4.3. Classification of Contamination Levels and Spatial Distribution
4.4. Multivariate Analyses
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tscheikner-Gratl, F.; Bellos, V.; Schellart, A.; Moreno- Rodenas, A.; Muthusamy, M.; Langeveld, J.; Clemens, F.; Benedetti, L.; Rico-Ramirez, M.A.; Carvalho, R.F.; et al. Recent insights on uncertainties present in integrated catchment water quality modelling. Water Res. 2019, 150, 368–379. [Google Scholar] [CrossRef]
- Dawson, E.J.; Macklin, M.G. Speciation of heavy metals in floodplain and flood sediments: A reconnaissance survey of the Aire Valley, West Yorkshire, Great Britain. Environ. Geochem. Health 1998, 20, 67e76. [Google Scholar] [CrossRef]
- Salomons, W.; Forstner, U. Metals in the Hydrocycle; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Hemachandra, S.C.S.M.; Sewwandi, B.G.N. Application of water pollution and heavy metal pollution indices to evaluate the water quality in St. Sebastian Canal, Colombo, Sri Lanka. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100790. [Google Scholar] [CrossRef]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Sidhu, G.P.S.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.S.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef]
- Wongsasuluk, P.; Chotpantarat, S.; Siriwong, W.; Robson, M. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ. Geochem. Health 2014, 36, 169–182. [Google Scholar] [CrossRef]
- Yin, K.; Wang, Q.; Lv, M.; Chen, L. Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 2019, 360, 1553–1563. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Reidy Liermann, C.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Lee, M.K.; Liu, Z.; Miao, C. Spatiotemporal analysis of heavy metal water pollution in transitional China. Sustainability 2015, 7, 9067–9087. [Google Scholar] [CrossRef]
- Qu, L.; Huang, H.; Xia, F.; Liu, Y.; Dahlgren, R.A.; Zhang, M.; Mei, K. Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ. Pollut. 2018, 237, 639–649. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kumar, R.; Bhardwaj, R.; Thukral, A.K.; Rodrigo-Comino, J. Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Hum. Ecol. Risk Assess. Int. J. 2018, 26, 1–16. [Google Scholar] [CrossRef]
- Thornton, I. Environmental geochemistry: 40 years research at Imperial College, London, United Kingdom. Appl. Geochem. 2012, 27, 939–953. [Google Scholar] [CrossRef]
- Wolkersdorfer, C.; Mugova, E. Effects of mining on surface water. Encycl. Inland Waters 2022, 4, 170–188. [Google Scholar] [CrossRef]
- Matschullat, J.; Borba, R.P.; Deschamps, E.; Figueiredo, B.F.; Gabrio, T.; Schwenk, M. Human and environmental contamination in the Quadrilátero Ferrífero, Brazil. Appl. Geochem. 2000, 15, 181–190. [Google Scholar] [CrossRef]
- Vicq, R.; Matschullat, J.; Leite, M.G.P.; Nalini Junior, H.A.; Mendonça, F.P.C. Iron Quadrangle stream sediments, Brazil: Geochemical maps and reference values. Environ. Earth Sci. 2015, 74, 4407–4417. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Valle Junior, R.F.d.; Melo, M.M.A.P.d.; Pissarra, T.C.T.; Souza Rolim, G.d.; Melo, M.C.d.; Valera, C.A.; Moura, J.P.; Fernandes, L.F.S. Geochemistry and contamination of sediments and water in rivers affected by the rupture of tailings dams (Brumadinho, Brazil). Appl. Geochem. 2023, 152, 105644. [Google Scholar] [CrossRef]
- Pyrgaki, K.; Gemeni, V.; Karkalis, C.; Koukouzas, N.; Koutsovitis, P.; Petrounias, P. Geochemical occurrence of rare earth elements in mining waste and mine water: A review. Minerals 2021, 11, 860. [Google Scholar] [CrossRef]
