Study on the Adsorption Characteristics of Loess Influenced by Temperature Effects
Abstract
1. Introduction
2. The Study Area
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Laser Diffraction Particle Size Analyzer Analyzes the Sample
3.2.2. Compositional Analysis Using XRF and XRD
3.2.3. Microstructural Analysis Using Phenom Scanning Electron Microscope (SEM)
3.2.4. Dynamic Dew-Point Isotherm Method
4. Results
4.1. Determination of Basic Physical Properties
- (1)
- For samples from the H1 and H2 strata, the sand content is less than 50%, while the silt content exceeds the sand content. This significantly affects pore connectivity and pore size distribution, which in turn has substantial implications for subsequent research on the soil–water characteristic curve (SWCC). When the pore size is smaller, the suction required for both the wetting and drying paths will correspondingly decrease and increase.
- (2)
- In contrast, undisturbed samples from the H3 and H4 strata exhibit a sand content exceeding 50%. This provides favorable conditions for the formation of a soil skeleton structure and creates inherent conditions for larger pores. Meanwhile, the clay content (approximately 25%) is nearly equivalent to the silt content (approximately 25%). During SWCC studies, adsorption in later stages tends to form smaller pores, requiring increased suction and making the formation of interconnected pathways more challenging.
- (3)
- The analysis of the grain size classification triangle for Mizhi loess depends not only on variations in the data but also on the sedimentary environment and depositional time. Notably, the deeper H3 and H4 Mizhi loess samples have been subjected to greater overburden pressure and have experienced distinct sedimentary environments. Consequently, pore sizes have also decreased, aligning with the characteristics of the sedimentary environment and the depositional sequence features of the Loess Plateau.
4.2. Sample Mineral Composition and Microstructure
4.3. Determination of Soil–Water Characteristic Curves (SWCCs) Using Dynamic Dew-Point Isotherm Method
4.4. SWCC Characteristics Under Different Temperatures
- (1)
- Temperature condition 15 °C
- (2)
- Temperature condition 20 °C
- (3)
- Temperature condition 25 °C
5. Discussion
5.1. Influence of Temperature on Hysteresis
5.2. Role of Mineral Composition and Microstructure
5.3. SWCC Model Fitting
6. Conclusions
- (1)
- Temperature-Driven SWCC Modifications
- (2)
- Hysteresis Intensification
- (3)
- Microstructural Control Mechanism
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nie, Y.P. Study on Mechanical Properties and Influence Mechanism of Compacted Loess Under Water-Chemical Interaction. Ph.D. Thesis, Chang’an University, Xi’an, China, 2024. [Google Scholar]
- Zhou, Z.; Huang, Y.; Zhou, F. Dynamic Response of Layered Unsaturated Soils under Moving Loads. Mech. Solids 2024, 59, 2975–2991. [Google Scholar] [CrossRef]
- Lu, N. Unsaturated Soil Mechanics: Fundamental Challenges, Breakthroughs, and Opportunities. J. Geotech. Geoenviron. Eng. 2020, 146, 02520001. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media and Their Relation to Drainage Design. Trans. ASAE 1964, 7, 26–28. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Wu, J.H.; Yang, S. Experimental study on matric suction measurement and its impact on shear strength of expansive soils under wetting-drying cycles. Rock Soil Mech. 2017, 38, 678–684. [Google Scholar] [CrossRef]
- Miao, L.C.; Cui, Y.; Chen, K.J.; Jing, F. Tests on strength of unsaturated remolded expansive soils. Yantu Gongcheng Xuebao (Chin. J. Geotech. Eng.) 2006, 28, 274–276. [Google Scholar] [CrossRef]
- Cui, Y.; Miao, L.C. Testing study of permeability characteristics of unsaturated compacted expansive soils. Rock Soil Mech. 2011, 32, 2007–2012. Available online: https://api.semanticscholar.org/CorpusID:132074309 (accessed on 12 August 2025).
- Kuntiwattanakul, P.; Towhata, I.; Ohishi, K.; Seko, I. Temperature effects on undrained shear characteristics of clay. Soils Found. 2008, 35, 147–162. [Google Scholar] [CrossRef]
- Wang, B.-J. Impact and Key Issues of Urban Heat Island Effect to Soil Engineering Properties. Environ. Sci. Geol. Eng. 2009. Available online: https://api.semanticscholar.org/CorpusID:131730840 (accessed on 12 August 2025).
