Response Surface Methodology–Artificial Neural Network (RSM-ANN) Approach to Optimise Photocatalytic Degradation of Levofloxacin Using Graphene Oxide-Doped Titanium Dioxide (GO-TiO2)
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
3. Results
3.1. Degradation of LFX
3.2. Response Surface Methodology
3.3. Experimental Results of RSM
3.4. RSM-ANN Model for Predicting Percentage Degradation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varma, K.S.; Shukla, A.D.; Tayade, R.J.; Mishra, M.K.; Nguyen, V.H.; Gandhi, V. Interaction of Levofloxacin with Reverse Micelle Sol-Gel Synthesized TiO2 Nanoparticles: Revealing Ligand-to-Metal Charge Transfer (LMCT) Mechanism Enhances Photodegradation of Antibiotics under Visible Light. Mater. Lett. 2022, 309, 131304. [Google Scholar] [CrossRef]
- Ghime, D.; Ghosh, P. Advanced Oxidation Processes: A Powerful Treatment Option for the Removal of Recalcitrant Organic Compounds. In Advanced Oxidation Processes—Applications, Trends, and Prospects; IntechOpen: London, UK, 2020; pp. 1–12. [Google Scholar]
- Vaez, M.; Zarringhalam Moghaddam, A.; Alijani, S. Optimization and Modeling of Photocatalytic Degradation of Azo Dye Using a Response Surface Methodology (RSM) Based on the Central Composite Design with Immobilized Titania Nanoparticles. Ind. Eng. Chem. Res. 2012, 51, 4199–4207. [Google Scholar] [CrossRef]
- Emzhina, V.; Kuzin, E.; Babusenko, E.; Krutchinina, N. Photodegradation of Tetracycline in Presence of H2O2 and Metal Oxide Based Catalysts. J. Water Process Eng. 2021, 39, 101696. [Google Scholar] [CrossRef]
- Chauke, N.M.; Mohlala, R.L.; Ngqoloda, S.; Raphulu, M.C. Harnessing Visible Light: Enhancing TiO2 Photocatalysis with Photosensitizers for Sustainable and Efficient Environmental Solutions. Front. Chem. Eng. 2024, 6, 1356021. [Google Scholar] [CrossRef]
- Kutuzova, A.; Dontsova, T.; Kwapinski, W. Application of TiO2-Based Photocatalysts to Antibiotics Degradation: Cases of Sulfamethoxazole, Trimethoprim and Ciprofloxacin. Catalysts 2021, 11, 728. [Google Scholar] [CrossRef]
- Roulová, N.; Hrdá, K.; Kašpar, M.; Peroutková, P.; Josefová, D.; Palarčík, J. Removal of Chloroacetanilide Herbicides from Water Using Heterogeneous Photocatalysis with TiO2/UV-A. Catalysts 2022, 12, 597. [Google Scholar] [CrossRef]
- Varma, K.S.; Shukla, A.D.; Tayade, R.J.; Joshi, P.A.; Das, A.K.; Modi, K.B.; Gandhi, V.G. Photocatalytic Performance and Interaction Mechanism of Reverse Micelle Synthesized Cu-TiO2 Nanomaterials towards Levofloxacin under Visible LED Light. Photochem. Photobiol. Sci. 2022, 21, 77–89. [Google Scholar] [CrossRef]
- Areerachakul, N.; Sakulkhaemaruethai, S.; Johir, M.A.H.; Kandasamy, J.; Vigneswaran, S. Photocatalytic Degradation of Organic Pollutants from Wastewater Using Aluminium Doped Titanium Dioxide. J. Water Process Eng. 2019, 27, 177–184. [Google Scholar] [CrossRef]