- Moldovan, A.; Török, A.I.; Kovacs, E.; Cadar, O.; Mirea, I.C.; Micle, V. Metal contents and pollution indices assessment of surface water, soil, and sediment from the Arieș River Basin Mining Area, Romania. Sustainability 2022, 14, 8024. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T. Seasonal impact of acid mine drainage on water quality and potential ecological risk in an old sulfide exploitation. Environ. Sci. Pollut. Res. 2024, 31, 21124–21135. [Google Scholar] [CrossRef]
- Costa, A.T. Registro Histórico de Contaminação Por Metais Pesados, Associadas à Exploração Aurífera No Alto e Médio Curso da Bacia do Ribeirão do Carmo, Quadrilátero Ferrífero, Minas Gerais: Um Estudo de Sedimentos de Planícies De Inundação e Terraços Aluviais. Ph.D. Thesis, Federal University of Ouro Preto, Departamento de Geologia, Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais, Escola de Minas, Brazil, 2007. [Google Scholar]
- Deschamps, E.; Matschullat, J. Arsenic in the Environment. In Arsenic: Natural and Anthropogenic; CRC Press: Boca Raton, FL, USA, 2011; Volume 4, p. 209. [Google Scholar]
- Mendes, M.A.M. Influência Antrópica Nas Características Hidrossedimentológicas e Geoquímicas da Bacia do Ribeirão Caraça, Quadrilátero Ferrífero, Minas Gerais, Brasil. Master’s Thesis, Universidade Federal de Ouro Preto, Departamento de Geologia, Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais, Escola de Minas, Brazil, 2007. [Google Scholar]
- Parra, R.R.; Roeser, H.M.P.; Leite, M.G.P.; Nalini, H.A.J.; Guimarães, A.T.A.; Pereira, J.C.; Friese, K. Influência antrópica na geoquímica de água e sedimentos do Rio Conceição, Quadrilátero Ferrífero, Minas Gerais–Brasil. Geochim. Bras. 2007, 21, 36–49. Available online: https://geobrasiliensis.org.br/geobrasiliensis/article/view/255/pdf (accessed on 8 January 2025).
- Pereira, J.C.; Guimarães-Silva, A.K.; Nalini, H.A.J.; Pacheco-Silva, E.; Lena, J.C.D. Distribuição, fracionamento e mobilidade de elementos traço em sedimentos superficiais. Quim. Nova 2007, 30, 1249–1255. [Google Scholar] [CrossRef]
- Varejão, E.V.; Bellato, C.R.; Fontes, M.P.F.; Mello, J.W.V. Arsenic and trace metals in river water and sediments from southeast portion of Quadrilátero Ferrífero, Brazil. Environ. Monit. Assess. 2010, 172, 631–642. [Google Scholar] [CrossRef]
- Mendonça, F.P.C. Influência da Mineração na Geoquímica Das Águas Superficiais e Nos Sedimentos No Alto Curso da Bacia do Ribeirão Mata Porcos, Quadrilátero Ferrífero, Minas Gerais. Master’s Thesis, Federal University of Ouro Preto, Departamento de Geologia, Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais, Escola de Minas, Brazil, 2012. [Google Scholar]
- Leão, L.P.; Vicq, R.; Nalini, H.A., Jr.; Leite, M.G.P. Mapeamento Geoquímico do Manganês e Avaliação da Qualidade de Sedimentos Fluviais e Águas Superficiais do Quadrilátero Ferrífero, Brasil. In Anuário do Instituto de Geociências; Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil, 2019; Volume 42, pp. 444–455. [Google Scholar] [CrossRef]
- Marques, E.D.; Castro, C.C.; de Assis Barros, R.; Lombello, J.C.; de Souza Marinho, M.; Araújo, J.C.S.; Santos, E.A. Geochemical mapping by stream sediments of the North West portion of Quadrilátero Ferrífero, Brazil: Application of the exploratory data analysis (EDA) and a proposal for generation of new gold targets in Pitangui gold district. J. Geochem. Explor. 2023, 250, 107232. [Google Scholar] [CrossRef]
- Vicq, R.; Leite, M.G.P.; Leão, L.P.; Nallini Júnior, H.A.; Valente, T. Geochemical Mapping and Reference Values of Potentially Toxic Elements in a Contaminated Mining Region: Upper Velhas River Basin Stream Sediments, Iron Quadrangle, Brazil. Minerals 2023, 13, 1545. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE) Censo Demográfico do Brasil. 2021. Available online: https://censo2022.ibge.gov.br/ (accessed on 15 December 2024).