- Menne, J.; Holzheid, A.; Heilmann, C. Multi-Scale Measurements of Neolithic Ceramics—A Methodological Comparison of Portable Energy-Dispersive XRF, Wavelength-Dispersive XRF, and Microcomputer Tomography. Minerals 2020, 10, 931. [Google Scholar] [CrossRef]
- Barbour, L.S. Nineteenth canadian geotechnical colloquium: The soil-water characteristic curve: A historical perspective. Can. Geotech. J. 1998, 35, 873–894. [Google Scholar] [CrossRef]
- Sillers, W.S.; Fredlund, D.G. Statistical assessment of soil-water characteristic curve models for geotechnical engineering. Can. Geotech. J. 2001, 38, 1297–1313. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Pang, Y.W. Experimental investigations of the soil-water characteristics of a volcanic soil. Can. Geotech. J. 2000, 37, 1252–1264. [Google Scholar] [CrossRef]
- Simms, P.H.; Yanful, E.K. Estimation of Soil–Water Characteristic Curve of Clayey Till Using Measured Pore-Size Distributions. J. Environ. Eng. 2004, 130, 847–854. [Google Scholar] [CrossRef]
- Chun, L.S.; Dong, W.G.; Chu, Z.J.; Sheng, M.A.; Min, X.A. Improvement and application on soil tension meter with negative-pressure mercury. Acta Agric. Boreali-Occident. Sin. 2002, 11, 29–33. [Google Scholar] [CrossRef]
- Philip, J.R.; De Vries, D.A. Moisture movement in porous materials under temperature gradients. Trans. Amer. Geophys Union 1957, 38, 222. [Google Scholar] [CrossRef]
- Gardner, R. Relation of temperature to moisture tension of soil. Soil Sci. 1955, 79, 257–266. [Google Scholar] [CrossRef]
- Chahal, R.S. Effect of temperature and trapped air on the energy status of water in porous media. Soil Sci. 1964, 98, 107–112. [Google Scholar] [CrossRef]
- Chahal, R.S. Effect to temperature and trapped air on matric suction. Soil Sci. 1965, 100, 262–266. [Google Scholar] [CrossRef]
- Haridasan, M.; Jensen, R.D. Effect of temperature on pressure head-water content relationship and conductivity of two soils. Soil Sci. Soc. Am. J. 1972, 36, 703–708. [Google Scholar] [CrossRef]
- Hopmans, J.W.; Dane, J.H. Temperature dependence of soil water retention curves1. Soil Sci. Soc. Am. J. 1986, 50, 27–29. [Google Scholar] [CrossRef]
- Nimmo, J.R.; Miller, E.E. The temperature dependence of isothermal moisture vs. potential characteristics of soils. Soil Sci. Soc. Am. J. 1986, 50, 1105–1113. [Google Scholar] [CrossRef]
- Constantz, J. Comparison of isothermal and isobaric water retention paths in nonswelling porous materials. Water Resour. Res. 1991, 27, 3165–3170. [Google Scholar] [CrossRef]
- She, H.Y.; Sleep, B.E. The effect of temperature on capillary pressure-saturation relationships for air-water and perchloroethylene-water systems. Water Resour. Res. 1998, 34, 2587–2597. [Google Scholar] [CrossRef]
- Bachmann, J.; Horton, R.; Grant, S.A.; Van der Ploeg, R.R. Temperature dependence of water retention curves for wettable and water-repellent soils. Soil Sci. Soc. Am. J. 2002, 66, 44–52. [Google Scholar] [CrossRef]
- Tie-Hang, W.; Jing, L.U.; Cai-Kun, Y. Soil-water characteristic curve for unsaturated loess considering temperature and density effect. Rock Soil Mech. 2008, 29, 1–5. [Google Scholar] [CrossRef]
- Grant, S.A.; Salehzadeh, A. Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions. Water Resour. Res. 1996, 32, 261–270. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, J.H.; Wang, P.L.; Yu, H.P.; Yue, P.; Liu, X.Y.; Lin, J.J.; Duan, X.Y.; Zhu, B.; Yan, X.Y. Research progress and prospects of climate warming-wetting in Northwest China. Sci. Bull. 2023, 68, 1814–1828. [Google Scholar] [CrossRef]
- Longman, J.; Veres, D.; Wennrich, V. Utilisation of XRF core scanning on peat and other highly organic sediments. Quat. Int. 2019, 514, 85–96. [Google Scholar] [CrossRef]
- Liao, R.; Wang, J.; Liu, S.; Lin, H.; Lin, M.; Yu, S. XRD and Synchrotron-Based XRD Study of Chalcopyrite Leaching Catalyzed by Silver Ions. In The Minerals, Metals & Materials Series, Proceedings of the TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, San Diego, CA, USA, 23–27 February 2020; The Minerals, Metals, Materials Society, Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Al Halwachi, H. Characterization of Aluminum Dross Compositions Using Rietveld XRD Technique, Standardless XRF Method and Carbon Analyzer. In The Minerals, Metals & Materials Series, Proceeding of the Light Metals 2024. TMS 2024, Orlando, FA, USA, 3 February 2024; Wagstaff, S., Ed.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Likos, W.J.; Lu, N.; Wenszel, W. Performance of a dynamic dew point method for moisture isotherms of clays. Geotech. Test. J. 2011, 34, 102901. [Google Scholar] [CrossRef]
