Effect of Hydrodynamic Loadings and Vorticity Distribution on a Circular Cylinder in a Narrow Channel
Abstract
1. Introduction
2. Numerical Model
3. Model Validation
4. Results and Discussion
4.1. Hydrodynamic Loading Effect
4.2. Vorticity Distribution Effect
5. Conclusions
- -
- The blockage ratio has a significant influence on the pressure and force characteristics around the cylinder. The changes in the upstream and circumferential pressure distributions, along with elevated drag coefficients, reflect the effect of flow confinement. At Br = 20–30%, amplified oscillations in the lateral force coefficient lead to higher CL_rms and St values, highlighting the impact of blockage on hydrodynamic loading in confined channels.
- -
- The vorticity analysis indicates that increasing Br intensifies near-wall vortex structures, particularly through elevated vertical (Ωy), streamwise (Ωx), and spanwise (Ωz) vorticity components. As Br increases, the vorticity field becomes more dominant and spatially extensive, with Ωx and Ωz forming elongated structures and enhancing near-bed turbulence on the leeward side of the cylinder. These changes suggest that higher blockage ratios (Br = 20–30%) promote strengthening vortex activity near the bed, increasing the potential for local scour in narrow-channel conditions with erodible beds.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brandimarte, L.; Paron, P.; Baldassarre, G.D. Bridge Pier Scour: A Review of Processes, Measurements and Estimates. Environ. Eng. Manag. J. 2012, 11, 975–989. [Google Scholar] [CrossRef]
- Melville, B.; Coleman, S.E. Bridge Scour; Water Resource, LLC.: Highlands Ranch, CO, USA, 2000; ISBN 9781887201186. [Google Scholar]
- Richardson, E.V.; Davis, S.R. Evaluating Scour at Bridges, 4th ed.; FHWA NHI 01-001 HEC-18; Federal Highway Administration (FHWA), U.S. Department of Transportation: Washington, DC, USA, 2001. [Google Scholar]
- Wardhana, K.; Hadipriono, F.C. Analysis of Recent Bridge Failures in the United States. J. Perform. Constr. Facil. 2003, 17, 144–150. [Google Scholar] [CrossRef]
- Imhof, D. Risk Assessment of Existing Bridge Structures; University of Cambridge: Cambridge, UK, 2004. [Google Scholar]
- Zhang, G.; Liu, Y.; Liu, J.; Lan, S.; Yang, J. Causes and Statistical Characteristics of Bridge Failures: A Review. J. Traffic Transp. Eng. (Engl. Ed.) 2022, 9, 388–406. [Google Scholar] [CrossRef]
- Dargahi, B. Experiments in Fluids The Turbulent Flow Field around a Circular Cylinder. Exp. Fluids 1989, 8, 1–12. [Google Scholar] [CrossRef]
- Simpson, R.L. Junction Flows. Annu. Rev. Fluid Mech. 2001, 33, 415–443. [Google Scholar] [CrossRef]
- Das, S.; Das, R.; Mazumdar, A. Vorticity and Circulation of Horseshoe Vortex in Equilibrium Scour Holes at Different Piers. J. Inst. Eng. (India) Ser. A 2014, 95, 109–115. [Google Scholar] [CrossRef]
- Gautam, P.; Eldho, T.I.; Mazumder, B.S.; Behera, M.R. Experimental Study of Flow and Turbulence Characteristics around Simple and Complex Piers Using PIV. Exp. Therm. Fluid Sci. 2019, 100, 193–206. [Google Scholar] [CrossRef]
- Olsen, N.R.B.; Melaaen, M.C. Three-Dimensional Calculation of Scour around Cylinders. J. Hydraul. Eng. 1993, 119, 1048–1054. [Google Scholar] [CrossRef]
- Olsen, N.R.B.; Kjellesvig, H.M. Three-Dimensional Numerical Flow Modeling for Estimation of Maximum Local Scour Depth. J. Hydraul. Res. 1998, 36, 579–590. [Google Scholar] [CrossRef]
- Torsethaugen, K. Lokalerosjon ved Store Konstruksjoner; SINTEF Report No. STF60A75055; The Norwegian Hydrotechnical Laboratory: Trondheim, Norway, 1975. (In Norwegian) [Google Scholar]
- Tseng, M.H.; Yen, C.L.; Song, C.C.S. Computation of Three-Dimensional Flow around Square and Circular Piers. Int. J. Numer. Meth. Fluids 2000, 34, 207–227. [Google Scholar] [CrossRef]
