Invertebrate Assemblages in Some Saline and Soda Lakes of the Kulunda Steppe: First Regional Assessment and Ecological Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Laboratory Methods
2.3. Data Analyses
3. Results
3.1. Hydrochemical Characteristics of the Investigated Lakes
3.2. Hydrobiological Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palagushkina, O.V.; Nazarova, L.B.; Wetterich, S.; Shirrmaister, L. Diatoms of modern bottom sediments in Siberian Arctic. Contemp. Probl. Ecol. 2012, 5, 413–422. [Google Scholar] [CrossRef]
- Wetterich, S.; Schirrmeister, L.; Nazarova, L.; Palagushkina, O.; Bobrov, A.; Pogosyan, L.; Savelieva, L.; Syrykh, L.; Matthes, H.; Fritz, M.; et al. Holocene thermokarst and pingo development in the Kolyma Lowland 1 (NE Siberia). Permafr. Periglac. Process. 2018, 29, 182–198. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Nazarova, L.; Pestryakova, L.A.; Syrykh, L.; Funck, K.; Meyer, H.; Chapligin, B.; Vyse, S.; Gorodnichev, R.; Zakharov, E.; et al. Spatial distribution of environmental indicators in surface sediments of Lake Bolshoe Toko, Yakutia, Russia. Biogeosciences 2019, 16, 4023–4049. [Google Scholar] [CrossRef]
- Nazarova, L.B.; Grebennikova, T.A.; Razjigaeva, N.G.; Ganzey, L.A.; Belyanina, N.I.; Arslanov, K.A.; Kaistrenko, V.M.; Gorbunov, A.O.; Kharlamov, A.A.; Rudaya, N.; et al. Reconstruction of Holocene environmental changes in Southern Kurils (North-Western Pacific) based on palaeolake sediment proxies from Shikotan Island. Glob. Planet. Change 2017, 159, 25–36. [Google Scholar] [CrossRef]
- Nazarova, L.B.; Self, A.E.; Brooks, S.J.; Solovieva, N.; Syrykh, L.S.; Dauvalter, V.A. Chironomid fauna of the lakes from the Pechora River basin (East of European part of Russian Arctic): Ecology and reconstruction of recent ecological changes in the region. Contemp. Probl. Ecol. 2017, 4, 350–362. [Google Scholar] [CrossRef]
- Mayfield, R.J.; Langdon, P.G.; Doncaster, P.; Dearing, J.A.; Wang, R.; Nazarova, L.B.; Medeiros, A.S.; Brooks, S.J. Metrics of structural change as indicators of chironomid community stability in high latitude lakes. Quat. Sci. Rev. 2020, 249, 106594. [Google Scholar] [CrossRef]
- Golubkov, S.M. Effect of Climatic Fluctuations on the Structure and Functioning of Ecosystems of Continental Water Bodies. Contemp. Probl. Ecol. 2021, 14, 1–10. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022–Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056.
