Decentralized Coupled Grey–Green Infrastructure for Resilient and Cost-Effective Stormwater Management in a Historic Chinese District
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Stormwater Modeling Framework
2.3. Green Infrastructure Practices
2.4. Optimization Strategy
2.4.1. Objective Function and Cost Components
2.4.2. Decision Variables and Constraints
2.4.3. Optimization Algorithms
2.5. Resilience Assessment Framework
3. Results and Discussion
3.1. Trade-Offs Between Layout Centralization and Life-Cycle Cost
3.2. Life-Cycle Cost Efficiency of Optimized Strategies
3.3. Performance Under Extreme Rainfall Events
3.4. Performance Under Structural Failure Scenarios
3.5. Implications for Heritage Urban Drainage Planning
3.6. Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCs | Bioretention cells |
CGGI | Coupled grey and green infrastructure |
DCL | Degrees of layout centralization |
GI | Green infrastructure |
GREI | Grey infrastructure |
IDF | Intensity–duration–frequency |
LCC | Life-cycle cost |
O&M | Operation–maintenance |
Oper-R | Operational resilience |
PP | Porous pavement |
SWMM | Storm Water Management Model |
Tech-R | Technical resilience |
Appendix A
No. Sub-Catchment | A (ha) | I (%) | W (m) | S (%) | N-I | N-P | D-i (mm) | D-p (mm) | Max-R (mm/h) | Min-R (mm/h) | D-c (h) | D-t (day) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.84 | 85 | 83.6 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
2 | 1.27 | 85 | 127.3 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
3 | 0.91 | 90 | 91.4 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
4 | 1.20 | 90 | 119.5 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
5 | 1.30 | 88 | 130.5 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
6 | 1.54 | 95 | 153.6 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
7 | 0.70 | 95 | 70.5 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
8 | 1.42 | 90 | 142.1 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
9 | 0.97 | 90 | 97.1 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
10 | 3.42 | 85 | 341.5 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
11 | 1.09 | 95 | 108.9 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
12 | 0.77 | 95 | 76.6 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
13 | 1.02 | 90 | 102.2 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
14 | 7.15 | 60 | 715.4 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
15 | 3.41 | 90 | 340.7 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
16 | 2.05 | 90 | 205.2 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
17 | 1.16 | 95 | 116.5 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
18 | 1.57 | 95 | 156.6 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
19 | 2.00 | 95 | 199.7 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
20 | 1.17 | 95 | 117.3 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
21 | 1.74 | 97 | 173.9 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
22 | 1.55 | 94 | 155.0 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
23 | 1.14 | 98 | 114.2 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
24 | 0.60 | 95 | 60.4 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
25 | 1.34 | 98 | 133.8 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
26 | 2.79 | 95 | 278.5 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
27 | 1.01 | 96 | 101.4 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
28 | 0.72 | 98 | 72.2 | 0.1 | 0.024 | 0.15 | 2.1 | 6.51 | 103.81 | 11.44 | 2.75 | 7 |
Layer | Parameter | PP | BCs | Layer | Parameter | PP | BCs |
---|---|---|---|---|---|---|---|
Surface layer | Berm height (mm) | - | 450 | Pavement | Thickness (mm) | 100 | - |
Vegetation volume fraction (m3/m3) | - | 0.05 | Void ration (voids/solids) (m3/m3) | 0.15 | - | ||
Surface roughness (Manning’s n) | 0.012 | 0.1 | Impervious surface fraction | 0 | - | ||
Surface slope (percent) | 0.5 | 0.5 | Permeability (mm/h) | 500 | - | ||
Soil layer | Thickness (mm) | - | 900 | Clogging factor | 0 | - | |
Porosity (m3/m3) | - | 0.5 | Storage layer | Thickness (mm) | 300 | 300 | |
Field capacity (volume fraction) (m3/m3) | - | 0.15 | Void ration (voids/solids) (m3/m3) | 0.4 | 0.67 | ||
Wilting point (volume fraction) (m3/m3) | - | 0.08 | Seepage rate to native soil (mm/h) | 500 | 500 | ||
Conductivity (mm/h) | - | 50 | Clogging factor | 0 | 0 | ||
Conductivity slope | - | 10 | Underdrain layer | Flow coefficient | 2.5 | 2.5 | |
Suction head (mm) | - | 80 | Flow exponent | 0.5 | 0.5 | ||
Offset height (mm) | 100 | 150 |
No. Pipe | Diameter (m) | |||||||
---|---|---|---|---|---|---|---|---|
GREI-Only | CGGI | |||||||
DCL = 100% | DCL = 66.7% | DCL = 33.3% | DCL = 0% | DCL = 100% | DCL = 66.7% | DCL = 33.3% | DCL = 0% | |
