Flooded Historical Mines of the Pitkäranta Area (Karelia, Russia): Heavy Metal(loid)s in Water
Abstract
1. Introduction
2. Study Area
2.1. Geological Essay
2.2. Historical Background of the Area and Current State of Research Objects
3. Objects and Methods of Research
3.1. Sampling and Field Measurements
3.2. Analytical Procedures
3.3. Data Processing
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larin, A.M. Rapakivi Granites and Associated Rocks; Nauka: St. Petersburg, Russia, 2011; p. 402. (In Russian) [Google Scholar]
- Mikhailov, V.P.; Aminov, V.N. (Eds.) Mineral and Raw Material Base of the Republic Karelia. Book 1: Combustible Mineral Resources. Metallic Mineral Resources; Kareliya: Petrozavodsk, Russia, 2005; 280p. [Google Scholar]
- Mikhailov, V.P.; Aminov, V.N. (Eds.) Mineral and Raw Material Base of the Republic Karelia. Book 2: Non-Metallic Mineral Resources. Underground Waters and Medical Muds; Petrozavodsk: Kareliya, Russia, 2006; 356p. [Google Scholar]
- Kookana, R.S.; Drechsel, P.; Jamwal, P.; Vanderzalm, J. Urbanisation and emerging economies: Issues and potential solutions for water and food security. Sci. Total Environ. 2020, 732, 139057. [Google Scholar] [CrossRef]
- Gain, A.K.; Giupponi, C.; Wada, Y. Measuring global water security towards sustainable development goals. Environ. Res. Lett. 2016, 11, 124015. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Boyd, C.E. Water quality protection. In Water Quality; Springer: Berlin/Heidelberg, Germany, 2020; pp. 379–409. [Google Scholar] [CrossRef]
- Wang, X.; Tao, C.; An, L. Screening Dominant Species and Exploring Heavy Metals Repair Ability of Wild Vegetation for Phytoremediation in Copper Mine. Sustainability 2025, 17, 784. [Google Scholar] [CrossRef]
- Shchiptsov, V.V.; Goldenberg, M.L.; Luukkonen, E.; Marin, M. The Road of Mining; Karelian Scientific Center of the Russian Academy of Sciences: Petrozavodsk, Russia, 2014; p. 362. [Google Scholar]
- Luo, C.; Routh, J.; Dario, M.; Sarkar, S.; Wei, L.; Luo, D.; Liu, Y. Distribution and mobilization of heavy metals at an acid mine drainage affected region in South China, a post-remediation study. Sci. Total Environ. 2020, 724, 138122. [Google Scholar] [CrossRef]
- Acharya, B.S.; Kharel, G. Acid mine drainage from coal mining in the United States—An overview. J. Hydrol. 2020, 588, 125061. [Google Scholar] [CrossRef]
- Flores, H.; Lorenz, S.; Jackisch, R.; Tusa, L.; Contreras, I.C.; Zimmermann, R.; Gloaguen, R. UAS-Based Hyperspectral Environmental Monitoring of Acid Mine Drainage Affected Waters. Minerals 2021, 11, 182. [Google Scholar] [CrossRef]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Simate, G.S.; Ndlovu, S. Acid mine drainage: Challenges and opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. [Google Scholar] [CrossRef]
- Grieco, G.; Cocomazzi, G.; Naitza, S.; Bussolesi, M.; Deidda, M.L.; Ferrari, E.S.; Destefanis, E. Recycling Feldspar Mining Waste as Buffering Agent for Acid Mine Drainage Mitigation. Minerals 2024, 14, 552. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, X.M.; Wang, S.; Hu, S.M.; Wei, L.Z.; Wu, Q.H.; Luo, D.G.; Xiao, T.F. Hydrogeochemical evolution of groundwater impacted by acid mine drainage (AMD) from polymetallic mining areas (South China). J. Contam. Hydrol. 2023, 259, 104254. [Google Scholar] [CrossRef]
- Jarvis, A.P.; Gandy, C.J.; Webb, J.A. Controls on the Generation and Geochemistry of Neutral Mine Drainage: Evidence from Force Crag Mine, Cumbria, UK. Minerals 2023, 13, 592. [Google Scholar] [CrossRef]