- Escauriaza, C.; Sotiropoulos, F. Reynolds Number Effects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System. Flow Turbul. Combust. 2011, 86, 231–262. [Google Scholar] [CrossRef]
- Kirkil, G.; Constantinescu, G. Effects of Cylinder Reynolds Number on the Turbulent Horseshoe Vortex System and near Wake of a Surface-Mounted Circular Cylinder. Phys. Fluids 2015, 27, 075102. [Google Scholar] [CrossRef]
- Ranga Raju, K.G.; Rana, O.P.S.; Asawa, G.L.; Pillai, A.S.N. Rational Assessment of Blockage Effect in Channel Flow Past Smooth Circular Cylinders. J. Hydraul. Res. 1983, 21, 289–302. [Google Scholar] [CrossRef]
- Davis, R.W.; Moor, E.F.; Purtell, L.P. A Numerical Experimental Study of Confined Flow around Rectangular Cylinders. Phys. Fluids 1984, 27, 40–59. [Google Scholar] [CrossRef]
- Chu, C.R.; Chung, C.H.; Wu, T.R.; Wang, C.Y. Numerical Analysis of Free Surface Flow over a Submerged Rectangular Bridge Deck. J. Hydraul. Eng. 2016, 142, 108567. [Google Scholar] [CrossRef]
- Chu, C.R.; Lin, Y.A.; Wu, T.R.; Wang, C.Y. Hydrodynamic Force of a Circular Cylinder Close to the Water Surface. Comput. Fluids 2018, 171, 154–165. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Lei, C. Hydrodynamic Characteristics of a Confined Circular Cylinder in Cross-Flows. Ocean Eng. 2021, 221, 108567. [Google Scholar] [CrossRef]
- Hurtado-Herrera, M.; Zhang, W.; Hammouti, A.; Pham, V.B.; Nguyen, K.D. Numerical Study of the Flow and Blockage Ratio of Cylindrical Pier Local Scour. Appl. Sci. 2023, 13, 11501. [Google Scholar] [CrossRef]
- Lachaussée, F. Érosion et Transport de Particules au Voisinage d’un Obstacle. Ph.D. Thesis, Université Paris-Saclay, Paris, France, 2018. [Google Scholar]
- Roulund, A.; Sumer, B.M.; Fredsøe, J.; Michelsen, J. Numerical and Experimental Investigation of Flow and Scour around a Circular Pile. J. Fluid Mech. 2005, 534, 351–401. [Google Scholar] [CrossRef]
- Korzekwa, D.A. Truchas—A Multi-Physics Tool for Casting Simulation. Int. J. Cast Met. Res. 2009, 22, 187–191. [Google Scholar] [CrossRef]
- Wu, T.R.; Vuong, T.H.N.; Lin, J.W.; Chu, C.R.; Wang, C.Y. Three-Dimensional Numerical Study on the Interaction between Dam-Break Wave and Cylinder Array. J. Earthq. Tsunami 2018, 12, 1840007. [Google Scholar] [CrossRef]
- Chu, C.R.; Tran, T.T.T.; Wu, T.R. Numerical Analysis of Free-Surface Flows over Rubber Dams. Water 2021, 13, 1271. [Google Scholar] [CrossRef]
- Deardorff, J.W. A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers. J. Fluid Mech. 1970, 41, 453–480. [Google Scholar] [CrossRef]
- Pop, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000; ISBN 978-0-5215-9886-6. [Google Scholar]
- O’Neil, J.; Meneveau, C. Subgrid-Scale Stresses and Their Modelling in a Turbulent Plane Wake. J. Fluid Mech. 1997, 349, 253–293. [Google Scholar] [CrossRef]
- Cabot, W.; Moin, P. Approximate Wall Boundary Conditions in the Large Eddy Simulation of High Reynolds Number Flow. Flow Turbul. Combust. 1999, 63, 269–291. [Google Scholar] [CrossRef]
- Smagorinsky, J. General Circulation Experiments with the Primitive Equation I: The Basic Experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Rodi, W.; Constantinescu, G.; Stoesser, T. Large-Eddy Simulation in Hydraulics; CRC Press: Boca Raton, FL, USA, 2013; ISBN 978-0-3675-7638-7. [Google Scholar]
- Huynh, L.E.; Chu, C.R.; Wu, T.R. Hydrodynamic Loads of the Bridge Decks in Wave-Current Combined Flows. Ocean Eng. 2023, 270, 113520. [Google Scholar] [CrossRef]
- Truong, N.M.; Wu, T.R.; Chu, C.R.; Wang, C.Y. A Numerical Study of Plunging Breakers in the Nearshore Area under the Influence of Wind. Ocean Eng. 2024, 312, 119171. [Google Scholar] [CrossRef]
- DeLong, M. Two Examples of the Impact of Partitioning with Chaco and Metis on the Convergence of Additive-Schwarz Preconditioned FGMRES; Los Alamos National Laboratory: Los Alamos, NM, USA, 1997. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Iqbal, S.; Dissanayaka, K.D.C.R.; Tanaka, N. Numerical Modeling and Validation of Dike-Induced Water Flow Dynamics Using OpenFOAM. ISH J. Hydraul. Eng. 2024, 30, 559–573. [Google Scholar] [CrossRef]