1 | 0.60 | 0.25 | 0.25 | 0.25 | 0.53 | 0.25 | 0.25 | 0.40 |
2 | 0.60 | 0.25 | 0.53 | 0.60 | 0.60 | 0.25 | 0.53 | 0.53 |
3 | 0.80 | 0.53 | 0.60 | 0.60 | 0.80 | 0.53 | 0.53 | 0.53 |
4 | 0.53 | 0.53 | 0.25 | 0.25 | 0.53 | 0.53 | 0.25 | 0.25 |
5 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.60 |
6 | 0.80 | 0.60 | 0.60 | 0.80 | 0.80 | 0.60 | 0.60 | 0.25 |
7 | 0.60 | 0.25 | 0.25 | 0.60 | 0.35 | 0.25 | 0.25 | 0.60 |
8 | 0.53 | 0.53 | 0.53 | 0.80 | 0.53 | 0.53 | 0.53 | 0.80 |
9 | 0.53 | 1.00 | 0.80 | 1.20 | 0.53 | 1.00 | 0.8 0 | 0.80 |
10 | 1.00 | 0.80 | 0.60 | 0.25 | 1.00 | 0.80 | 0.60 | 0.60 |
11 | 1.00 | 0.80 | 0.60 | 1.00 | 1.00 | 0.60 | 0.53 | 0.60 |
12 | 0.60 | 0.60 | 0.25 | 0.8 0 | 0.35 | 0.60 | 0.25 | 0.60 |
13 | 0.80 | 1.20 | 1.20 | 0.25 | 0.60 | 1.20 | 1.20 | 1.00 |
14 | 0.60 | 1.20 | 1.20 | 0.53 | 0.40 | 1.20 | 1.20 | 1.00 |
15 | 1.00 | 0.80 | 0.80 | 1.00 | 0.80 | 0.60 | 0.60 | 0.60 |
16 | 0.60 | 0.80 | 0.80 | 0.40 | 0.53 | 0.80 | 0.80 | 0.60 |
17 | 0.80 | 0.80 | 0.80 | 0.25 | 0.80 | 0.80 | 0.80 | 0.53 |
18 | 1.20 | 0.60 | 0.80 | 0.53 | 1.20 | 0.60 | 0.80 | 0.53 |
19 | 0.80 | 0.60 | 0.80 | 0.25 | 0.60 | 0.53 | 0.60 | 0.60 |
20 | 0.80 | 0.25 | 0.80 | 0.60 | 0.80 | 0.25 | 0.60 | 0.80 |
21 | 0.25 | 1.00 | 0.80 | 0.80 | 0.25 | 1.00 | 0.80 | 0.80 |
22 | 0.60 | 1.00 | 0.80 | 0.80 | 0.53 | 0.80 | 0.80 | 0.53 |
23 | 0.80 | 0.80 | 0.80 | 0.53 | 0.80 | 0.80 | 0.53 | 0.53 |
24 | 1.20 | 0.40 | 0.60 | 0.40 | 1.20 | 0.40 | 0.53 | 0.53 |
25 | 0.60 | 0.80 | 0.60 | 0.40 | 0.53 | 0.80 | 0.60 | 0.25 |
26 | 1.20 | 0.60 | 0.60 | 0.25 | 1.20 | 0.40 | 0.40 | 0.25 |
27 | 1.20 | 0.25 | 0.25 | 0.25 | 1.20 | 0.25 | 0.25 | 0.25 |
28 | 0.80 | 0.40 | 0.25 | 0.25 | 0.80 | 0.40 | 0.25 | 0.53 |
29 | 0.40 | 0.80 | 0.25 | 0.80 | 0.40 | 0.80 | 0.25 | 0.40 |
30 | 0.80 | 0.53 | 0.53 | 0.25 | 0.80 | 0.53 | 0.53 | 0.80 |
31 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |
32 | 0.80 | 0.60 | 0.53 | 0.60 | 0.80 | 0.60 | 0.53 | 0.80 |
33 | 0.80 | 0.25 | 0.53 | 0.80 | 0.80 | 0.25 | 0.53 | 0.25 |
34 | 0.80 | 0.25 | 0.80 | 0.80 | 0.80 | 0.25 | 0.60 | 0.25 |
35 | 0.80 | 0.80 | 0.80 | 1.00 | 0.80 | 0.80 | 0.60 | 1.50 |
36 | 0.80 | 0.80 | 1.00 | 0.25 | 0.80 | 0.80 | 1.00 | 1.00 |
37 | 1.50 | 0.25 | 0.25 | 1.20 | 1.50 | 0.25 | 0.25 | 1.20 |
38 | 1.50 | 1.00 | 1.00 | 1.20 | 1.50 | 1.00 | 1.00 | 0.25 |
39 | 1.50 | 1.20 | 1.50 | 1.50 | 1.50 | 1.20 | 1.5 | 0.80 |
40 | 1.50 | 1.20 | 1.20 | 1.20 | 1.50 | 1.00 | 1.00 | 0.25 |
41 | 1.00 | 0.80 | 0.25 | 0.25 | 0.80 | 0.80 | 0.25 | 0.25 |
42 | 1.20 | 0.80 | 0.25 | 2.00 | 1.20 | 0.80 | 0.25 | 0.80 |
43 | 0.25 | 2.00 | 1.50 | 0.80 | 0.25 | 1.5 | 1.50 | 1.00 |
44 | 2.00 | 1.00 | 1.20 | 1.00 | 1.50 | 1.00 | 1.20 | 1.00 |
45 | 1.20 | 0.80 | 1.00 | 2.00 | 1.20 | 0.80 | 1.00 | 1.20 |
46 | 1.20 | 0.80 | 1.00 | 2.00 | 1.20 | 0.80 | 0.80 | 1.20 |
47 | 1.20 | 0.25 | 0.80 | 0.25 | 1.20 | 0.25 | 0.80 | 0.80 |
48 | 1.20 | 0.25 | 0.25 | 0.25 | 1.20 | 0.25 | 0.25 | 0.25 |
49 | 0.80 | 0.80 | 0.80 | 0.60 | 0.40 | 0.80 | 0.80 | 0.60 |
50 | 0.25 | 0.60 | 2.00 | 1.00 | 0.25 | 0.53 | 1.50 | 0.80 |
51 | 0.60 | 0.80 | 1.50 | 0.60 | 0.53 | 0.80 | 1.50 | 0.25 |
52 | 0.60 | 0.53 | 0.80 | 0.25 | 0.53 | 0.53 | 0.60 | 0.25 |
53 | 0.25 | 0.25 | 0.80 | 0.80 | 0.25 | 0.25 | 0.60 | 0.25 |
54 | 0.25 | 0.25 | 0.80 | 1.00 | 0.25 | 0.25 | 0.60 | 0.25 |
55 | 0.25 | 0.80 | 0.25 | 1.00 | 0.25 | 0.80 | 0.25 | 0.25 |
56 | 0.80 | 0.25 | 0.80 | 0.60 | 0.80 | 0.25 | 0.80 | 0.80 |
57 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.60 | 0.80 | 1.00 |
58 | 0.80 | 2.00 | 1.00 | 0.80 | 0.80 | 2.00 | 1.00 | 0.53 |
59 | 2.00 | 0.53 | 0.40 | 0.80 | 2.00 | 0.53 | 0.35 | 0.80 |
60 | 0.60 | 0.80 | 0.60 | 0.60 | 0.60 | 0.8 0 | 0.60 | 0.60 |
61 | 0.25 | 0.25 | 0.80 | 0.60 | 0.25 | 0.25 | 0.80 | 0.60 |
62 | 0.80 | 0.25 | 0.80 | 0.80 | 0.40 | 0.25 | 0.80 | 0.25 |
63 | 1.00 | 0.25 | 0.80 | 0.25 | 1.00 | 0.25 | 0.80 | 0.25 |
64 | 0.80 | 0.25 | 0.60 | 0.25 | 0.40 | 0.25 | 0.60 | 0.80 |
65 | 1.00 | 0.80 | 0.60 | 0.25 | 1.00 | 0.60 | 0.60 | 0.60 |
66 | 0.60 | 0.60 | 1.00 | 0.80 | 0.53 | 0.60 | 0.80 | 0.80 |
67 | 1.20 | 2.00 | 0.80 | 0.40 | 1.20 | 2.00 | 0.80 | 0.35 |
68 | 2.00 | 0.80 | 0.25 | 0.25 | 2.00 | 0.80 | 0.25 | 0.25 |
69 | 0.40 | 0.40 | 0.60 | 0.25 | 0.40 | 0.40 | 0.60 | 0.25 |
70 | 0.25 | 0.80 | 0.25 | 0.25 | 0.25 | 0.80 | 0.25 | 0.25 |
71 | 0.60 | 0.80 | 0.80 | 0.25 | 0.60 | 0.80 | 0.80 | 0.25 |
72 | 0.80 | 0.25 | 0.80 | 0.80 | 0.80 | 0.25 | 0.80 | 0.80 |
73 | 0.80 | 1.00 | 1.00 | 0.53 | 0.80 | 1.00 | 1.00 | 0.60 |
74 | 0.25 | 2.00 | 0.80 | 0.53 | 0.25 | 2.00 | 0.80 | 0.60 |
75 | 2.00 | 2.00 | 0.53 | 0.53 | 2.00 | 2.00 | 0.53 | 0.60 |
76 | 2.00 | 0.60 | 0.25 | 0.25 | 2.00 | 0.53 | 0.25 | 0.25 |
77 | 0.25 | 0.60 | 0.25 | 0.53 | 0.25 | 0.53 | 0.25 | 0.40 |
78 | 0.25 | 0.25 | 0.60 | 0.53 | 0.25 | 0.25 | 0.53 | 0.25 |