- Olson, J.R. Predicting combined effects of land use and climate change on river and stream salinity. Philos. Trans. R. Soc. B 2019, 374, 20180005. [Google Scholar] [CrossRef]
- Sowa, A.; Krodkiewska, M.; Halabowski, D. How Does Mining Salinisation Gradient Affect the Structure and Functioning of Macroinvertebrate Communities? Water Air Soil Pollut. 2020, 231, 453. [Google Scholar] [CrossRef]
- Kefford, B.J.; Buchwalter, D.; Cañedo-Argüelles, M.; Davis, J.; Duncan, R.P.; Hoffmann, A.; Thompson, R. Salinized rivers: Degraded systems or new habitats for salttolerant faunas? Biol. Lett. 2016, 12, 20151072. [Google Scholar] [CrossRef]
- Velasco, J.; Millan, A.; Hernandez, J.; Gutierrez, C.; Abellan, P.; Sanchez, D.; Ruiz, M. Response of biotic communities to salinity changes in a Mediterranean hyper stream. Saline Syst. 2006, 2, 12–15. [Google Scholar] [CrossRef]
- Getenet, M.; García-Ruiz, J.M.; Otálora, F.; Emmerling, F.; Al-Sabbagh, D.; Verdugo-Escamilla, C.A. comprehensive methodology for monitoring evaporitic mineral precipitation and hydrochemical evolution of saline lakes: The case of Lake Magadi soda brine (East African Rift Valley, Kenya). Cryst. Growth Des. 2022, 22, 2307–2317. [Google Scholar] [CrossRef]
- Hake, K.H.; West, P.T.; McDonald, K.; Laundon, D.; Reyes-Rivera, J.; Garcia De Las Bayonas, A.; King, N. A large colonial choanoflagellate from Mono Lake harbors live bacteria. Am. Soc. Microbiol. J. Mbio 2024, 15, e01623-24. [Google Scholar] [CrossRef] [PubMed]
- Dodds, W.K.; Whiles, M.R. Freshwater Ecology: Concepts and Environmental Applications of Limnology, 2nd ed.; Academic Press: San Diego, CA, USA, 2010; p. 811. [Google Scholar]
- Lebedeva (Verba), M.P.; Lopukhina, O.V.; Kalinina, N.V. Specificity of the chemical and mineralogical composition of salts in solonchak playas and lakes of the Kulunda steppe. Eurasian Soil Sci. 2008, 41, 416–428. (In Russian) [Google Scholar] [CrossRef]
- Wetlands of Russia. Kulundinsky Lakes. Available online: https://www.fesk.ru/wetlands/197.html. (accessed on 4 June 2023). (In Russian).
- Skokova, N.N.; Vinogradov, V.G. Protection of Habitats of Wetland Birds; Agropromizdat: Moscow, Russia, 1986; p. 240. (In Russian) [Google Scholar]
- Ivanova, Z.A. Fishes of the Steppe Zone of the Altai Territory; Altai Book Publishing House: Barnaul, Russia, 1962; p. 152. (In Russian) [Google Scholar]
- Bezmaternykh, D.M.; Vdovina, O.N. The study of macrozoobenthos of lakes of the Ob-Irtysh interfluve. Proceed. Karel. Sci. Center RAS 2018, 5, 39–57. (In Russian) [Google Scholar]
- Kirillov, V.V.; Zarubina, E.Y.; Bezmaternykh, D.M.; Ermolaeva, N.I.; Kirillova, T.V.; Yanygina, L.V.; Dolmatova, L.A.; Kotovshchikov, A.V.; Zhukova, O.N.; Sokolova, M.I. Nauka—Altayskomu Krayu. Sbornik Nauchnykh Statey; Comparative Analysis of Ecosystems of Different Types of Lakes of the Kasmalinskaya and Kulundinskaya Valleys of Ancient Runoff; Azbuka: Barnaul, Russia, 2009; Volume 3, pp. 311–333. [Google Scholar]
- Krivosheina, M.G.; Ozerov, A.L. A review of the shore-fly genus Ephydra Fallén, 1810 (Diptera: Ephydridae) of Russia. Russ. Entomol. J. 2021, 30, 345–360. (In Russian) [Google Scholar] [CrossRef]
- Solovov, V.P. (Ed.) Reservoirs of the Altai Territory: Biological Productivity and Prospects of Use; Ministry of Agriculture and Food. Siberian Scientific Research. and a design designer. Fish Farm Institute (Sibrybniiproekt); Altais. phil. Nauka: Novosibirsk, Russia, 1999; p. 279. ISBN 5-02-031535-4. (In Russian) [Google Scholar]
- Vasiliev, O.F.; Vane, Y. (Eds.) Review of the Ecological State of Lake Chany (Western Siberia); Novosibirsk: Geo, Russia, 2015; p. 251. (In Russian) [Google Scholar]
- Isachenko, B.L. Chloride, sulfate and soda lakes of the Kulunda steppe and biogenic processes in them. In The Book of Selected Works, 2nd ed.; Publishing House of the USSR Academy of Sciences: Leningrad, Russia, 1951; pp. 143–162. (In Russian) [Google Scholar]
- Piscart, C.; Kefford, B.J.; Beisel, J.-N. Are salinity tolerances of non-native macroinvertebrates in France an indicator of potential for their translocation in a new area? Limnologica 2011, 41, 107–112. [Google Scholar] [CrossRef]
- Lashchinsky, N.; Korolyuk, A.; Wesche, K. Vegetation Patterns and Ecological Gradients: From Forest to Dry Steppes. In Kulunda Climate Smart Agriculture. Innovations in Landscape Research; Springer: Cham, Switzerland, 2020; pp. 33–48. [Google Scholar]
- Wesche, K.; Korolyuk, A.; Lashchinsky, N.; Silantyeva, M.M.; Rosche, C.; Hensen, I. The Kulunda Steppe as Part of the Eurasian Steppe Belt. In Kulunda: Climate Smart Agriculture; Innovations in Landscape Research; Springer: Cham, Switzerland, 2020; pp. 7–18. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Kharlamova, N.F. Climatic Variability of the Kulunda Steppe. In Kulunda: Climate Smart Agriculture; Innovations in Landscape Research; Springer: Cham, Switzerland, 2020; pp. 19–32. [Google Scholar]
- FGDC–STD-004-2013; Classification of Wetlands and Deepwater Habitats of the United States. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service: Washington, DC, USA, 2013; p. 86.