- Anjum, N.; Iqbal, S.; Pasha, G.A.; Tanaka, N.; Ghani, U. Optimizing Coastal Forest Arrangements for Tsunami Flow Dynamics Using a Three-Dimensional Approach. Phys. Fluids 2025, 37, 035197. [Google Scholar] [CrossRef]
- Piomelli, U.; Chasnov, J.R. Chapter 7 Large-Eddy Simulations: Theory and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Salim, S.M.; Cheah, S.C. Wall Y+ Strategy for Dealing with Wall-Bounded Turbulent Flows. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 18–20 March 2009; Newswood Ltd.: Hong Kong, China; International Association of Engineers: Hong Kong, China, 2009; Volume II, p. 2210. [Google Scholar]
- Larsson, J.; Kawai, S. Wall-Modeling in Large Eddy Simulation: Length Scales, Grid Resolution and Accuracy. Cent. Turbul. Res. Annu. Res. Briefs 2010, 39–46. [Google Scholar]
- Hoerner, S.F. Fluid Dynamic Drag: Theoretical, Experimental and Statistical Information. In Hoerner Fluid Dynamics; Hoerner Fluid Dynamics: Bakersfield, CA, USA, 1965. [Google Scholar]
- Achenbach, E. Distribution of Local Pressure and Skin Friction around a Circular Cylinder in Cross-Flow up to Re = 5 × 106. J. Fluid Mech. 1968, 34, 625–639. [Google Scholar] [CrossRef]
- Blevins, R.D. Applied Fluid Dynamics Handbook; Van Nostrand Reinhold Co.: New York, NY, USA, 1984. [Google Scholar]
- Roshko, A. On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies; Government Printing Office: Washington, DC, USA, 1954. [Google Scholar]
- Schlichting, H. Boundary Layer Theory, 7th ed.; McGraw-Hill Book Company: New York, NY, USA, 1979. [Google Scholar]
- Achenbach, E.; Heinecke, E. On Vortex Shedding from Smooth and Rough Cylinders in the Range of Reynolds Numbers 6 × 103 to 5 × 106. J. Fluid Mech. 1981, 109, 239–251. [Google Scholar] [CrossRef]
- Surry, D. Some Effects of Intense Turbulence on the Aerodynamics of a Circular Cylinder at Subcritical Reynolds Number. J. Fluid Mech. 1972, 52, 543–563. [Google Scholar] [CrossRef]
- Richter, A.; Naudascher, E. Fluctuating Forces on a Rigid Circular Cylinder in Confined Flow. J. Fluid Mech. 1976, 78, 561–576. [Google Scholar] [CrossRef]
- Norberg, C. Fluctuating Lift on a Circular Cylinder: Review and New Measurements. J. Fluids Struct. 2003, 17, 57–96. [Google Scholar] [CrossRef]
- Baker, C.J. The Laminar Horseshoe Vortex. J. Fluid Mech. 1979, 95, 347–367. [Google Scholar] [CrossRef]
Grid | Dargahi’s Experiment | Grid 1 | Grid 2 |
---|---|---|---|
Total grid no. | - | 949,326 | 1,562,615 |
Grid no. on the cylinder surface | - | 90 | 120 |
Smallest grid size | - | Δx = 6 mm | Δx = 5 mm |
Δy = 6 mm | Δy = 5 mm | ||
Δz = 3 mm | Δz = 2 mm | ||
Strouhal no. | 0.20 | 0.206 | 0.208 |
Relative error | - | 3.0% | 4.0% |
CD | 1.15 | 1.099 | 1.199 |
Relative error | - | 4.43% | 4.26% |
CL | 0 | 0.06 | 0.04 |
CPU time | - | 255 h | 416 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.T.T.; Chu, C.-R.; Wu, T.-R. Effect of Hydrodynamic Loadings and Vorticity Distribution on a Circular Cylinder in a Narrow Channel. Water 2025, 17, 2366. https://doi.org/10.3390/w17162366
Tran TTT, Chu C-R, Wu T-R. Effect of Hydrodynamic Loadings and Vorticity Distribution on a Circular Cylinder in a Narrow Channel. Water. 2025; 17(16):2366. https://doi.org/10.3390/w17162366
Chicago/Turabian StyleTran, Truc Thi Thu, Chia-Ren Chu, and Tso-Ren Wu. 2025. "Effect of Hydrodynamic Loadings and Vorticity Distribution on a Circular Cylinder in a Narrow Channel" Water 17, no. 16: 2366. https://doi.org/10.3390/w17162366
APA StyleTran, T. T. T., Chu, C.-R., & Wu, T.-R. (2025). Effect of Hydrodynamic Loadings and Vorticity Distribution on a Circular Cylinder in a Narrow Channel. Water, 17(16), 2366. https://doi.org/10.3390/w17162366