79 | 0.53 | 0.60 | 0.60 | 1.2 | 0.53 | 0.53 | 0.53 | 1.00 |
80 | 0.6 0 | 0.25 | 1.20 | 0.25 | 0.53 | 0.25 | 1.20 | 1.5 |
81 | 0.25 | 1.20 | 2.00 | 0.80 | 0.25 | 1.20 | 1.50 | 0.80 |
82 | 0.25 | 0.25 | 1.00 | 2.00 | 0.25 | 0.25 | 1.00 | 1.20 |
83 | 0.25 | 2.00 | 0.25 | 0.25 | 2.00 | 0.25 | ||
84 | 2.00 | 0.25 | 2.00 | 0.25 | ||||
85 | 0.25 | 0.25 |
No. Manhole | Depth (m) | |||||||
---|---|---|---|---|---|---|---|---|
GREI-only | CGGI | |||||||
DCL = 100% | DCL = 66.7% | DCL = 33.3% | DCL = 0% | DCL = 100% | DCL = 66.7% | DCL = 33.3% | DCL = 0% | |
1 | 1.86 | 1.99 | 1.05 | 1.05 | 1.87 | 1.97 | 1.05 | 1.44 |
2 | 1.78 | 1.80 | 2.17 | 1.42 | 1.70 | 1.80 | 2.17 | 1.05 |
3 | 1.05 | 1.42 | 1.79 | 1.05 | 1.05 | 1.42 | 1.79 | 1.57 |
4 | 2.24 | 2.65 | 1.54 | 1.78 | 2.25 | 2.65 | 1.53 | 1.92 |
5 | 2.51 | 1.87 | 2.93 | 1.83 | 2.51 | 1.81 | 2.92 | 1.45 |
6 | 1.60 | 1.05 | 1.42 | 1.77 | 1.48 | 1.05 | 1.41 | 2.10 |
7 | 1.43 | 3.53 | 3.81 | 4.33 | 1.43 | 3.53 | 3.78 | 3.87 |
8 | 2.64 | 2.26 | 3.34 | 3.90 | 2.65 | 2.15 | 3.31 | 2.80 |
9 | 2.94 | 1.60 | 1.05 | 2.09 | 2.94 | 1.57 | 1.05 | 2.47 |
10 | 1.92 | 2.71 | 3.18 | 2.70 | 1.71 | 2.64 | 3.10 | 3.64 |
11 | 1.93 | 2.64 | 3.10 | 3.55 | 1.86 | 2.57 | 3.03 | 3.57 |
12 | 2.00 | 2.17 | 2.13 | 2.11 | 1.94 | 2.12 | 2.12 | 1.05 |
13 | 3.04 | 2.02 | 2.02 | 1.64 | 3.05 | 2.01 | 2.01 | 2.23 |
14 | 3.18 | 1.05 | 1.05 | 1.22 | 3.19 | 1.05 | 1.05 | 1.53 |
15 | 3.24 | 1.68 | 1.49 | 1.05 | 3.25 | 1.71 | 1.44 | 1.36 |
16 | 2.36 | 1.05 | 2.40 | 1.75 | 2.36 | 1.05 | 2.19 | 2.04 |
17 | 1.05 | 1.95 | 2.45 | 3.17 | 1.05 | 1.93 | 2.45 | 3.19 |
18 | 1.74 | 1.87 | 2.03 | 3.05 | 1.73 | 1.64 | 1.98 | 2.78 |
19 | 3.56 | 1.05 | 1.72 | 2.71 | 3.57 | 1.05 | 1.48 | 2.71 |
20 | 1.89 | 1.55 | 1.53 | 1.55 | 1.84 | 1.55 | 1.53 | 1.05 |
21 | 2.04 | 1.91 | 1.36 | 1.05 | 1.95 | 1.90 | 1.36 | 1.78 |
22 | 2.06 | 1.93 | 1.05 | 1.66 | 1.97 | 1.92 | 1.05 | 2.00 |
23 | 2.59 | 1.05 | 1.14 | 1.05 | 2.59 | 1.05 | 1.14 | 1.05 |
24 | 3.84 | 2.45 | 2.09 | 1.58 | 3.85 | 2.44 | 2.09 | 1.58 |
25 | 1.05 | 1.98 | 1.56 | 1.05 | 1.05 | 1.98 | 1.56 | 1.05 |
26 | 2.17 | 1.81 | 1.05 | 2.47 | 2.17 | 1.81 | 1.05 | 1.05 |
27 | 2.31 | 1.67 | 2.14 | 1.05 | 2.31 | 1.66 | 2.14 | 2.00 |
28 | 1.05 | 1.05 | 1.05 | 1.25 | 1.05 | 1.05 | 1.05 | 1.05 |
29 | 4.10 | 2.90 | 3.60 | 2.25 | 4.10 | 2.90 | 3.60 | 2.61 |
30 | 4.26 | 3.27 | 4.26 | 2.41 | 4.27 | 3.26 | 4.26 | 1.69 |
31 | 4.91 | 4.22 | 3.71 | 3.36 | 4.42 | 3.71 | 3.67 | 2.02 |
32 | 5.02 | 4.32 | 3.61 | 3.79 | 5.02 | 4.31 | 3.57 | 3.83 |
33 | 2.71 | 2.98 | 3.03 | 3.87 | 2.83 | 2.97 | 2.80 | 3.91 |
34 | 2.52 | 2.16 | 2.71 | 4.11 | 2.74 | 2.16 | 2.71 | 4.00 |
35 | 2.81 | 1.69 | 4.97 | 1.05 | 2.80 | 1.68 | 4.47 | 2.93 |
36 | 2.11 | 1.76 | 4.86 | 1.95 | 2.04 | 1.77 | 4.36 | 1.05 |
37 | 1.63 | 1.05 | 1.83 | 1.05 | 1.63 | 1.05 | 1.67 | 1.18 |
38 | 1.35 | 2.08 | 1.69 | 1.88 | 1.34 | 2.08 | 1.53 | 2.08 |
39 | 1.05 | 2.38 | 1.05 | 2.18 | 1.05 | 2.38 | 1.05 | 2.38 |
40 | 1.69 | 3.17 | 1.71 | 1.05 | 1.67 | 2.96 | 1.67 | 3.16 |
41 | 5.16 | 4.53 | 2.27 | 2.38 | 5.17 | 4.53 | 2.25 | 3.48 |
42 | 1.35 | 1.05 | 1.05 | 1.05 | 1.35 | 1.05 | 1.05 | 1.05 |
43 | 2.09 | 1.47 | 2.51 | 2.42 | 2.08 | 1.47 | 2.51 | 2.42 |
44 | 2.05 | 1.32 | 1.82 | 1.05 | 2.30 | 1.32 | 1.82 | 1.32 |
45 | 2.34 | 1.05 | 1.73 | 1.34 | 2.59 | 1.05 | 1.73 | 1.05 |
46 | 5.26 | 4.63 | 2.18 | 2.25 | 5.27 | 4.62 | 1.96 | 2.12 |
47 | 1.05 | 1.94 | 1.90 | 1.35 | 1.05 | 1.89 | 1.90 | 1.35 |
48 | 1.75 | 1.79 | 1.55 | 1.67 | 1.74 | 1.78 | 1.56 | 1.67 |
49 | 5.32 | 4.69 | 1.89 | 1.66 | 5.33 | 4.69 | 1.89 | 1.84 |
50 | 1.41 | 1.76 | 1.05 | 1.55 | 1.41 | 1.69 | 1.05 | 1.76 |
51 | 1.05 | 1.05 | 1.37 | 1.05 | 1.05 | 1.05 | 1.37 | 1.05 |
52 | 1.05 | 1.05 | 1.92 | 1.05 | 1.05 | 1.05 | 1.92 | 1.05 |
53 | 5.42 | 4.79 | 2.4 | 2.26 | 5.43 | 4.79 | 2.33 | 1.73 |
54 | 1.05 | 1.05 | 1.56 | 1.57 | 1.05 | 1.05 | 1.52 | 1.05 |
55 | 1.05 | 1.05 | 1.05 | 1.40 | 1.05 | 1.05 | 1.05 | 1.20 |
56 | 1.05 | 1.05 | 1.33 | 1.40 | 1.05 | 1.05 | 1.33 | 1.40 |
57 | 1.05 | 1.33 | 1.40 | 1.40 | 1.05 | 1.33 | 1.4 | 1.33 |
58 | 1.33 | 1.40 | 1.40 | 1.60 | 1.33 | 1.40 | 1.33 | 1.40 |
59 | 1.40 | 1.33 | 1.40 | 1.33 | 1.15 | 1.33 | 1.33 | 1.40 |
60 | 1.33 | 1.40 | 1.60 | 1.33 | 1.33 | 1.40 | 1.40 | 1.40 |
61 | 1.60 | 1.60 | 1.60 | 1.20 | 1.60 | 1.40 | 1.60 | 1.33 |
62 | 1.60 | 1.60 | 1.40 | 1.20 | 1.40 | 1.40 | 1.20 | 1.33 |
63 | 1.80 | 1.40 | 1.40 | 1.40 | 1.60 | 1.20 | 1.40 | 1.40 |
64 | 1.60 | 1.20 | 1.60 | 1.80 | 1.60 | 1.20 | 1.40 | 1.60 |
65 | 1.40 | 1.40 | 1.80 | 1.40 | 1.33 | 1.33 | 1.80 | 1.40 |
66 | 1.40 | 1.60 | 1.40 | 1.60 | 1.20 | 1.60 | 1.40 | 1.33 |
67 | 1.60 | 1.40 | 1.33 | 1.60 | 1.60 | 1.40 | 1.33 | 1.20 |
68 | 1.40 | 1.33 | 1.60 | 2.00 | 1.40 | 1.33 | 1.40 | 2.00 |
69 | 1.60 | 1.20 | 2.00 | 1.80 | 1.60 | 1.20 | 1.80 | 1.80 |