- Barago, N.; Pavoni, E.; Floreani, F.; Crosera, M.; Adami, G.; Lenaz, D.; Covelli, S. Hydrogeochemistry of thallium and other potentially toxic elements in neutral mine drainage at the decommissioned Pb-Zn Raibl mine (Eastern Alps, Italy). J. Geochem. Explor. 2023, 245, 107129. [Google Scholar] [CrossRef]
- Medas, D.; Cidu, R.; De Giudici, G.; Podda, F. Chemical data on environmental matrices from an abandoned mining site. Data Br. 2019, 23, 103801. [Google Scholar] [CrossRef]
- Passariello, B.; Giuliano, V.; Quaresima, S.; Barbaro, M.; Caroli, S.; Forte, G.; Carelli, G.; Iavicoli, I. Evaluation of the environmental contamination at an abandoned mining site. Microchem. J. 2002, 73, 245–250. [Google Scholar] [CrossRef]
- Navarro, M.C.; Pérez-Sirvent, C.; Martínez-Sánchez, V.J.; Tovar, P.J.; Bech, J. Abandoned mine sites as a source of contami-na-tion by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor. 2008, 96, 183–193. [Google Scholar] [CrossRef]
- Wunn, T.D.; Arima, T.; Mufalo, W.; Hamai, T.; Okumura, M.; Mar, K.K.; Tomiyama, S.; Igarashi, T. Impact of effluents from a closed mine on the surrounding water resources: Groundwater contamination of the historical abandoned mine site in Japan. Environ. Monit. Assess. 2025, 197, 1–22. [Google Scholar] [CrossRef]
- Konyshev, A.A.; Sidkina, E.S.; Cherkasova, E.V.; Mironenko, M.V.; Gridasov, A.G.; Zhilkina, A.V.; Bugaev, I.A. Migration forms of heavy metals and chemical composition of surface waters in the area of arsenic mine (Pitkaranta ore district, South Karelia). Geochem. Int. 2020, 58, 1068–1074. [Google Scholar] [CrossRef]
- Sidkina, E.S.; Toropov, A.S.; Konyshev, A.A. Speciation of Chemical Elements in the Waters of the Herberz Historical Mine, Karelia, Russia: Thermodynamic Calculations and Fractionation. Geochem. Int. 2024, 62, 1200–1218. [Google Scholar] [CrossRef]
- Sidkina, E.S.; Soldatova, E.A.; Cherkasova, E.V.; Konyshev, A.A.; Toropov, A.S.; Vorobey, S.S.; Mironenko, M.V. Predicting potential pollutant release from waste rock at the abandoned Beck mine (Karelia, Russia) by equilibrium kinetic modeling. Bull. Geol. Soc. Finl. 2024, 96, 81–96. [Google Scholar] [CrossRef]
- Sidkina, E.S.; Soldatova, E.A.; Cherkasova, E.V.; Konyshev, A.A.; Vorobey, S.S.; Mironenko, M.V. Fate of Heavy Metals in the Surface Water-Dump Rock System of the Mine Lupikko I (Karelia): Field Observations and Geochemical Modeling. Water 2022, 14, 3382. [Google Scholar] [CrossRef]
- Alekseev, I.A.; Amantov, A.V.; Amantova, M.G.; Babichev, A.V.; Baltybaev, S.K.; Bugaenko, I.V.; Voinov, A.S.; Golubtsova, N.S.; Zhamaletdinov, A.A.; Zaitsev, S.V.; et al. Ladoga Proterozoic Structure (Geology, Deep Structure and Minerageny); Sharov, N.V., Ed.; KarSC RAS: Petrozavodsk, Russia, 2020; p. 435. (In Russian) [Google Scholar]
- Velikoslavinsky, D.A. Comparative Characteristics of Regional Metamorphism of Moderate and Low Pressures; Nauka: Leningrad, Russia, 1972; p. 190. (In Russian) [Google Scholar]
- Baltybaev, S.K.; Levchenkov, O.A.; Levsky, L.K. The Svecofennian Belt of Fennoscandia: Spatial and Temporal Correlation of Early Proterozoic Endogenous Processes; Nauka: St. Petersburg, Russia, 2009; p. 328. (In Russian) [Google Scholar]
- Eskola, P.E. The problem of mantled gneiss domes. Quart. J. Geol. Soc. 1949, 104, 461–476. [Google Scholar] [CrossRef]
- Galdobina, L.P.; Melezhik, V.A. Ludikovian stratigraphy of the eastern part of the Baltic Shield. In Proceedings of the Finnish-Soviet Symposium Early Proterozoic of the Baltic Shield, Petrozavodsk, Russia, 19–27 August 1986. (In Russian). [Google Scholar]