- Larizzatti, J.H.; Marques, E.D.; Silveira, F.V. Geochemical Mapping of the Quadrilátero Ferrífero, Brazil and Surroundings; Informe de Recursos Minerais; (Série Metais-Informes Gerais 2); CPRM-Geological Survey of Brazil: Brasília, Brazil, 2014; p. 208. ISBN 978-85-7499-153-5. Available online: https://www.researchgate.net/publication/304580521_MAPEAMENTO_GEOQUIMICO_DO_QUADRILATERO_FERRIFERO_E_SEU_ENTORNO_Geochemical_Mapping_of_Iron_Quadrangle_and_Surroundings (accessed on 5 January 2025).
- Weber, A.A.; Moreira, D.P.; Melo, R.M.C.; Vieira, A.B.C.; Prado, P.S.; Silva, M.A.N.d.; Bazzoli, N.; Rizzo, E. Reproductive effects of oestrogenic endocrine disrupting chemicals in Astyanax rivularis inhabiting headwaters of the Velhas River, Brazil. Sci. Total Environ. 2017, 592, 693–703. [Google Scholar] [CrossRef]
- Nalini, H.A.J. Estudos Geoambientais No Quadrilátero Ferrífero: Mineração e Sustentabilidade; Departamento de Geologia Universidade Federal de Ouro Preto: Ouro Preto, Brazil, 2009; p. 52. [Google Scholar]
- Coelho Filho, J.A.; Durães, M.F. Hydrological regionalization of the annual maximum streamflows of the upper and middle Paraopeba river–MG using the index-flood technique. Rev. Eng. Agrícola 2022, 42, e20220035. [Google Scholar] [CrossRef]
- Soares, A.L.C. Bacia Hidrográfica do Rio Paraopeba: Análise Integrada Dos Diferentes Impactos Antrópicos. Ph.D. Thesis, Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos-Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2021. Available online: https://bdtd.ibict.br/vufind/Record/UFMG_ba4d465404323b812b8cab356f4b4acd (accessed on 7 February 2025).
- Alkmim, F.F.; Teixeira, W. The Paleoproterozoic Mineiro Belt and the Quadrilátero Ferrífero. In São Francisco Craton, Eastern Brazil. Regional Geology Reviews; Heilbron, M., Cordani, U., Alkmim, F., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ladeira, E.A.; Roeser, H.M.P.; Tobschall, H.J. Evolução Petrogenética do Cinturão de Rochas Verdes, Rio das Velhas, Quadrilátero Ferrífero, Minas Gerais. In Proceedings of the Simpósio Geológico, Belo Horizonte, Brazil, 10–14 August 1983; pp. 149–165. [Google Scholar]
- Teixeira, W.; Sabate, P.; Barbosa, J.; Noce, C.M.; Carneiro, M.A. Archean and paleoproterozoic tectonic evolution of the São Francisco craton, Brazil. In Tectonic Evolution of South America; Instituto de Geociências, Universidade de São Paulo: São Paulo, Brazil, 2000; Available online: https://www.researchgate.net/publication/236348451_Archean_and_Paleoproterozoic_tectonic_evolution_of_the_Sao_Francisco_Craton_Brazil (accessed on 10 February 2025).