- Kislik, V.S. Examples of Application of Solvent Extraction Techniques in Chemical, Radiochemical, Biochemical, Pharmaceutical, Analytical Separations, and Wastewater Treatment. In Solvent Extraction Classical and Novel Approaches; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9780444537782. [Google Scholar]
- Awfa, D.; Ateia, M.; Fujii, M.; Yoshimura, C. Novel Magnetic Carbon Nanotube-TiO2 Composites for Solar Light Photocatalytic Degradation of Pharmaceuticals in the Presence of Natural Organic Matter. J. Water Process Eng. 2019, 31, 100836. [Google Scholar] [CrossRef]
- Nair, N.; Gandhi, V.; Shukla, A.; Ghotekar, S.; Nguyen, V.H.; Varma, K. Mechanisms in the Photocatalytic Breakdown of Persistent Pharmaceutical and Pesticide Molecules over TiO2-Based Photocatalysts: A Review. J. Phys. Condens. Matter 2024, 36, 413003. [Google Scholar] [CrossRef]
- Rekhate, C.V.; Srivastava, J.K. Recent Advances in Ozone-Based Advanced Oxidation Processes for Treatment of Wastewater—A Review. Chem. Eng. J. Adv. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Hua, L.; Yin, Z.; Cao, S. Recent Advances in Synthesis and Applications of Carbon-Doped TiO2 Nanomaterials. Catalysts 2020, 10, 1431. [Google Scholar] [CrossRef]
- Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Reddy, K.R.; Raghu, A.V.; Reddy, C.V. Recent Progress in Metal-Doped TiO2, Non-Metal Doped/Codoped TiO2 and TiO2 Nanostructured Hybrids for Enhanced Photocatalysis. Int. J. Hydrogen Energy 2020, 45, 7764–7778. [Google Scholar] [CrossRef]
- Marschall, R.; Wang, L. Non-Metal Doping of Transition Metal Oxides for Visible-Light Photocatalysis. Catal. Today 2014, 225, 111–135. [Google Scholar] [CrossRef]
- Ciric, A.; Krajnc, B.; Heath, D.; Ogrinc, N. Response Surface Methodology and Artificial Neural Network Approach for the Optimization of Ultrasound-Assisted Extraction of Polyphenols from Garlic. Food Chem. Toxicol. 2020, 135, 110976. [Google Scholar] [CrossRef]
- Desai, N.N.; Soraganvi, V.S.; Madabhavi, V.K. Solar Photocatalytic Degradation of Organic Contaminants in Landfill Leachate Using TiO2 Nanoparticles by RSM and ANN. Nat. Environ. Pollut. Technol. 2020, 19, 651–662. [Google Scholar] [CrossRef]
- Nair, N.G.; Gandhi, V.G.; Modi, K.; Shukla, A. Photocatalytic Degradation of Levofloxacin by GO-TiO2 under Visible Light. Mater. Today Proc. 2024, in press. [Google Scholar] [CrossRef]
- Yu, L.; Xu, W.; Liu, H.; Bao, Y. Titanium Dioxide—Reduced Graphene Oxide Composites for Photocatalytic Degradation of Dyes in Water. Catalysts 2022, 12, 1340. [Google Scholar] [CrossRef]
- Gandhi, V.G.; Mishra, M.K.; Joshi, P.A. A Study on Deactivation and Regeneration of Titanium Dioxide during Photocatalytic Degradation of Phthalic Acid. J. Ind. Eng. Chem. 2012, 18, 1902–1907. [Google Scholar] [CrossRef]
- Sandhu, Z.A.; Raza, M.A.; Farwa, U.; Nasr, S.; Yahia, I.S.; Fatima, S.; Munawar, M.; Hadayet, Y.; Ashraf, S.; Ashraf, H. Response Surface Methodology: A Powerful Tool for Optimizing the Synthesis of Metal Sulfide Nanoparticles for Dye Degradation. Mater. Adv. 2023, 4, 5094–5125. [Google Scholar] [CrossRef]