70 | 1.20 | 2.00 | 1.80 | 1.60 | 1.20 | 1.80 | 1.80 | 1.60 |
71 | 2.00 | 1.80 | 1.60 | 1.40 | 2.00 | 1.80 | 1.60 | 1.40 |
72 | 1.80 | 1.60 | 1.60 | 1.40 | 1.60 | 1.60 | 1.40 | 1.60 |
73 | 1.60 | 1.40 | 1.60 | 1.80 | 1.20 | 1.33 | 1.40 | 1.60 |
74 | 1.40 | 1.33 | 1.60 | 1.60 | 1.33 | 1.33 | 1.60 | 1.33 |
75 | 1.60 | 1.60 | 1.40 | 1.60 | 1.60 | 1.60 | 1.40 | 1.60 |
76 | 1.60 | 1.33 | 1.60 | 1.60 | 1.60 | 1.33 | 1.60 | 1.60 |
77 | 1.40 | 1.60 | 1.40 | 1.40 | 1.40 | 1.60 | 1.40 | 1.40 |
78 | 1.60 | 1.60 | 1.40 | 1.20 | 1.20 | 1.40 | 1.40 | 1.15 |
79 | 1.60 | 1.40 | 1.20 | 1.40 | 1.20 | 1.40 | 1.15 | 1.40 |
80 | 1.40 | 1.20 | 1.40 | 1.60 | 1.33 | 1.20 | 1.40 | 1.60 |
81 | 1.20 | 1.60 | 1.60 | 1.33 | 1.20 | 1.60 | 1.60 | 1.40 |
82 | 1.40 | 1.80 | 1.33 | 1.33 | 1.40 | 1.80 | 1.33 | 1.20 |
83 | 1.60 | 1.40 | 1.40 | 1.60 | 1.33 | 1.33 | ||
84 | 1.33 | 1.40 | 1.33 | 1.33 | ||||
85 | 1.40 | 1.33 |
References
- Fu, L.; Zhang, Q.; Tang, Y.; Pan, J.; Li, Q. Assessment of urbanization impact on cultural heritage based on a risk-based cumulative impact assessment method. Herit. Sci. 2023, 11, 177. [Google Scholar] [CrossRef]
- Piontek, F.; Müller, C.; Pugh, T.A.M.; Clark, D.B.; Deryng, D.; Elliott, J.; Colón González, F.d.J.; Flörke, M.; Folberth, C.; Franssen, W.; et al. Multisectoral climate impact hotspots in a warming world. Proc. Natl. Acad. Sci. USA 2014, 111, 3233–3238. [Google Scholar] [CrossRef]
- Wu, J.; Lu, Y.; Gao, H.; Wang, M. Cultivating historical heritage area vitality using urban morphology approach based on big data and machine learning. Comput. Environ. Urban Syst. 2022, 91, 101716. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. WIREs Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, D.; Wang, M.; Liu, Z.; Gan, W.; Zhao, Z.; Xue, S.; Müller, B.; Zhou, M.; Ni, X.; et al. Risk-driven composition decoupling analysis for urban flooding prediction in high-density urban areas using Bayesian-Optimized LightGBM. J. Clean. Prod. 2024, 457, 142286. [Google Scholar] [CrossRef]
- Song, W. Retain the common ground: Implications of research on fringe belt and urban green infrastructure for urban landscape revitalisation, a case of Quanzhou. Landsc. Res. 2022, 48, 64–87. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.R.; Wang, M.; Parmar, K.S.; Kisi, O.; Zounemat-Kermani, M. Improved random vector functional link network with an enhanced remora optimization algorithm for predicting monthly streamflow. J. Hydrol. 2025, 650, 132496. [Google Scholar] [CrossRef]
- Liu, H.; Zou, L.; Xia, J.; Chen, T.; Wang, F. Impact assessment of climate change and urbanization on the nonstationarity of extreme precipitation: A case study in an urban agglomeration in the middle reaches of the Yangtze river. Sustain. Cities Soc. 2022, 85, 104038. [Google Scholar] [CrossRef]
- Borah, A.; Bardhan, R.; Bhatia, U. Protecting heritage: Insights into effective flood management using green infrastructure in a highly urbanized environment. Int. J. Disaster Risk Reduct. 2023, 98, 104075. [Google Scholar] [CrossRef]
- Crowley, K.; Jackson, R.; O’Connell, S.; Karunarthna, D.; Anantasari, E.; Retnowati, A.; Niemand, D. Cultural heritage and risk assessments: Gaps, challenges, and future research directions for the inclusion of heritage within climate change adaptation and disaster management. Clim. Resil. Sustain. 2022, 1, e45. [Google Scholar] [CrossRef]
- Dai, T.; Zheng, X.; Yang, J. A systematic review of studies at the intersection of urban climate and historical urban landscape. Environ. Impact Assess. Rev. 2022, 97, 106894. [Google Scholar] [CrossRef]
- Su, J.; Wang, M.; Zhang, D.; Yuan, H.; Zhou, S.; Wang, Y.; Adib Mohammad Razi, M. Integrating technical and societal strategies in Nature-based Solutions for urban flood mitigation in Guangzhou, a heritage city. Ecol. Indic. 2024, 162, 112030. [Google Scholar] [CrossRef]
- Lafrenz Samuels, K.; Platts, E.J. Global Climate Change and UNESCO World Heritage. Int. J. Cult. Prop. 2022, 29, 409–432. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Tsihrintzis, V.A. Adaptation of urban drainage networks to climate change: A review. Sci. Total Environ. 2021, 771, 145431. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, W.; Huang, G.; Wang, Z.; Lai, C.; Yang, Z. The capacity of grey infrastructure in urban flood management: A comprehensive analysis of grey infrastructure and the green-grey approach. Int. J. Disaster Risk Reduct. 2021, 54, 102045. [Google Scholar] [CrossRef]
- Roozbahani, A.; Behzadi, P.; Massah Bavani, A. Analysis of performance criteria and sustainability index in urban stormwater systems under the impacts of climate change. J. Clean. Prod. 2020, 271, 122727. [Google Scholar] [CrossRef]