- Mordukhai-Boltovskoi, F.D. (Ed.) Methods of Studying Biogeocenoses of Inland Reservoirs; Nauka: Moscow, Russia, 1975; p. 240. [Google Scholar]
- Wiederholm, T. Chironomidae of Holarctic Region: Keys and Diagnoses. Part 1—Larvae; Scandinavica Entomologica Supplement; Scandinavian Entomology: Motala, Sweden, 1983; Volume 19, pp. 19–457. [Google Scholar]
- Szadziewski, R.; Golovatyuk, L.V.; Sontag, E.; Urbanek, A.; Zinchenko, T.D. All stages of the Palaearctic predaceous midge Palpomyia schmidti Goetghebuer, 1934 (Diptera: Ceratopogonidae). Zootaxa 2016, 4137, 85–94. [Google Scholar] [CrossRef]
- Litvinenko, L.I.; Litvinenko, A.I.; Boyko, E.G. Artemia in the Lakes of Western Siberia; Nauka: Novosibirsk, Russia, 2009; p. 304. [Google Scholar]
- Fogaça, J.M.; de Carvalho, C.J.B. Neotropical Lispe (Diptera: Muscidae): Notes, Redescriptions and Key to Species. J. Nat. Hist. 2018, 52, 2147–2184. [Google Scholar] [CrossRef]
- Gao, Y.; Ge, Y.; Yan, L.; Vikhrev, N.E.; Wang, Q.; Butterworth, N.J.; Zhang, D. Phylogenetic Analyses Support the Monophyly of the Genus Lispe Latreille (Diptera: Muscidae) with Insights into Intrageneric Relationships. Insects 2022, 13, 1015. [Google Scholar] [CrossRef]
- Paliy, V.F. On quantitative indicators in the processing of faunal materials. Zool. J. 1961, 60, 3–12. [Google Scholar]
- Shannon, C.E.; Weaver, W. The mathematical theory of communication. Bell Syst. Tech. J. 1949, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 668. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electr. 2001, 4, 9. [Google Scholar]
- Ter Braak, C.J.; Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination; Version 4.5; Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Air Temperature by Month and Year. Available online: http://www.pogodaiklimat.ru/history/36021.htm (accessed on 15 January 2024). (In Russian).