- Lobato, L.M.; Ribeiro-Rodrigues, L.C.; Zucchetti, M.; Noce, C.M.; Baltazar, O.F.; Silva, L.C.d.; Pinto, C.P. Brazil’s premier gold province. Part I: The tectonic, magmatic, and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Miner. Depos. 2001, 36, 228–248. [Google Scholar] [CrossRef]
- Alkmim, F.F.; Marshak, S. Transamazonian orogeny in the southern São Francisco craton region, Minas Gerais, Brazil: Evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Res. 1998, 90, 29–58. [Google Scholar] [CrossRef]
- Dorr, J.N. Physiographic, Stratigraphic, and Structural Development of the Quadrilátero Ferrífero, Minas Gerais; Professional Paper; U.S. Geological Survey: Reston, VA, USA, 1969. [Google Scholar] [CrossRef]
- Bølviken, B.; Bogen, J.; Jartun, M.; Langedal, M.; Ottesen, R.T.; Volden, T. Overbank sediments: A natural bed blending sampling medium for large-scale geochemical mapping. Chemom. Intell. Lab. Syst. 2004, 74, 183–199. [Google Scholar] [CrossRef]
- Salminen, R.; Tarvainen, T.; Demetriades, A.; Duris, M.; Fordyce, F.M.; Gregorauskiene, V.; Kahelin, H.; Kivisilla, J.; Klaver, G.; Klein, H.; et al. Foregs Geochemical Mapping Field Manual; Guide 47; Geological Survey of Finland: Espoo, Finland, 2005; p. 36. Available online: https://www.researchgate.net/publication/237315248_FOREGS_geochemical_mapping_field_manual (accessed on 17 January 2025).
- USEPA-U.S. Environmental Protection Agency. Drinking Water Standards and Health Advisories: U.S. Environmental Protection Agency, Office of Water, EPA-822-B-00-001. 2000. Available online: https://www.epa.gov/sdwa/drinking-water-health-advisories-has (accessed on 21 April 2025).
- Smith, D.B.; Smith, S.M.; Horton, J.D. History and evaluation of a national scale geochemical data sets for the United States. Geosci. Front. 2013, 4, 167–183. [Google Scholar] [CrossRef]
- Reimann, C.; Caritat, P.d. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Sci. Total Environ. 2017, 578, 633–648. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C.; Romero-Baena, A.; González, I.; Galán, E. Geochemical anomalies of critical elements (Be, Co, Hf, Sb, Sc, Ta, V, W, Y and REE) in soils of western Andalusia (Spain). Appl. Clay Sci. 2020, 191, 105610. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Sinha, S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—A case study. Anal. Chim. Acta 2005, 538, 355–374. [Google Scholar] [CrossRef]
- Albanese, S.; Devivo, B.; Lima, A.; Cicchella, D. Geochemical background and baseline values of toxic elements in stream sediments of Campania region, Italy. J. Geochem. Explor. 2006, 93, 21–34. [Google Scholar] [CrossRef]
- Bai, J.; Porwal, A.; Hart, C.; Ford, A.; Yu, L. Mapping geochemical singularity using multifractal analysis: Application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. J. Geochem. Explor. 2010, 104, 1–11. [Google Scholar] [CrossRef]
- Ranasinghe, P.N.; Fernando, G.W.A.R.; Dissanayake, C.B.; Rupasinghe, M.S.; Witter, D.L. Statistical evaluation of stream sediment geochemistry in interpreting the river catchment of high-grade metamorphic terrains. J. Geochem. Explor. 2009, 103, 97–114. [Google Scholar] [CrossRef]
- Forum of European Geological Surveys-FOREGS. Euro Geo Surveys: Geochemical Baseline Database, Geochemical Atlas of Europe, Part 1 and 2. 2005. Available online: http://weppi.gtk.fi/publ/foregsatlas/ (accessed on 11 April 2025).