- Zhang, K.; Manuelpillai, D.; Raut, B.; Deletic, A.; Bach, P.M. Evaluating the reliability of stormwater treatment systems under various future climate conditions. J. Hydrol. 2019, 568, 57–66. [Google Scholar] [CrossRef]
- Li, L.; Collins, A.M.; Cheshmehzangi, A.; Chan, F.K.S. Identifying enablers and barriers to the implementation of the Green Infrastructure for urban flood management: A comparative analysis of the UK and China. Urban For. Urban Green. 2020, 54, 126770. [Google Scholar] [CrossRef]
- Staddon, C.; Ward, S.; De Vito, L.; Zuniga-Teran, A.; Gerlak, A.K.; Schoeman, Y.; Hart, A.; Booth, G. Contributions of green infrastructure to enhancing urban resilience. Environ. Syst. Decis. 2018, 38, 330–338. [Google Scholar] [CrossRef]
- Tansar, H.; Duan, H.-F.; Mark, O. A multi-objective decision-making framework for implementing green-grey infrastructures to enhance urban drainage system resilience. J. Hydrol. 2023, 620, 129381. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, H.; Zhang, D.; Kong, F.; Xu, J.; Wang, M.; Yuan, H. Enhancing resilience of green-grey infrastructure by integrating two redundancy strategies into a multi-objective optimization and service period assessment framework. Sustain. Cities Soc. 2025, 128, 106474. [Google Scholar] [CrossRef]
- Zhou, S.; Diao, H.; Wang, J.; Jia, W.; Xu, H.; Xu, X.; Wang, M.; Sun, C.; Qiao, R.; Wu, Z. Multi-stage optimization framework for synergetic grey-green infrastructure in response to long-term climate variability based on shared socio-economic pathways. Water Res. 2025, 274, 123091. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, Z.; Wang, M.; Li, X.; Zhang, Y.; Yang, B.; Lai, C. A framework for optimization and assessment of long-term urban stormwater management scenarios under climate change and performance challenges. J. Environ. Manag. 2025, 390, 126298. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, M.; Zhang, D.; Qi, J.; Fu, W.; Zhang, Y.; Rao, Q.; Bakhshipour, A.E.; Tan, S.K. Assessing and optimizing the hydrological performance of Grey-Green infrastructure systems in response to climate change and non-stationary time series. Water Res. 2023, 232, 119720. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, J.; Yun, H.; Kang, J. Exploring the network structure of coupled green-grey infrastructure to enhance urban pluvial flood resilience: A scenario-based approach focusing on ‘centralized’ and ‘decentralized’ structures. J. Environ. Manag. 2024, 370, 122344. [Google Scholar] [CrossRef]
- Zhou, H.; Gao, C.; Luan, Q.; Shi, L.; Lu, Z.; Liu, J. Multi-objective optimization of distributed green infrastructure for effective stormwater management in space-constrained highly urbanized areas. J. Hydrol. 2024, 644, 132065. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, J.; Xiong, Z.; Zhuang, J.a.; Wang, M. Integrating Grey–Green Infrastructure in Urban Stormwater Management: A Multi–Objective Optimization Framework for Enhanced Resilience and Cost Efficiency. Appl. Sci. 2025, 15, 3852. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, H. Low impact development planning through a comprehensive optimization framework: Current gaps and future perspectives. Resour. Conserv. Recycl. 2023, 190, 106861. [Google Scholar] [CrossRef]
- Ghodsi, S.H.; Zahmatkesh, Z.; Goharian, E.; Kerachian, R.; Zhu, Z. Optimal design of low impact development practices in response to climate change. J. Hydrol. 2020, 580, 124266. [Google Scholar] [CrossRef]
- Zhao, Y.; Yingrui, G.; Moru, L.; Zhifeng, Z.; Pengjun, Z. Mobility constraints of residents in marginal rural areas of megacities: Evidence from Beijing, China. J. Transp. Geogr. 2025, 127, 104259. [Google Scholar] [CrossRef]
- Xu, A.; Dai, Y.; Hu, Z.; Qiu, K. Can green finance policy promote inclusive green growth?-Based on the quasi-natural experiment of China’s green finance reform and innovation pilot zone. Int. Rev. Econ. Financ. 2025, 100, 104090. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Miao, R.; Qi, H.; Zhang, Y. Energy–Environment–Economy (3E) Analysis of the Performance of Introducing Photovoltaic and Energy Storage Systems into Residential Buildings: A Case Study in Shenzhen, China. Sustainability 2023, 15, 9007. [Google Scholar] [CrossRef]
- Aghaloo, K.; Sharifi, A.; Habibzadeh, N.; Ali, T.; Chiu, Y.-R. How nature-based solutions can enhance urban resilience to flooding and climate change and provide other co-benefits: A systematic review and taxonomy. Urban For. Urban Green. 2024, 95, 128320. [Google Scholar] [CrossRef]