- Wei, H.; Qing-Bing, L.; Wei, X.; Lin-Zhi, L.; De-Shan, C.; Jing-E, W. Hydration mechanism and microscopic water retention model of clay at high suction range. Chin. J. Geotech. Eng. 2018, 40, 1268–1276. [Google Scholar] [CrossRef]
- Arthur, E.; Tuller, M.; Moldrup, P.; Wollesen de Jonge, L. Rapid and fully automated measurement of water vapor sorption isotherms: New opportunities for vadose zone research. Educ. Technol. Soc. 2013, 7, 193–200. [Google Scholar] [CrossRef]
- Yoon, S.; Chang, S.; Park, D. Investigation of soil-water characteristic curves for compacted bentonite considering dry density. Prog. Nucl. Energy 2022, 151, 104318. [Google Scholar] [CrossRef]
Type | H1 | H2 | H3 | H4 | |
---|---|---|---|---|---|
Depth (m) | 965.5 | 955.2 | 945.7 | 935.9 | |
Dry density (ρd, g/cm3) | |||||
Porosity ratio (e) | |||||
Specific gravity (G) | |||||
Atterberg limits (%) | (WL, %) | 28.2 | 33.67 | 29.3 | 27.37 |
(WP, %) | 15.9 | 15.63 | 14.2 | 11.93 | |
(IP, %) | 12.3 | 18.04 | 15.1 | 15.44 | |
Atterberg limits (%) | (Clay, %) | 6.98 | 5.43 | 4.92 | 5.26 |
(Silt, %) | 50.47 | 51.69 | 38.31 | 33.35 | |
(Sand, %) | 42.55 | 42.88 | 56.77 | 61.39 | |
Cu | 8.68 | 6.46 | 6.83 | 7.44 | |
Cc | 2.16 | 1.75 | 1.64 | 2.16 | |
SSA (m2/g) | 0.521 | 0.396 | 0.410 | 0.417 |
Sample Number | Average Content of Main Chemical Components (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | FeO | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | MnO | |
H1 | 64.06 | 11.08 | 3.16 | 1.39 | 7.77 | 2.13 | 2.4 | 1.67 | 0.65 | 0.14 | 0.09 |
H2 | 63.61 | 11.07 | 1.32 | 6.37 | 2.25 | 2.14 | 1.91 | 0.59 | 0.13 | 0.066 | 3.75 |
H3 | 64.67 | 10.92 | 1.34 | 6.42 | 2.08 | 2.09 | 2.04 | 0.56 | 0.12 | 0.065 | 3.52 |
H4 | 65.45 | 11.02 | 1.20 | 6.03 | 1.97 | 2.17 | 2.07 | 0.56 | 0.14 | 0.067 | 3.50 |
Sample Number | Mineral Content (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Quartz | Plagioclase | Potassium Feldspar | Calcite | Dolomite | Amphibole | Hematite | Amorphous Phase | TCCM | |
H1 | 43.8 | 18.5 | 5.9 | 7.9 | 0.5 | 2.3 | / | / | 21.1 |
H2 | 51.0 | 17.4 | 4.0 | 6.7 | 1.1 | 1.2 | / | / | 18.6 |
H3 | 50.4 | 20.5 | 6.2 | 8.0 | 1.2 | 0.9 | / | / | 12.8 |
H4 | 47.1 | 25.3 | 5.3 | 6.7 | 1.3 | 1.6 | / | / | 12.7 |
Temperature (°C) | Experimental Time (Min) | Start Point of Moisture Absorption | Dehumidification Starting Point | Dehumidification End Point | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RH | (%) | (kPa) | RH | (%) | (kPa) | RH | (%) | (kPa) | ||
15 °C | 1485 (196) | 0.0300 | 0.05 | 482,931 | 0.9509 | 5.41 | 6933 | 0.0163 | 0.01 | 566,622 |
20 °C | 1959 (203) | 0.0512 | 0.02 | 402,201 | 0.9473 | 5.56 | 7328 | 0.0253 | 0.01 | 497,532 |
25 °C | 1651 (193) | 0.0539 | 0.01 | 391,779 | 0.9456 | 5.68 | 7459 | 0.0857 | 0.02 | 328,758 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Jiang, R.; Jia, Z.; Huang, Q.; Meng, Z.; Ma, P.; He, Z.; Huo, B.; Peng, J. Study on the Adsorption Characteristics of Loess Influenced by Temperature Effects. Water 2025, 17, 2441. https://doi.org/10.3390/w17162441
Zhu Y, Jiang R, Jia Z, Huang Q, Meng Z, Ma P, He Z, Huo B, Peng J. Study on the Adsorption Characteristics of Loess Influenced by Temperature Effects. Water. 2025; 17(16):2441. https://doi.org/10.3390/w17162441
Chicago/Turabian StyleZhu, Yubo, Ruijun Jiang, Zhijie Jia, Qiangbing Huang, Zhenjiang Meng, Penghui Ma, Zhiyuan He, Bingyao Huo, and Jianbing Peng. 2025. "Study on the Adsorption Characteristics of Loess Influenced by Temperature Effects" Water 17, no. 16: 2441. https://doi.org/10.3390/w17162441
APA StyleZhu, Y., Jiang, R., Jia, Z., Huang, Q., Meng, Z., Ma, P., He, Z., Huo, B., & Peng, J. (2025). Study on the Adsorption Characteristics of Loess Influenced by Temperature Effects. Water, 17(16), 2441. https://doi.org/10.3390/w17162441