- Joshi, S.; Bajpai, S.; Jana, S. Application of ANN and RSM on Fluoride Removal Using Chemically Activated D. Sissoo Sawdust. Environ. Sci. Pollut. Res. 2020, 27, 17717–17729. [Google Scholar] [CrossRef] [PubMed]
- Galedari, M.; Ghazi, M.M.; Mirmasoomi, S.R. Photocatalytic Process for the Tetracycline Removal under Visible Light: Presenting a Degradation Model and Optimization Using Response Surface Methodology (RSM). Chem. Eng. Res. Des. 2019, 145, 323–333. [Google Scholar] [CrossRef]
- Jawad, A.H.; Alkarkhi, A.F.M.; Mubarak, N.S.A. Photocatalytic Decolorization of Methylene Blue by an Immobilized TiO2 Film under Visible Light Irradiation: Optimization Using Response Surface Methodology (RSM). Desalin. Water Treat. 2015, 56, 161–172. [Google Scholar] [CrossRef]
- Norouzi, M.; Fazeli, A.; Tavakoli, O. Phenol Contaminated Water Treatment by Photocatalytic Degradation on Electrospun Ag/TiO2 Nanofibers: Optimization by the Response Surface Method. J. Water Process Eng. 2020, 37, 101489. [Google Scholar] [CrossRef]
- Rafaely, R.X.; Sabatini, C.A.; Zaiat, M.; Azevedo, E.B. Perfluorooctane Sulfonic Acid (PFOS) Degradation by Optimized Heterogeneous Photocatalysis (TiO2/UV) Using the Response Surface Methodology (RSM). J. Water Process Eng. 2021, 41, 101986. [Google Scholar] [CrossRef]
- Soltani-nezhad, F.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Photocatalytic Degradation of Imidacloprid Using GO/Fe3O4/TiO2-NiO under Visible Radiation: Optimization by Response Level Method. Polyhedron 2019, 165, 188–196. [Google Scholar] [CrossRef]
- Kassahun, S.K.; Kiflie, Z.; Kim, H.; Baye, A.F. Process Optimization and Kinetics Analysis for Photocatalytic Degradation of Emerging Contaminant Using N-Doped TiO2-SiO2 Nanoparticle: Artificial Neural Network and Surface Response Methodology Approach. Environ. Technol. Innov. 2021, 23, 101761. [Google Scholar] [CrossRef]
- Modi, S.; Rao, M.S.; Gupta, T.C.S.M.; Yang, M. Uncertainty Modeling of a Chemical System with a Flexible Node by Mapping the Fault Tree into the Response Surface Method. Ind. Eng. Chem. Res. 2023, 62, 3206–3220. [Google Scholar] [CrossRef]
- Chandrika, K.C.; Prabhu, T.N.; Kiran, R.R.S.; Krishna, R.H. Applications of Artificial Neural Network and Box-Behnken Design for Modelling Malachite Green Dye Degradation from Textile Effluents Using TiO2 Photocatalyst. Environ. Eng. Res. 2022, 27, 200553. [Google Scholar]
- Marizcal-Barba, A.; Sanchez-Burgos, J.A.; Zamora-Gasga, V.; Perez Larios, A. Study of the Response Surface in the Photocatalytic Degradation of Acetaminophen Using TiO2. Photochem 2022, 2, 225–236. [Google Scholar] [CrossRef]
- Zulfiqar, M.; Samsudin, M.F.R.; Sufian, S. Modelling and Optimization of Photocatalytic Degradation of Phenol via TiO2 Nanoparticles: An Insight into Response Surface Methodology and Artificial Neural Network. J. Photochem. Photobiol. A Chem. 2019, 384, 112039. [Google Scholar] [CrossRef]