- Zheng, J.; Li, J.; Zeng, J.; Huang, G.; Chen, W. Application of a time-dependent performance-based resilience metric to establish the potential of coupled green-grey infrastructure in urban flood management. Sustain. Cities Soc. 2024, 112, 105608. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, X.; Xu, H.; Zhao, Z.; Yuan, H.; Wang, Y.; Qiao, R.; Wu, T.; Jia, W.; Wang, M.; et al. From heat resilience to sustainable co-benefits: Adaptive urban morphology generation based on multimodal data fusion and a novel generative framework. Sustain. Cities Soc. 2025, 127, 106452. [Google Scholar] [CrossRef]
- Sun, C.; Rao, Q.; Xiong, Z.; Liu, M.; Liu, Y.; Fan, C.; Li, J.; Keat Tan, S.; Wang, M.; Zhang, D. Optimized resilience coupled with cost-effectiveness for grey and green infrastructure: A case study in a historical and cultural area, Guangzhou, China. Ecol. Indic. 2024, 167, 112684. [Google Scholar] [CrossRef]
- Rodina, L. Defining “water resilience”: Debates, concepts, approaches, and gaps. WIREs Water 2019, 6, e1334. [Google Scholar] [CrossRef]
- Mattos Tiago, S.; Oliveira Paulo Tarso, S.; de Souza Bruno, L.; de Oliveira Nilo, D.; Vasconcelos Jose, G.; Lucas Murilo, C. Improving Urban Flood Resilience under Climate Change Scenarios in a Tropical Watershed Using Low-Impact Development Practices. J. Hydrol. Eng. 2021, 26, 05021031. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, H.; Liu, M.; Kong, F.; Xu, J. Evaluating the effectiveness of environmental sustainability indicators in optimizing green-grey infrastructure for sustainable stormwater management. Water Res. 2025, 272, 122932. [Google Scholar] [CrossRef]
- Huang, K.; Kang, P.; Zhao, Y. Quantitative research of street interface morphology in urban historic districts: A case study of west street historic district, Quanzhou. Herit. Sci. 2024, 12, 226. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, J.; Su, J.; Adnan, R.; Yang, M. Navigating Flooding Challenges in Historical Urban Contexts: Integrating Nature-Based Solutions with Spatial Multi-Criteria Assessments in Quanzhou. Land 2025, 14, 452. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Wang, Y.; Zhao, X. Assessing climate risk related to precipitation on cultural heritage at the provincial level in China. Sci. Total Environ. 2022, 835, 155489. [Google Scholar] [CrossRef] [PubMed]
- Rossman, L.A. Storm Water Management Model User’s Manual, Version 5.0; National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH, USA, 2010; p. 276. [Google Scholar]
- Sun, C.; Rao, Q.; Wang, M.; Liu, Y.; Xiong, Z.; Zhao, J.; Fan, C.; Rana, M.A.I.; Li, J.; Zhang, M. Multi-stage optimization of drainage systems for integrated grey–green infrastructure under backward planning. Water 2024, 16, 1825. [Google Scholar] [CrossRef]
- Farina, A.; Di Nardo, A.; Gargano, R.; van der Werf, J.A.; Greco, R. A simplified approach for the hydrological simulation of urban drainage systems with SWMM. J. Hydrol. 2023, 623, 129757. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, S.; Singh, A. Assessment of Green Infrastructure for sustainable urban water management. Environ. Dev. Sustain. 2023, 1–10. [Google Scholar] [CrossRef]
- Liu, Y.; Engel, B.A.; Flanagan, D.C.; Gitau, M.W.; McMillan, S.K.; Chaubey, I.; Singh, S. Modeling framework for representing long-term effectiveness of best management practices in addressing hydrology and water quality problems: Framework development and demonstration using a Bayesian method. J. Hydrol. 2018, 560, 530–545. [Google Scholar] [CrossRef]
- Sun, Y.-w.; Li, Q.-y.; Liu, L.; Xu, C.-d.; Liu, Z.-p. Hydrological simulation approaches for BMPs and LID practices in highly urbanized area and development of hydrological performance indicator system. Water Sci. Eng. 2014, 7, 143–154. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Cheng, Y.; Tan, S.K. Assessing performance of porous pavements and bioretention cells for stormwater management in response to probable climatic changes. J. Environ. Manag. 2019, 243, 157–167. [Google Scholar] [CrossRef]
- Bakhshipour, A.E.; Bakhshizadeh, M.; Dittmer, U.; Haghighi, A.; Nowak, W. Hanging Gardens Algorithm to Generate Decentralized Layouts for the Optimization of Urban Drainage Systems. J. Water Resour. Plan. Manag. 2019, 145, 04019034. [Google Scholar] [CrossRef]
- Houle James, J.; Roseen Robert, M.; Ballestero Thomas, P.; Puls Timothy, A.; Sherrard, J. Comparison of Maintenance Cost, Labor Demands, and System Performance for LID and Conventional Stormwater Management. J. Environ. Eng. 2013, 139, 932–938. [Google Scholar] [CrossRef]
- Dong, Y. Performance assessment and design of ultra-high performance concrete (UHPC) structures incorporating life-cycle cost and environmental impacts. Constr. Build. Mater. 2018, 167, 414–425. [Google Scholar] [CrossRef]