- Boros, E.; Kolpakova, M. A review of the defining chemical properties of soda lakes and pans: An assessment on a large geographic scale of Eurasian inland saline surface waters. PLoS ONE 2018, 13, e0202205. [Google Scholar] [CrossRef]
- Blagovidova, L.A. Influence of environmental factors on the zoobenthos of lakes in the south of Western Siberia. Hydrobiol. J. 1973, 9, 55–61. (In Russian) [Google Scholar]
- Bezmaternykh, D.M. Spatial and Temporal Organization and Factors of Formation of Macrozoobenthos of Lakes in the South of the West Siberian Plain. Ph.D. Dissertation, Novosibirsk State Agrarian University, Novosibirsk, Russia, November 2017. (In Russian). [Google Scholar]
- Baitchorov, V.M.; Nagorskaya, L.L. The reproductive characteristics of Artemia in habitats of different salinity. Int. J. Salt Lake Res. 1999, 8, 287–291. [Google Scholar] [CrossRef]
- Van Stappen, G.; Litvinenko, L.I.; Litvinenko, A.I.; Boyko, E.G.; Marden, B.; Sorgeloos, P. A Survey of Artemia Resources of Southwest Siberia (Russian Federation). Rev. Fish. Sci. 2009, 17, 116–148. [Google Scholar] [CrossRef]
- Moruzi, I.V.; Vesnina, L.V.; Tokarev, V.S.; Pishchenko, E.V.; Djakovskay, E.E.; Kropachev, D.V.; Farhod, R.M.; Bibikov, I.V. Biochemical composition of Artemia cysts used as food for juvenile fish from different hypersaline lakes of the Altai Territory. Ekoloji 2017, 26, 1–4. [Google Scholar]
- Vesnina, L.V. Conditions for the formation of the Artemia crustacean population and their production indicators in different types of hyperhaline lakes of the Altai Territory. Innov. Food Saf. 2020, 4, 87–100. (In Russian) [Google Scholar] [CrossRef]
- Boyko, E.G.; Litvinenko, L.I.; Muge, L.N.; Muge, N.S. The evolution of the population-genetic structure of Artemia in the water reservoirs of the northern part of the eurasian haplotype complex. AIC Innov. Technol. 2023, 4, 6–17. [Google Scholar]
- Alwin-Kownacka, A.; Szadziewski, R.; Szwedo, J. Biting midges of the tribe Ceratopogonini (Diptera: Ceratopogonidae) from the Middle East, with keys and descriptions of new species. Zootaxa 2016, 4079, 551–572. [Google Scholar] [CrossRef]
- Golovatyuk, L.V.; Shitikov, V.K. Salinity tolerance of macrozoobenthic taxa in small rivers of the Lake Elton Basin. Russ. J. Ecol. 2016, 47, 540–545. [Google Scholar] [CrossRef]
- Zinchenko, T.D.; Golovatyuk, L.V.; Abrosimova, E.V.; Popchenko, T.V. Macrozoobenthos in Saline Rivers in the Lake Elton Basin: Spatial and Temporal Dynamics. Inland Water Biol. 2017, 10, 384–398. [Google Scholar] [CrossRef]
- Golovatyuk, L.V.; Zinchenko, T.D.; Sushchik, N.N.; Kalachova, G.S.; Gladyshev, M.I. Biological aspects of the associations of biting midges (Diptera: Ceratopogonidae) in two saline rivers of the Elton Lake basin. Mar Freshw Res. 2018, 69, 906–916. [Google Scholar] [CrossRef]
- Tsalolikhin, S.Y. (Ed.) Determinant of Freshwater Invertebrates of Russia and Adjacent Territories. Higher Insects: Diptera; ZIN RAS: St. Petersburg, Russia, 1999; Volume 4, p. 998. (In Russian) [Google Scholar]
- Glukhova, V.M. Larvae of the Biting Midges Subfamilies Palpomyiinae and Ceratopogoninae of the Fauna of the USSR; Nauka: Leningrad, Russia, 1979; 231p. (In Russian) [Google Scholar]