- Svetov, A.P.; Sviridenko, L.P. Precambrian Stratigraphy of Karelia. Sortavala Series of Svekokarelides of Ladoga Region; Russian Academy of Sciences Karelian Scientific Center, Institute of Geology: Petrozavodsk, Russia, 1992; p. 152. (In Russian) [Google Scholar]
- Vrevsky, A.B.; Matrenichev, V.A.; Sergeev, S.A.; Larionov, A.N.; Bogomolov, E.S. Geochronological and isotope-geochemical substantiation of the ensialic nature of the supracrustal formations of the Sortavala series in the junction zone of the Karelian and Svekofennian geoblocks of the Fennoscandian shield. In Proceedings of the III Conference on Isotope Geochronology, Moscow, Russia, 2–6 June 2006. (In Russian). [Google Scholar]
- Gorokhov, I.M.; Kuznetsov, A.B.; Azimov, P.Y.; Dubinina, E.O.; Vasilieva, I.M.; Rizvanova, N.G. Sr and C Isotope Chemostratigraphy of the Paleoproterozoic Metacarbonate Rocks of the Sortavala Group: Fennoscandian Shield, Northern Ladoga Area. Stratigr. Geol. Correl 2021, 29, 121–139. [Google Scholar] [CrossRef]
- Neymark, L.A.; Amelin, Y.V.; Larin, A.M. Pb-Nd-Sr isotopic and geochemical constraints on the origin of the 1.54–1.56 Ga Salmi rapakivi granite—Anorthosite batholith (Karelia, Russia). Contrib. Mineral. Petrol. 1994, 50, 173–193. [Google Scholar] [CrossRef]
- Amelin, Y.V.; Larin, A.M.; Tucker, R.D. Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: Implications for magmatic evolution. Contrib. Mineral. Petrol. 1997, 127, 353–368. [Google Scholar] [CrossRef]
- Dukhovskiy, A.A.; Artamonova, N.A.; Ivanova, E.I.; Nikiforov, I.O. A volumetric model of the Salmi rapakivi granite massif and the regularities of mineralization placement. Otechestvennaya Geol. 1994, 4, 24–32. (In Russian) [Google Scholar]
- Rämö, O.T.; Mänttäri, I.; Vaasjoki, M.; Upton, B.G.J.; Sviridenko, L. Age and significance of Mesoproterozoic CFB magmatism, Lake Ladoga region, NW Russia. In Proceedings of the A Geo-Odyssey, Boston, MA, USA, 1–10 November 2001. [Google Scholar]
- Trüstedt, O. Die Erzlagerstätten von Pitkäranta am Ladoga-See. Bull. La Comm. Géol. Finl. 1907, 19, 258–276. (In German) [Google Scholar]
- Grendal, G. Pitkäranta (Brief Description of Pitkäranta Deposit, Mines, Factories). Typo-Lithography by A.E.; Wieneke: St. Petersburg, Russia, 1896; p. 50. [Google Scholar]
- Bol’shov, M.A.; Karandashev, V.K.; Tsisin, G.I.; Zolotov, Y.A. Flow methods for the determination of elements in solutions based on sorption preconcentration and inductively coupled plasma mass spectrometry. J. Anal. Chem. 2011, 66, 548–564. [Google Scholar] [CrossRef]
- Perelman, A.I. Geochemistry of Natural Waters; Nauka: Moscow, Russia, 1982; p. 154. (In Russian) [Google Scholar]
- Grigoriev, N.A. Chemical Element Distribution in the Upper Continental Crust; UB RAS: Ekaterinburg, Russia, 2009; p. 383. (In Russian) [Google Scholar]
- Johnston, S.G.; Bennett, W.W.; Doriean, N.; Hockmann, K.; Karimian, N.; Burton, E.D. Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system. Sci. Total Environ. 2020, 710, 136354. [Google Scholar] [CrossRef]
- Ministry of Natural Resources and Ecology of the Russian Federation. State Report on the Conditions and Use of Mineral Resources of the Russian Federation in 2021; Ministry of Natural Resources and Ecology of the Russian Federation, Subsurface Resources Management (Rosnedra): Moscow, Russia, 2022; p. 621. Available online: https://vims-geo.ru/ru/documents/714/%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0_%D0%93%D0%94-2021_web_2023.01.18_8.pdf (accessed on 9 June 2025).