- Reimann, C.; Caritat, P. Chemical Elements in the Environment: Factsheets for the Geochemist and Environmental Scientist; Springer: Berlin/Heidelberg, Germany, 1998; p. 398. [Google Scholar] [CrossRef]
- Sundaray, S.K.; Nayak, B.B.; Kanungo, T.K.; Bhatta, D. Dynamics and quantification of dissolved heavy metals in the Mahanadi River estuarine system, India. Environ. Monit. Assess. 2012, 184, 1157–1179. [Google Scholar] [CrossRef]
- Ali, M.M.; Ali, M.L.; Islam, M.S.; Rahman, M.Z. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2016, 5, 27–35. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A.M. Assessment of tracemetals contamination of surface water and sediment: A case study of Mvudi River, South Africa. Sustainability 2016, 8, 135. [Google Scholar] [CrossRef]
- Custodio, M.; Alvarez, D.; Cuadrado, W.; Montalvo, R.; Ochoa, S. Potentially toxic metals and metalloids in surface water intended for human consumption and other uses in the Mantaro River watershed, Peru. Soil Water Res. 2020, 15, 237–245. [Google Scholar] [CrossRef]
- Mohanakavitha, T.; Divahar, R.; Meenambal, T.; Shankar, K.; Rawat, V.S.; Haile, T.D.; Gadafa, C. Dataset on the assessment of water quality of surface water in Kalingarayan Canal for heavy metal pollution, Tamil Nadu. Data Brief 2019, 22, 878–884. [Google Scholar] [CrossRef]
- Gonçalves, G.H.T. Avaliação Geoambiental de Bacias Contíguas Situadas na Área de Proteção Ambiental Cachoeira das Andorinhas e Floresta Estadual do Uaimii, Ouro Preto-Minas Gerais: Diagnóstico e Percepção Ambiental. Master’s Thesis, Federal University of Ouro Preto, Departamento de Geologia, Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais, Escola de Minas, Brazil, 2010. [Google Scholar]
- IGAM–Instituto Mineiro de Gestão das Águas. Monitoramento da Qualidade das Águas Superficiais da Bacia do rio Paraopeba: Relatório Anual 2019; IGAM: Belo Horizonte, Brazil, 2020. Available online: http://repositorioigam.meioambiente.mg.gov.br/handle/123456789/198 (accessed on 2 January 2025).
- Brasil Ministério da Saúde. Portaria de Consolidação MS/GM n 5, de 28 de setembro de 2017. Consolidação das normas sobre as ações e os serviços de saúde do Sistema Único de Saúde. Anexo XX-Do controle e da vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. In Diário Oficial da União, Brasília; Brasil Ministério da Saúde: Brasília, Brazil, 2017; pp. 360–568. Available online: https://portalsinan.saude.gov.br/images/documentos/Legislacoes/Portaria_Consolidacao_5_28_SETEMBRO_2017.pdf (accessed on 8 January 2025).
- Cheng, Z.; Xie, X.; Yao, W.; Feng, J.; Zhang, Q.; Fang, J. Multi-element geochemical mapping in Southern China. J. Geochem. Explor. 2014, 139, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Merian, E.; Anke, M.; Ihnat, M.; Stoeppler, M. Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance; WILEY-VCH Verlag GmbH & Co. KGaA: Hoboken, NJ, USA, 2004; Volume 1–3, p. 1773. ISBN 3-527-30459-2. [Google Scholar]