- Sprygin, A.V.; Fedorova, O.A.; Babin Yu, Y.; Kononov, A.V.; Karaulov, A.K. Woodlice of the genus Culicoides (Diptera, Ceratopogonidae) and their role in the spread of Bluetongue and Schmallenberg disease in Russia. Agric. Biol. 2015, 50, 183–197. (In Russian) [Google Scholar]
- Gutsevich, A.V. On the fauna mokretsov kind Culicoides forest zone (Diptera, Heleidae). Parazitol. Sb. Zool. Instit. 1952, 14, 75–94. (In Russian) [Google Scholar]
- Herbst, D.B. Biogeography and physiological adaptations of the brine fly genus Ephydra (Diptera: Ephydridae) in saline waters of the Great Basin. Great Basin Nat. 1999, 59, 127–135. [Google Scholar]
- Thorp, J.H.; Rogers, D.C. (Eds.) Ecology and General Biology. In Thorp and Covich’s Freshwater Invertebrates: Keys to Nearctic Fauna, 4th ed.; Academic Press: Cambridge, MA, USA; Elsevier Inc.: London, UK, 2015; Volume I, p. 1118. [Google Scholar]
- González-Juárez, D.E.; Escobedo-Moratilla, A.; Flores, J.; Hidalgo-Figueroa, S.; Martínez-Tagüeña, N.; Morales-Jiménez, J.; Muñiz-Ramírez, A.; Pastor-Palacios, G.; Pérez-Miranda, S.; Ramírez-Hernández, A.; et al. A Review of the Ephedra genus: Distribution, Ecology, Ethnobotany, Phytochemistry and Pharmacological Properties. Molecules 2020, 25, 3283. [Google Scholar] [CrossRef]
- Van Breugel, F.; Dickinson, M.H. Superhydrophobic diving flies (Ephydra hians) and the hypersaline waters of Mono Lake. Proc. Natl. Acad. Sci. USA 2017, 114, 13483–13488. [Google Scholar] [CrossRef]
- Krivosheina, M.G. Morphological and Ecological Mechanisms of of Hydrobionts Larvae of Diptera (Insecta, Diptera) to Resist to Extreme Conditions. Ph.D. Dissertation, Severtsov Institute of Ecology and Evolution of RAS, Moscow, Russia, October 2004; p. 314. [Google Scholar]
- Foote, B.A. Biology and Immature Stages of Coenia curvicauda (Diptera: Ephydridae). J. N. Y. Entomol. Soc. 1990, 98, 93–102. [Google Scholar]
- Yakovleva, E.Y.; Naimark, E.B.; Sivunova, D.D.; Krivosheina, M.G.; Markov, A.V. Morphology of larvae of Ephydra riparia and Paracoenia fumosa (Diptera: Ephydridae) and adaptation of Diptera to increased salinity. J. Gen. Biol. 2023, 3, 177–194. (In Russian) [Google Scholar]
- Michael, S. Soda Lakes of East Africa; Springer International Publishing: Cham, Switzerland, 2016; p. 408. [Google Scholar]
- Rings, F. Some remarkable chironomids (Dipt.) from northern Germany. Faun. Öcol. Mitt. 1970, 3, 312–322. [Google Scholar]
- Krebs, B.P.M. Microchironomus deribae (Freeman, 1957) (Diptera, Chironomidae) in the Delta region of the Netherlands. Hydrobiol. Bull. 1979, 13, 144–151. [Google Scholar] [CrossRef]
- Zinchenko, T.D.; Golovatyuk, L.V.; Abrosimova, E.V. Non-biting midges (Diptera, Chironomidae) in the benthic communities of saline rivers in the Lake Elton Basin: Diversity, salinity tolerance, and distribution. Entomol. Rev. 2019, 99, 820–835. (In Russian) [Google Scholar] [CrossRef]
- Kanyukova, E.V. Aquatic Hemiptera Insects (Heteroptera: Nepomorpha, Gerromorpha) of the Fauna of Russia and Neighboring Countries; Dalnauka: Vladivostok, Russia, 2006; p. 297. (In Russian) [Google Scholar]
- Vikhrev, N.E. Taxonomic Notes on Lispe (Diptera, Muscidae), Parts 10–12. Amurian Zool. J. 2015, 7, 228–247. (In Russian) [Google Scholar] [CrossRef]