- Gadore, V.; Singh, A.K.; Mishra, S.R. OPEN RSM Approach for Process Optimization of the Photodegradation of Congo Red by a Novel NiCo2S4/Chitosan Photocatalyst. Sci. Rep. 2024, 14, 1118. [Google Scholar] [CrossRef] [PubMed]
- Vishnuganth, M.A.; Remya, N.; Kumar, M.; Selvaraju, N. Carbofuran Removal in Continuous-Photocatalytic Reactor: Reactor Optimization, Rate-Constant Determination and Carbofu ran Degradation Pathway Analysis. J. Environ. Sci. Health-Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 353–360. [Google Scholar] [CrossRef]
- Maiti, M.; Srivastava, V.K.; Shewale, S.; Jasra, R.V.; Chavda, A.; Modi, S. Process Parameter Optimization through Design of Experiments in Synthesis of High Cis-Polybutadiene Rubber. Chem. Eng. Sci. 2014, 107, 256–265. [Google Scholar] [CrossRef]
- Modi, S.; Tiwari, A.K.; Rao, M.S.; Snigdha, T.; Saritha, T.; Gupta, T.C.S.M.; Kumar, A. A Practical Approach for Kinetic Analysis of Hydrogenation of Complex Mineral Base Oil. Korean J. Chem. Eng. 2023, 40, 1804–1814. [Google Scholar] [CrossRef]
- Rufina, R.D.J.; Uthayakumar, H.; Thangavelu, P. Prediction of the Size of Green Synthesized Silver Nanoparticles Using RSM-ANN-LM Hybrid Modeling Approach. Chem. Phys. Impact 2023, 6, 100231. [Google Scholar] [CrossRef]
- Giwa, A.; Yusuf, A.; Balogun, H.A.; Sambudi, N.S.; Bilad, M.R.; Adeyemi, I.; Chakraborty, S.; Curcio, S. Recent Advances in Advanced Oxidation Processes for Removal of Contaminants from Water: A Comprehensive Review. Process Saf. Environ. Prot. 2021, 146, 220–256. [Google Scholar] [CrossRef]
- Das, S.; Moon, S.; Kaur, R.; Sharma, G.; Kumar, P.; Lavrenčič Štangar, U. Artificial Neural Network Modeling of Photocatalytic Degradation of Pollutants: A Review of Photocatalyst, Optimum Parameters and Model Topology. Catal. Rev.-Sci. Eng. 2024, 67, 544–578. [Google Scholar] [CrossRef]
- Patel, T.; Rao, M.S.; Gandhi, D.; Purohit, J.L.; Shah, V.A. Machine Learning-Based Fault Estimation of Nonlinear Descriptor Systems. Int. J. Autom. Control 2023, 18, 1–29. [Google Scholar] [CrossRef]
- Gandhi, D.; Srinivasarao, M. Fault Estimation for Multi-Rate Descriptor Systems Using Bi-Directional Long Short-Term Memory Neural Network. Can. J. Chem. Eng. 2024, 103, 3247–3269. [Google Scholar] [CrossRef]
- Gandhi, D.; Srinivasarao, M. Fault Detection and Diagnosis for Multi-Rate Descriptor Systems Using a Combination of Extended Kalman Filter and Support Vector Machines. J. Taiwan Inst. Chem. Eng. 2025, 174, 106227. [Google Scholar] [CrossRef]
- Wu, Y.; Feng, J. Development and Application of Artificial Neural Network. Wirel. Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Zou, J.; Han, Y.; So, S.-S. Overview of Artificial Neural Networks. In Artificial Neural Networks Methods and Applications; Humana Press: Totowa, NJ, USA, 2009; pp. 14–22. [Google Scholar]
- Rekhate, C.V.; Shrivastava, J.K. Decolorization of Azo Dye Solution by Ozone Based Advanced Oxidation Processes: Optimization Using Response Surface Methodology and Neural Network. Ozone Sci. Eng. 2020, 42, 492–506. [Google Scholar] [CrossRef]
- Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef]
- Schossler, R.T.; Ojo, S.; Jiang, Z.; Hu, J.; Yu, X. A Novel Interpretable Machine Learning Model Approach for the Prediction of TiO2 Photocatalytic Degradation of Air Contaminants. Sci. Rep. 2024, 14, 13070. [Google Scholar] [CrossRef]
- Hosseini, O.; Zare-Shahabad, V.; Ghaedi, M.; Ahmadi Azqhandi, M.H. Experimental Design, RSM and ANN Modeling of Tetracycline Photocatalytic Degradation Using LDH@CN. J. Environ. Chem. Eng. 2022, 10, 108345. [Google Scholar] [CrossRef]
- Ayodele, B.V. Backpropagation Neural Networks Modelling of Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts. J. Chem. Technol. Biotechnol. 2020, 95, 2739–2749. [Google Scholar] [CrossRef]
Process Variables | LEVELS | ||||
---|---|---|---|---|---|
−α | −1 | 0 | 1 | α | |
pH | 3 | 5 | 7 | 9 | 11 |
Dopant (g/g) | 0 | 0.05 | 0.1 | 0.15 | 0.2 |
Catalyst (g/L) | 0 | 0.5 | 1 | 1.5 | 2 |
Pollutant (ppm) | 0 | 25 | 50 | 75 | 100 |
Run No. | pH (A) | Dopant (B) | Catalyst (gm/L) (C) | Pollutant (ppm) (D) | Experimental Degradation (%) | CCD Predicted (%) | Residue |
---|---|---|---|---|---|---|---|
1 | 9 | 0.15 | 0.5 | 25 | 25 | 31.54212 | −6.542 |
2 | 7 | 0.1 | 1 | 50 | 68 | 70.501 | −2.501 |
3 | 9 | 0.05 | 0.5 | 25 | 44 | 37.45879 | 6.541 |
4 | 5 | 0.15 | 0.5 | 75 | 17 | 21.87693 | −4.877 |
5 | 7 | 0.2 | 1 | 50 | 55 | 39.501 | 15.499 |
6 | 11 | 0.1 | 1 | 50 | 10 | 14.83456 | −4.835 |
7 | 5 | 0.05 | 0.5 | 75 | 15 | 15.2936 | −0.294 |
8 | 7 | 0.1 | 2 | 50 | 50 | 33.16777 | 16.832 |
9 | 9 | 0.05 | 1.5 | 25 | 54 | 55.70886 | −1.709 |
10 | 5 | 0.05 | 1.5 | 25 | 35 | 48.29202 | −13.292 |
11 | 7 | 0.1 | 1 | 100 | 58 | 57.67015 | 0.330 |
12 | 5 | 0.05 | 1.5 | 75 | 23 | 23.04367 | −0.044 |
13 | 5 | 0.15 | 1.5 | 25 | 45 | 53.37535 | −8.375 |
14 | 7 | 0.1 | 1 | 50 | 73 | 70.501 | 2.499 |
15 | 9 | 0.05 | 0.5 | 75 | 35 | 33.21044 | 1.790 |
16 | 7 | 0.1 | 1 | 50 | 71 | 70.501 | 0.499 |
17 | 9 | 0.15 | 1.5 | 75 | 30 | 33.54384 | −3.544 |
18 | 7 | 0 | 1 | 50 | 38 | 39.83433 | −1.834 |
19 | 7 | 0.1 | 1 | 0 | 100 | 86.66685 | 13.333 |
20 | 5 | 0.05 | 0.5 | 25 | 26 | 29.04195 | −3.042 |
21 | 3 | 0.1 | 1 | 50 | 20 | 1.500877 | 18.499 |
22 | 7 | 0.1 | 0 | 50 | 5 | 8.167627 | −3.168 |
23 | 7 | 0.1 | 1 | 50 | 70 | 70.501 | −0.501 |
24 | 5 | 0.15 | 1.5 | 75 | 28 | 28.627 | −0.627 |
25 | 5 | 0.15 | 0.5 | 25 | 28 | 35.12528 | −7.125 |
26 | 7 | 0.1 | 1 | 50 | 69 | 70.501 | −1.501 |
27 | 9 | 0.15 | 1.5 | 25 | 42 | 48.79219 | −6.792 |
28 | 9 | 0.15 | 0.5 | 75 | 34 | 27.79377 | 6.206 |
29 | 9 | 0.05 | 1.5 | 75 | 40 | 39.96051 | 0.039 |
30 | 7 | 0.1 | 1 | 50 | 72 | 70.501 | 1.499 |
Source | Std. Dev. | R2 | Adjusted R2 | Comments |
---|---|---|---|---|
Linear | 22.65 | 0.1613 | 0.0271 | |
2FI | 25.60 | 0.1854 | −0.2433 | |
Quadratic | 10.96 | 0.8820 | 0.7720 | Suggested |