- Banks, D.; Younger, P.L.; Arnesen, R.; Iversen, E.R.; Banks, S.B. Mine-water chemistry: The good, the bad and the ugly. Environ. Geol. 1997, 32, 157–174. [Google Scholar] [CrossRef]
- Parviainen, A. Tailings mineralogy and geochemistry at the abandoned Haveri Au–Cu mine, SW Finland. Mine Water Environ. 2009, 28, 291–304. [Google Scholar] [CrossRef]
- Heikkinen, P.M.; Korkka-Niemi, K.; Lahti, M.; Salonen, V.P. Groundwater and surface water contamination in the area of the Hitura nickel mine, Western Finland. Environ. Geol. 2002, 42, 313–329. [Google Scholar] [CrossRef]
- Holmström, H.; Ljungberg, J.; Öhlander, B. The character of the suspended and dissolved phases in the water cover of the flooded mine tailings at Stekenjokk, northern Sweden. Sci. Total Environ. 2000, 247, 15–31. [Google Scholar] [CrossRef]
- Kauppila, P.M.; Räisänen, M.L. Effluent chemistry of closed sulfide mine tailings—Influence of ore type. In Proceedings, 10th ICARD and IMWA Conference, Santiago, Chile, 21–24 April 2015; Brown, A., Bucknam, C., Burgess, J., Carballo, M., Castendyk, D., Figueroa, L., Kirk, L., McLemore, V., McPhee, J., O’Kane, M., et al., Eds.; IMWA: Wendelstein, Germany, 2015; pp. 264–273. [Google Scholar]
- Cherkasova, E.V.; Konyshev, A.A.; Soldatova, E.A.; Sidkina, E.S.; Mironenko, M.V. Metal Speciation in Water of the Flooded Mine “Arsenic” (Karelia, Russia): Equilibrium-Kinetic Modeling with a Focus on the Influence of Humic Substances. Aquat. Geochem. 2021, 27, 141–158. [Google Scholar] [CrossRef]
- Konyshev, A.A.; Sidkina, E.S.; Bugaev, I.A. A Study on the Long-Term Exposure of a Tailings Dump, a Product of Processing Sn-Fe-Cu Skarn Ores: Mineralogical Transformations and Impact on Natural Water. Sustainability 2024, 16, 1795. [Google Scholar] [CrossRef]
- Krainov, S.R.; Ryzhenko, B.N.; Shvets, V.M. Groundwater Geochemistry. Theoretical, Applied, and Ecological Aspects; TsentrLitNefteGaz: Moscow, Russia, 2012; p. 672. [Google Scholar]
- Lepokurova, O.E.; Ivanova, I.S.; Trifonov, N.S.; Kolubaeva, Y.V.; Sokolov, D.A. Dissolved forms of migration of humic substances in surface water bodies of the Yamal-Nenets autonomous district. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2022, 333, 56–69. [Google Scholar] [CrossRef]
- Ivanova, I.; Savichev, O.; Trifonov, N.; Kolubaeva, Y.V.; Volkova, N. Major-Ion Chemistry and Quality of Water in Rivers of Northern West Siberia. Water 2021, 13, 3107. [Google Scholar] [CrossRef]
- Kaiser, K.; Canedo-Oropeza, M.; McMahon, R.; Amon, R.N. Origins and transformations of dissolved organic matter in large Arctic rivers. Sci. Rep. 2017, 7, 13064. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.A.; Weng, L. Speciation of heavy metals in River Rhine. Water Res. 2013, 47, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Sun, L.; Zhu, Y.; Ng, J.C.; Huang, J.; Xu, Z.; Zhang, H. Difference analysis of organic matter-mediated heavy metal pollution in the sediments of urban water bodies. Sci. Total Environ. 2025, 968, 178747. [Google Scholar] [CrossRef]
- Miller, C.B.; Parsons, M.B.; Jamieson, H.E.; Ardakani, O.H.; Patterson, R.T.; Galloway, J.M. Mediation of arsenic mobility by organic matter in mining-impacted sediment from sub-Arctic lakes: Implications for environmental monitoring in a warming climate. Environ. Earth. Sci. 2022, 81, 137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidkina, E.; Konyshev, A. Flooded Historical Mines of the Pitkäranta Area (Karelia, Russia): Heavy Metal(loid)s in Water. Water 2025, 17, 2418. https://doi.org/10.3390/w17162418
Sidkina E, Konyshev A. Flooded Historical Mines of the Pitkäranta Area (Karelia, Russia): Heavy Metal(loid)s in Water. Water. 2025; 17(16):2418. https://doi.org/10.3390/w17162418
Chicago/Turabian StyleSidkina, Evgeniya, and Artem Konyshev. 2025. "Flooded Historical Mines of the Pitkäranta Area (Karelia, Russia): Heavy Metal(loid)s in Water" Water 17, no. 16: 2418. https://doi.org/10.3390/w17162418
APA StyleSidkina, E., & Konyshev, A. (2025). Flooded Historical Mines of the Pitkäranta Area (Karelia, Russia): Heavy Metal(loid)s in Water. Water, 17(16), 2418. https://doi.org/10.3390/w17162418