- Bradley, T.J. Saline-Water Insects: Ecology, Physiology and Evolution. In Aquatic Insects: Challenges to Populations; CAB International: London, UK, 2008; pp. 20–35. [Google Scholar]
- Boyko, E.G.; Muge, N.S. Species and population identification of Artemia (Artemia sp.) in Russian Federation water bodies. In Proceedings of the 10th Congress of Hydrobiological Society at RAS, Vladivostok, Russia, 28 September–2 October 2009; Dalnauka: Vladivostok, Russia, 2009; p. 495. (In Russian). [Google Scholar]
- Shadrin, N.; Anufriieva, E. Review of the biogeography of Artemia Leach, 1819 (Crustacea: Anostraca) in Russia. Internat. J. Artemia Biol. 2012, 2, 51–61. [Google Scholar]
- Shadrin, N.; Anufriieva, E. Ecosystems of hypersaline waters: Structure and trophic relations. J. Gen. Biol. 2018, 79, 418–427. (In Russian) [Google Scholar]
- Saccò, M.; White, N.E.; Harrod, C.; Salazar, G.; Aguilar, P.; Cubillos, C.F.; Meredith, K.; Baxter, B.K.; Oren, A.; Anufriieva, E.; et al. Salt to conserve: A review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 2021, 96, 2828–2850. [Google Scholar] [CrossRef]
- Balushkina, E.V.; Golubkov, S.M.; Golubkov, M.S.; Litvinchuk, L.F.; Shadrin, N.V. Influence of abiotic and biotic factors on the structural and functional organization of ecosystems of the salt lakes of Crimea. J. Gen. Biol. 2009, 70, 504–514. (In Russian) [Google Scholar]
- Golovatyuk, L.V.; Nazarova, L.B.; Kalioujnaia, I.J.; Grekov, I.M. Taxonomic composition and salinity tolerance of macrozoobenthos in small rivers of the Southern arid zone of the East European Plain. Biology 2023, 12, 1271. [Google Scholar] [CrossRef] [PubMed]
- Tashlykova, N.A.; Afonina, E.Y. Plankton Development in littoral biotopes of various types in soda lakes. Arid. Ecosyst. 2021, 11, 426–433. [Google Scholar] [CrossRef]
- Alimov, A.F. Connection of biological diversity in continental reservoirs with their morphometry and mineralization of waters. Inland Water Biol. 2008, 1, 3–8. [Google Scholar] [CrossRef]
- Millán, A.; Velasco, J.; Gutiérrez-Cánovas, C.; Arribas, P.; Picazo, F.; Sánchez-Fernández, D.; Abellán, P. Mediterranean saline streams in southeast Spain: What do we know? J. Arid. Environ. 2011, 75, 1352–1359. [Google Scholar] [CrossRef]
- Walker, K.F. Studies on saline lake ecosystem. Mar. Freshw. Res. 1973, 24, 21–71. [Google Scholar] [CrossRef]
- Williams, W.D. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 1998, 381, 191–201. [Google Scholar] [CrossRef]
- Bunn, S.E.; Davies, P.M. Community structure of the macroinvertebrate fauna and water quality of a saline river system in south-western Australia. Hydrobiologia 1992, 248, 143–160. [Google Scholar] [CrossRef]
- Gallardo-Mayenco, A. Freshwater macroinvertebrate distribution in two basins with different salinity gradients (Guadalete and Guadaira river basins, south-western Spain). Int. J. Salt Lake Res. 1994, 3, 75–91. [Google Scholar] [CrossRef]
- Moreno-de las Heras, M. Development of soil physical structure and biological functionality in mining spoils affected by soil erosion in a Mediterranean-Continental environment. Geoderma 2009, 149, 249–256. [Google Scholar] [CrossRef]