Cubic | 9.09 | 0.9622 | 0.8433 | Aliased |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 13,484.12 | 14 | 963.15 | 8.01 | 0.0001 | Significant |
A-pH | 266.67 | 1 | 266.67 | 2.22 | 0.1571 | |
B-Dopant | 0.1667 | 1 | 0.1667 | 0.0014 | 0.9708 | |
C-Catalyst | 937.50 | 1 | 937.50 | 7.80 | 0.0137 | |
D-Pollutant | 1261.50 | 1 | 1261.50 | 10.49 | 0.0055 | |
AB | 144.00 | 1 | 144.00 | 1.20 | 0.2910 | |
AC | 1.0000 | 1 | 1.0000 | 0.0083 | 0.9285 | |
AD | 90.25 | 1 | 90.25 | 0.7507 | 0.3999 | |
BC | 1.0000 | 1 | 1.0000 | 0.0083 | 0.9285 | |
BD | 0.2500 | 1 | 0.2500 | 0.0021 | 0.9642 | |
CD | 132.25 | 1 | 132.25 | 1.10 | 0.3109 | |
A2 | 6660.76 | 1 | 6660.76 | 55.41 | <0.0001 | |
B2 | 1629.76 | 1 | 1629.76 | 13.56 | 0.0022 | |
C2 | 4257.19 | 1 | 4257.19 | 35.41 | <0.0001 | |
D2 | 4.76 | 1 | 4.76 | 0.0396 | 0.8449 | |
Residual | 1803.25 | 15 | 120.22 | |||
Lack of Fit | 1785.75 | 10 | 178.58 | 51.02 | 0.0002 | significant |
Pure Error | 17.50 | 5 | 3.50 | |||
Cor Total | 15,287.37 | 29 |
Fold | MSE | R2 |
---|---|---|
1 | 0.00418 | 0.9711 |
2 | 0.00423 | 0.9713 |
3 | 0.00398 | 0.9686 |
Average | 0.004129 | 0.97036 |
W1 | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N10 | Bias 2 |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | −2.34 | 2.99 | 2.42 | −2.54 | −0.95 | 0.04 | 3.46 | 0.63 | 1.23 | −2.42 | |
Catalyst | 2.27 | −2.44 | 0.35 | 5.33 | 1.87 | 7.62 | 1.83 | −4.02 | −5.21 | −6.65 | |
Dopant | 3.37 | −2.37 | 4.91 | −2.17 | 1.45 | −0.65 | −3.31 | −5.51 | 0.92 | −0.78 | |
Pollutant | −6.28 | −0.11 | 1.52 | 0.89 | 5.87 | 3.67 | −0.10 | 1.19 | −2.97 | −0.68 | |
Bias 1 | 2.89 | −4.17 | −2.74 | 3.45 | 4.07 | 0.61 | 4.79 | −1.15 | 4.05 | −3.35 | 5.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nair, N.G.; Gandhi, V.G.; Modi, S.; Shukla, A.; Shah, K.J. Response Surface Methodology–Artificial Neural Network (RSM-ANN) Approach to Optimise Photocatalytic Degradation of Levofloxacin Using Graphene Oxide-Doped Titanium Dioxide (GO-TiO2). Water 2025, 17, 2362. https://doi.org/10.3390/w17162362
Nair NG, Gandhi VG, Modi S, Shukla A, Shah KJ. Response Surface Methodology–Artificial Neural Network (RSM-ANN) Approach to Optimise Photocatalytic Degradation of Levofloxacin Using Graphene Oxide-Doped Titanium Dioxide (GO-TiO2). Water. 2025; 17(16):2362. https://doi.org/10.3390/w17162362
Chicago/Turabian StyleNair, Niraj G., Vimal G. Gandhi, Siddharth Modi, Atindra Shukla, and Kinjal J. Shah. 2025. "Response Surface Methodology–Artificial Neural Network (RSM-ANN) Approach to Optimise Photocatalytic Degradation of Levofloxacin Using Graphene Oxide-Doped Titanium Dioxide (GO-TiO2)" Water 17, no. 16: 2362. https://doi.org/10.3390/w17162362
APA StyleNair, N. G., Gandhi, V. G., Modi, S., Shukla, A., & Shah, K. J. (2025). Response Surface Methodology–Artificial Neural Network (RSM-ANN) Approach to Optimise Photocatalytic Degradation of Levofloxacin Using Graphene Oxide-Doped Titanium Dioxide (GO-TiO2). Water, 17(16), 2362. https://doi.org/10.3390/w17162362