Elem | Detection Limit for Water (µg·L−1) | Elem | Detection Limit for Water (µg·L−1) |
---|---|---|---|
Al | 7.3 | K | 0.00007 |
As | 57.7 | Mg | 0.0004 |
Ca | 0.0002 | Mn | 1.2 |
Cd | 6.2 | Ni | 20 |
Cr | 5.3 | Pb | 7.2 |
Cu | 3.5 | Ti | 3.9 |
Fe | 5.6 | Zn | 3.5 |
Element | Certified (μg/L) | Found (μg/L) | Recovery (%) |
---|---|---|---|
Al | 141.8 | 123.1 | 86.8 |
As | 60.5 | 63.9 | 105.7 |
Ca | 32.3 | 28.6 | 88.6 |
Cd | 6.6 | 6.8 | 103.0 |
Cr | 20.4 | 20.0 | 97.8 |
Cu | 22.8 | 21.4 | 94.2 |
Fe | 98.1 | 91.2 | 93.0 |
K | 2.0 | 2.1 | 102.3 |
Mg | 8.0 | 7.4 | 91.9 |
Mn | 39.0 | 35.9 | 92.1 |
Na | 20.7 | 18.7 | 90.0 |
Ni | 62.4 | 57.8 | 92.6 |
Pb | 19.6 | 18.8 | 95.6 |
Zn | 78.5 | 75.7 | 96.4 |
Elem | Unit | Min | Q1 | Median | Q3 | Máx | Mean | EUR * (Median) | World ** (Median) |
---|---|---|---|---|---|---|---|---|---|
Al | µg·L−1 | 7.3 | 15.5 | 25.3 | 70.0 | 2562 | 136.7 | 17.7 | 160 |
Fe | µg·L−1 | 7.8 | 159.2 | 353 | 671.6 | 2873 | 503.4 | 67 | 40 |
Ca | mg L−1 | 0.4 | 2.3 | 3.7 | 6.8 | 2468 | 25.3 | 40.2 | 12 |
Mg | mg L−1 | 0.14 | 0.89 | 1.76 | 2.94 | 673 | 20.81 | 6.02 | 2.9 |
K | mg L−1 | 0.07 | 0.50 | 0.87 | 1.58 | 1446 | 5.86 | 1.60 | 2.3 |
As | µg·L−1 | 57.7 | 57.7 | 57.7 | 64.8 | 414 | 65 | 0.63 | 2 |
Cd | µg·L−1 | 6.2 | 6.2 | 6.2 | 7.8 | 19.6 | 6.92 | 0.01 | 0.2 |
Cr | µg·L−1 | 5.3 | 32.5 | 32.5 | 57.7 | 326.4 | 45.6 | 0.38 | 1 |
Cu | µg·L−1 | 3.5 | 4.2 | 4.2 | 67.3 | 263.7 | 34.3 | 0.88 | 7 |
Mn | µg·L−1 | 6.9 | 98.1 | 98.1 | 244.4 | 1135 | 183.7 | 15.9 | 10 |
Ni | µg·L−1 | 20 | 20 | 20 | 31.5 | 264.7 | 32.4 | 1.91 | 2.5 |
Pb | µg·L−1 | 7.2 | 8.2 | 8.2 | 21.3 | 201.4 | 24.9 | 0.09 | 0.03 |
Zn | µg·L−1 | 3.5 | 45.3 | 45.3 | 83.5 | 2198 | 88.9 | 2.68 | 20 |
River/Location | As | Cd | Cr | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|
Mahanadi, India [54] | ---- | ---- | 3.7 | 8.4 | 15.8 | 19.1 | 29.3 |
Karnaphuli, Bangladesh [55] | ---- | 2.5–18.3 | 46–112 | ---- | ---- | 5.29–27.4 | ---- |
Mvudi, South Africa [56] | ---- | 0.3–2 | 15–357 | 24–185 | ---- | 2–42 | 31–261 |
Mantaro, Peru [57] | ---- | ---- | ---- | 1.13–14.6 | ---- | 2.8–9.5 | 6.3–58.3 |
Kalingarayan, India [58] | ---- | 0–10 | 110–3400 | 0–1960 | 0–53 | 10–120 | 20–910 |
St. Sebastian, Sri Lanka [4] | ---- | ---- | 3–78 | 397–2100 | 4–59 | 17–255 | 257–487 |
Europe [52] | ---- | 0.002–1.25 | 0.01–43 | 0.08–14.6 | 0.03–24.6 | 0.05–10.6 | 0.09–310 |
Velhas and Paraopeba Basin | |||||||
Upper Velhas and Upper Paraopeba basins | 57.7–414 | 6.2–19.6 | 5.3–326.4 | 3.5–263.7 | 20–264.7 | 7.2–201.4 | 3.5–2198 |
Mata Porcos basin [26] | <LLD * | <LLD * | <LLD | 4.5–6.3 | <LLD | 73.7 | 3.9–66.9 |