- Zerguine, K. Chironomidae (Diptera: Insecta) of temporary salt lakes in the eastern Hauts Plateaux of Algeria. Experiment 2014, 25, 1704–1710. [Google Scholar]
- Stief, P.; Nazarova, L.; De Beer, D. Chimney construction by Chironomus riparius larvae in response to hypoxia: Microbial implications for freshwater sediments. J. N. Am. Benthol. Soc. 2005, 24, 858–871. [Google Scholar] [CrossRef]
- Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R. Respiratory strategy is a major determinant of [3H] water and [14C] chlorpyrifos uptake in aquatic insects. Can. J. Fish Aquat. Sci. 2002, 59, 1315–1322. [Google Scholar] [CrossRef]
- Poteat, M.; Buchwalter, D.B. Calcium uptake in aquatic insects: Influences of phylogeny and metals (Cd and Zn). J. Exp. Biol. 2013, 217, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Golovatyuk, L.V.; Prokin, A.A.; Nazarova, L.B.; Zinchenko, T.D. Biodiversity, distribution and production of macrozoobenthos communities in the saline Chernavka River (Lake Elton basin, south west Russia). Limnology 2022, 23, 337–353. [Google Scholar] [CrossRef]
- Szekely, T.; Bamberger, Z. Predation of waders (Charadrii) on prey populations: An exclosure experiment. J. Anim. Ecol. 1992, 61, 447–456. [Google Scholar] [CrossRef]
- Chernichko, I.I.; Kirikova, T.A. Macrozoobenthos Sivash and the associated placement of waders. In Fauna, Ecology and Protection of Birds of the Azov-Black Sea Region; Satscientific works; Sonat: Simferopol, Ukraine, 1999; pp. 230–257. (In Russian) [Google Scholar]
- Shubin, A.O.; Ivanov, A.P. Ecological segregation of migrating waders on steppe reservoirs. European Russia. Zool. Zh. 2005, 84, 707–718. [Google Scholar]
- Kirikova, T.A.; Antonovsky, A.G. Macrozoobenthos of the Eastern and Central Sivash as a food base for tundra waders during migration. Collect. Work. Zool. Mus. 2010, 41, 210–235. (In Ukraine) [Google Scholar]
- Cañedo-Argüelles, M.; Kefford, B.; Piscart, C.; Prat, N.; Schäfer, R.B.; Schulz, C.J. Salinisation of rivers: An urgent ecological issue. Environ. Pollut. 2013, 173, 157–167. [Google Scholar] [CrossRef]
Lake | Tanatar IV | Tanatar VI | Petukhovskoe Sodovoe | Gorchina 1 | Lomovoe | |||
---|---|---|---|---|---|---|---|---|
Year | 2021 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2022 |
Total salinity, ‰ | 5 | 22 | 34 | 43 | 60 | 82 | 276 | 304 |
TDS, g L−1 | n/d | n/d | 31.6 | n/d | 60.5 | n/d | 243.4 | 337.2 |
pH | 9.9 | 9.9 | 9.8 | 10.2 | 10.2 | 10.3 | 10.2 | 7.57 |
Total alkalinity, mol-eq L−1 | 0.06 | 0.21 | 0.35 | 0.50 | 0.74 | 1.2 | 4.03 | 0.03 |
Na+, g L−1 | n/d | n/d | 15.93 | n/d | 3.51 | n/d | 122.45 | 157.25 |
CO32−, g L−1 | 1.20 | 4.80 | 9.00 | 13.80 | 20.40 | 34.80 | 106.20 | 0 |
HCO3−, g L−1 | 1.22 | 3.05 | 3.05 | 2.44 | 3.66 | 2.44 | 29.89 | 1.83 |
Cl−, g L−1 | n/d | n/d | 7.06 | n/d | 1.38 | n/d | 22.1 | 163.9 |
SO4−, g L−1 | n/d | n/d | 1.62 | n/d | 8.49 | n/d | 1.37 | 71.99 |
Chemical type ** | Soda Na-HCO3-CO3 | Soda Na-HCO3-CO3 | Soda Na-HCO3-CO3 | Soda Na-HCO3-CO3 | Saline Na-Cl | |||
Sediments | Gray silt with whit inclusions of soda concretions and medium-grained sand. Black concretions and plant fibers. Possible presence of carbonate detritus | Fine, medium-grained sand with fragments of microalgae | Fine organic dark brown-greenish silt with frequent inclusions of translucent salt crystals. Small concretions of soda (up to 1 mm). Presence of carbonate detritus |