- Yao, Y.; Hu, C.; Liu, C.; Yang, F.; Ma, B.; Wu, Q.; Li, X.; Soomro, S.-E.-H. Comprehensive performance evaluation of stormwater management measures for sponge city construction: A case study in Gui’an New District, China. J. Flood Risk Manag. 2022, 15, e12834. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Haghighi, A.; Bakhshipour, A.E. Optimization of Sewer Networks Using an Adaptive Genetic Algorithm. Water Resour. Manag. 2012, 26, 3441–3456. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, T.; Li, J.; Feng, P.; Miao, Y. Optimal designs of LID based on LID experiments and SWMM for a small-scale community in Tianjin, north China. J. Environ. Manag. 2023, 334, 117442. [Google Scholar] [CrossRef] [PubMed]
- Butler, D.; Farmani, R.; Fu, G.; Ward, S.; Diao, K.; Astaraie-Imani, M. A New Approach to Urban Water Management: Safe and Sure. Procedia Eng. 2014, 89, 347–354. [Google Scholar] [CrossRef]
- Mugume, S.N.; Gomez, D.E.; Fu, G.; Farmani, R.; Butler, D. A global analysis approach for investigating structural resilience in urban drainage systems. Water Res. 2015, 81, 15–26. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Li, S.; Cui, C.-H.; Yang, S.-S.; Ding, J.; Wang, G.-Y.; Bai, S.-W.; Zhao, L.; Cao, G.-L.; Ren, N.-Q. Runoff control simulation and comprehensive benefit evaluation of low-impact development strategies in a typical cold climate area. Environ. Res. 2022, 206, 112630. [Google Scholar] [CrossRef]
- Yu, L.; Yan, Y.; Pan, X.; Yang, S.; Liu, J.; Yang, M.; Meng, Q. Research on the Comprehensive Regulation Method of Combined Sewer Overflow Based on Synchronous Monitoring—A Case Study. Water 2022, 14, 3067. [Google Scholar] [CrossRef]
- Mulligan, J.; Bukachi, V.; Clause, J.C.; Jewell, R.; Kirimi, F.; Odbert, C. Hybrid infrastructures, hybrid governance: New evidence from Nairobi (Kenya) on green-blue-grey infrastructure in informal settlements. Anthropocene 2020, 29, 100227. [Google Scholar] [CrossRef]
- Lim, T. Land, Water, Infrastructure and People: Considerations of Planning for Distributed Stormwater Management Systems; University of Pennsylvania: Philadelphia, PA, USA, 2017. [Google Scholar]
- Wang, J.; Liu, G.-h.; Wang, J.; Xu, X.; Shao, Y.; Zhang, Q.; Liu, Y.; Qi, L.; Wang, H. Current status, existent problems, and coping strategy of urban drainage pipeline network in China. Environ. Sci. Pollut. Res. 2021, 28, 43035–43049. [Google Scholar] [CrossRef] [PubMed]
- Hesarkazzazi, S.; Bakhshipour, A.E.; Hajibabaei, M.; Dittmer, U.; Haghighi, A.; Sitzenfrei, R. Battle of centralized and decentralized urban stormwater networks: From redundancy perspective. Water Res. 2022, 222, 118910. [Google Scholar] [CrossRef] [PubMed]
- Johansson, J.; Hassel, H. Modelling, Simulation and Vulnerability Analysis of Interdependent Technical Infrastructures. In Risk and Interdependencies in Critical Infrastructures: A Guideline for Analysis; Hokstad, P., Utne, I.B., Vatn, J., Eds.; Springer: London, UK, 2012; pp. 49–65. [Google Scholar]
- Wang, M.; Fu, X.; Zhang, D.; Chen, F.; Liu, M.; Zhou, S.; Su, J.; Tan, S.K. Assessing urban flooding risk in response to climate change and urbanization based on shared socio-economic pathways. Sci. Total Environ. 2023, 880, 163470. [Google Scholar] [CrossRef] [PubMed]
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; Takeuchi, K.; Folke, C. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- Kim, D.; Song, S.-K. The Multifunctional Benefits of Green Infrastructure in Community Development: An Analytical Review Based on 447 Cases. Sustainability 2019, 11, 3917. [Google Scholar] [CrossRef]
- Zhang, B.; MacKenzie, A. Trade-offs and synergies in urban green infrastructure: A systematic review. Urban For. Urban Green. 2024, 94, 128262. [Google Scholar] [CrossRef]
- Fang, X.; Li, J.; Ma, Q. Integrating green infrastructure, ecosystem services and nature-based solutions for urban sustainability: A comprehensive literature review. Sustain. Cities Soc. 2023, 98, 104843. [Google Scholar] [CrossRef]
- Dotto, C.B.; Mannina, G.; Kleidorfer, M.; Vezzaro, L.; Henrichs, M.; McCarthy, D.T.; Freni, G.; Rauch, W.; Deletic, A. Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. Water Res. 2012, 46, 2545–2558. [Google Scholar] [CrossRef]
- Moura Rezende, O.; Ribeiro da Cruz de Franco, A.B.; Beleño de Oliveira, A.K.; Pitzer Jacob, A.C.; Gomes Miguez, M. A framework to introduce urban flood resilience into the design of flood control alternatives. J. Hydrol. 2019, 576, 478–493. [Google Scholar] [CrossRef]
- Ronchi, S.; Arcidiacono, A.; Pogliani, L. Integrating green infrastructure into spatial planning regulations to improve the performance of urban ecosystems. Insights from an Italian case study. Sustain. Cities Soc. 2020, 53, 101907. [Google Scholar] [CrossRef]