Andaime e EPA Uaimii asin [59] | <LLD | 9.8 | 7–12.1 | 5.3–7.6 | <LLD | <LLD | 6.3–26.5 |
Paraopeba basin [60] | 3–15 | 5 | 40–160 | 4–5 | 4–52 | 5–47 | 20–300 |
Parameter | Unit | Min | Q1 | Median | Q3 | Máx | Mean |
---|---|---|---|---|---|---|---|
pH | ---- | 5.11 | 6.76 | 6.99 | 7.24 | 10.43 | 7.01 |
ORP | mV | −49 | 46 | 115 | 168 | 325 | 109.7 |
EC | µS/cm | 4.2 | 27.7 | 39.5 | 62.7 | 476.3 | 59.1 |
TDS | mg L−1 | 2.50 | 17.5 | 25.1 | 40.1 | 314 | 37.8 |
Limit for Drinking Water (Brazilian Legislation—μg·L−1) [61] | Surface Waters Concentrations (μg·L−1) | Classification of Reference Values | % of Sampling Points Exceeding the Drinking Water Limits | |
---|---|---|---|---|
As * | 10 | 10–64.8 | Background | 27 |
>64.8–75.5 | High Baseline | |||
>75.5 | Anomaly | |||
Cd * | 5 | 5–7.8 | Background | 26.4 |
>7.8–10.2 | High Baseline | |||
>10.2 | Anomaly | |||
Cr | 50 | 5.3–57.7 | Background | 38.3 |
>57.7–131.5 | High Baseline | |||
>131.5 | Anomaly | |||
Cu | 2000 | 3.6–67.3 | Background | 0 |
>67.3–162.9 | High Baseline | |||
>162.9 | Anomaly | |||
Ni | 70 | 20–31.5 | Background | 10.1 |
>31.5–48.8 | High Baseline | |||
>48.8 | Anomaly | |||
Pb | 10 | 7.2–21.3 | Background | 25.3 |
>21.3–42.5 | High Baseline | |||
>42.5 | Anomaly | |||
Zn | 250 | 3.5–83.5 | Background | 3.2 |
>83.5–177 | High Baseline | |||
>177 | Anomaly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicq, R.; Leite, M.G.P.; Leão, L.P.; Nalini Júnior, H.A.; da Cunha e Silva, D.C.; Fonseca, R.; Valente, T. Hydrogeochemistry of Surface Waters in the Iron Quadrangle, Brazil: High-Resolution Mapping of Potentially Toxic Elements in the Velhas and Paraopeba River Basins. Water 2025, 17, 2446. https://doi.org/10.3390/w17162446
Vicq R, Leite MGP, Leão LP, Nalini Júnior HA, da Cunha e Silva DC, Fonseca R, Valente T. Hydrogeochemistry of Surface Waters in the Iron Quadrangle, Brazil: High-Resolution Mapping of Potentially Toxic Elements in the Velhas and Paraopeba River Basins. Water. 2025; 17(16):2446. https://doi.org/10.3390/w17162446
Chicago/Turabian StyleVicq, Raphael, Mariangela G. P. Leite, Lucas P. Leão, Hermínio A. Nalini Júnior, Darllan Collins da Cunha e Silva, Rita Fonseca, and Teresa Valente. 2025. "Hydrogeochemistry of Surface Waters in the Iron Quadrangle, Brazil: High-Resolution Mapping of Potentially Toxic Elements in the Velhas and Paraopeba River Basins" Water 17, no. 16: 2446. https://doi.org/10.3390/w17162446
APA StyleVicq, R., Leite, M. G. P., Leão, L. P., Nalini Júnior, H. A., da Cunha e Silva, D. C., Fonseca, R., & Valente, T. (2025). Hydrogeochemistry of Surface Waters in the Iron Quadrangle, Brazil: High-Resolution Mapping of Potentially Toxic Elements in the Velhas and Paraopeba River Basins. Water, 17(16), 2446. https://doi.org/10.3390/w17162446