Taxa | Life Stages/Ecology | Tanatar IV | Tanatar VI | Petukhovskoe Sodovoe | Gorchina 1 | Lomovoe |
---|---|---|---|---|---|---|
Order Anostraca | ||||||
Family Artemiidae | ||||||
Artemia parthenogenetica | HB | 100 | ||||
Artemia sp. | HB | 25 | 25 | 100 | ||
Klass Insecta | ||||||
Order Heteroptera | ||||||
Paracorixa concinna concinna (Fieber, 1848) | (♂)/E | 100 | ||||
Order Diptera | ||||||
Family Ceratopogonidae | ||||||
Palpomyia schmidti Goetghebuer, 1934 | (L, P♂)/H | 87 | 100 | |||
Culicoides (Monoculicoides) riethi Kieffer, 1914 | (L, P♂)/E | 87 | ||||
Family Chironomidae | ||||||
Microchironomus deribae (Freeman, 1957) | (L, P♂)/H | 100 | 8 | |||
Family Ephydridae | ||||||
Ephydra glauca Meigen, 1830 | (L, P♂)/E | 92 | 61 | |||
Family Muscidae | ||||||
Lispe sp. | L, P | 46 | ||||
Number of species | 2 | 5 | 4 | 1 | 1 |
Parameter | Lake | ||||
---|---|---|---|---|---|
Tanatar VI | Petukhovskoe Sodovoe | Gorchina 1 | Lomovoe | ||
Abundance of macrozoobenthos, thous. ind. m−2 | Mean ± Δ | 7.0 ± 2.52 | 8.03 ± 3.98 | ||
Min–max | 0.13–18.1 | 2.29–15.65 | |||
Abundance of plancton, thous. ind. m−3 | Mean ± Δ | 0.01 ± 0 | 0.01 ± 0 | 8.0 ± 1.26 | 39 ± 12.6 |
Min–max | 0.01 | 0.01 | 4.16–12.22 | 7.6–70.4 | |
Biomass of macrozoobenthos, g m−2 | Mean ± Δ | 11.7 ± 8.11 | 9.03 ± 3.95 | ||
Min–max | 1.61–18.42 | 1.74–15.9 | |||
Biomass of plancton, g m−3 | Mean ± Δ | 0.001 ± 0 | 0.001 ± 0 | 4.62 ± 4.42 | 201 ± 92 |
Min–max | 0.001 | 0.001 | 2.15–6.28 | 39.1–363 | |
Dominant species of macrozoobenthos (d, %), calculated by abundance/biomass | C. riethi (d = 74/18), E. glauca (d = 11/78) | P. schmidti (d = 92/76) | |||
Dominant species of plancton (d, %), calculated by abundance/biomass | Artemia sp. (d = 100/100) | A. parthenogenetica (d = 100/100) | |||
Shannon index (H) | 0.07–0.72 | 0.06–0.14 | 0 | 0 | |
Simpson index (I) | 0.02–0.48 | 0.02–0.05 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golovatyuk, L.; Kanapatskiy, T.; Samylina, O.; Pimenov, N.; Nazarova, L.; Kallistova, A. Invertebrate Assemblages in Some Saline and Soda Lakes of the Kulunda Steppe: First Regional Assessment and Ecological Implications. Water 2025, 17, 2330. https://doi.org/10.3390/w17152330
Golovatyuk L, Kanapatskiy T, Samylina O, Pimenov N, Nazarova L, Kallistova A. Invertebrate Assemblages in Some Saline and Soda Lakes of the Kulunda Steppe: First Regional Assessment and Ecological Implications. Water. 2025; 17(15):2330. https://doi.org/10.3390/w17152330
Chicago/Turabian StyleGolovatyuk, Larisa, Timur Kanapatskiy, Olga Samylina, Nikolay Pimenov, Larisa Nazarova, and Anna Kallistova. 2025. "Invertebrate Assemblages in Some Saline and Soda Lakes of the Kulunda Steppe: First Regional Assessment and Ecological Implications" Water 17, no. 15: 2330. https://doi.org/10.3390/w17152330
APA StyleGolovatyuk, L., Kanapatskiy, T., Samylina, O., Pimenov, N., Nazarova, L., & Kallistova, A. (2025). Invertebrate Assemblages in Some Saline and Soda Lakes of the Kulunda Steppe: First Regional Assessment and Ecological Implications. Water, 17(15), 2330. https://doi.org/10.3390/w17152330