- Rezvani, S.M.H.S.; de Almeida, N.M.; Falcão, M.J.; Duarte, M. Enhancing urban resilience evaluation systems through automated rational and consistent decision-making simulations. Sustain. Cities Soc. 2022, 78, 103612. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Yuan, H.; Zhou, S.; Wang, Y.; Adnan Ikram, R.M.; Li, J. An XGBoost-SHAP approach to quantifying morphological impact on urban flooding susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plann. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Pradhan, S.; Al-Ghamdi, S.G.; Mackey, H.R. Greywater recycling in buildings using living walls and green roofs: A review of the applicability and challenges. Sci. Total Environ. 2019, 652, 330–344. [Google Scholar] [CrossRef]
Parameter | Unit | GREI-Only | CGGI | ||||||
---|---|---|---|---|---|---|---|---|---|
DCL = 100% | DCL = 66.7% | DCL = 33.3% | DCL = 0% | DCL = 100% | DCL = 66.7% | DCL = 33.3% | DCL = 0% | ||
Max pipe diameter | m | 2.00 | 2.00 | 2.00 | 1.50 | 2.00 | 2.00 | 1.50 | 1.50 |
Mean pipe diameter | m | 0.82 | 0.71 | 0.72 | 0.64 | 0.77 | 0.68 | 0.67 | 0.60 |
Max manhole depth | m | 5.42 | 4.79 | 4.98 | 4.35 | 5.42 | 4.79 | 4.48 | 4.00 |
Mean manhole depth | m | 2.08 | 1.90 | 1.92 | 1.87 | 2.03 | 1.86 | 1.87 | 1.83 |
Sub-Catchment No. | DCL (%) | |||||||
---|---|---|---|---|---|---|---|---|
100 | 66.7 | 33.3 | 0 | |||||
PP | BCs | PP | BCs | PP | BCs | PP | BCs | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 200 | 0 | 0 | 0 | 0 | 0 | 75 | 0 |
3 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 |
4 | 200 | 0 | 75 | 0 | 75 | 0 | 75 | 0 |
5 | 225 | 0 | 150 | 0 | 225 | 0 | 225 | 0 |
6 | 250 | 0 | 75 | 0 | 75 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 125 | 0 | 0 | 0 |
8 | 225 | 0 | 75 | 0 | 75 | 0 | 225 | 0 |
9 | 100 | 0 | 150 | 50 | 50 | 0 | 50 | 0 |
10 | 575 | 0 | 200 | 0 | 0 | 0 | 375 | 0 |
11 | 0 | 0 | 0 | 0 | 175 | 0 | 0 | 0 |
12 | 75 | 25 | 50 | 0 | 125 | 25 | 50 | 25 |
13 | 125 | 0 | 125 | 0 | 0 | 0 | 50 | 0 |
14 | 1200 | 0 | 1200 | 0 | 1200 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 375 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 125 | 0 | 0 | 0 |
17 | 200 | 0 | 200 | 0 | 75 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 250 | 0 | 0 | 0 |
19 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 |
20 | 0 | 0 | 0 | 0 | 75 | 0 | 0 | 0 |
21 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | 0 | 0 | 175 | 0 | 75 | 0 | 75 | 0 |
23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
24 | 0 | 0 | 75 | 0 | 0 | 0 | 0 | 0 |
25 | 150 | 0 | 0 | 0 | 225 | 0 | 75 | 0 |
26 | 0 | 0 | 0 | 0 | 0 | 0 | 150 | 0 |
27 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 |
28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 3625 | 25 | 2650 | 50 | 3425 | 25 | 1425 | 25 |
Scheme | DCL (%) | Capital GREI | O&M GREI | Capital PP | O&M PP | Capital BCs | O&M BCs | Total LCC |
---|---|---|---|---|---|---|---|---|
GREI-only | 100 | 9537.02 | 21,359.54 | - | - | - | - | 30,896.56 |
66.7 | 7184.43 | 16,090.59 | - | - | - | - | 23,275.02 | |
33.3 | 6947.87 | 15,560.77 | - | - | - | - | 22,508.64 | |
0 | 6005.29 | 13,449.71 | - | - | - | - | 19,455.00 | |
CGGI | 100 | 8966.84 | 20,082.55 | 128.41 | 115.04 | 1.97 | 3.52 | 29,298.33 |
66.7 | 6790.08 | 15,207.37 | 94.21 | 84.39 | 3.89 | 6.96 | 22,186.9 | |
33.3 | 6390.84 | 14,313.23 | 121.74 | 109.06 | 1.97 | 3.52 | 20,940.36 | |
0 | 5602.05 | 12,546.60 | 51.07 | 45.75 | 1.97 | 3.52 | 18,250.96 |
Scheme | DCL (%) | 6-h Storm | 12-h Storm | 24-h Storm | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Return Period = 25 yr | Return Period = 50 yr | Return Period = 100 yr | Return Period = 25 yr | Return Period = 50 yr | Return Period = 100 yr | Return Period = 25 yr | Return Period = 50 yr | Return Period = 100 yr | ||
GREI-only | 100 | 99.6 | 98.7 | 97.5 | 99.6 | 98.9 | 98.0 | 99.7 | 99.2 | 98.4 |
66.7 | 99.9 | 99.5 | 99.1 | 99.9 | 99.7 | 99.3 | 99.9 | 99.7 | 99.5 | |
33.3 | 100 | 99.4 | 98.7 | 99.9 | 99.5 | 98.9 | 100 | 99.6 | 99.2 | |
0 | 100 | 99.8 | 99.4 | 100 | 99.8 | 99.5 | 100 | 99.9 | 99.6 | |
CGGI | 100 | 99.6 | 98.3 | 96.7 | 99.6 | 98.6 | 97.4 | 99.7 | 99.0 | 98.0 |
66.7 | 100 | 99.6 | 98.9 | 100 | 99.7 | 99.1 | 100 | 99.8 | 99.3 | |
33.3 | 99.7 | 98.9 | 97.7 | 99.8 | 99.1 | 98.1 | 99.8 | 99.3 | 98.6 | |
0 | 100 | 99.7 | 99.1 | 100 | 99.7 | 99.1 | 100 | 99.8 | 99.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xiong, Z.; Wang, M.; Zhang, M.; Adnan, R.M.; Fu, W.; Sun, C.; Tan, S.K. Decentralized Coupled Grey–Green Infrastructure for Resilient and Cost-Effective Stormwater Management in a Historic Chinese District. Water 2025, 17, 2325. https://doi.org/10.3390/w17152325
Liu Y, Xiong Z, Wang M, Zhang M, Adnan RM, Fu W, Sun C, Tan SK. Decentralized Coupled Grey–Green Infrastructure for Resilient and Cost-Effective Stormwater Management in a Historic Chinese District. Water. 2025; 17(15):2325. https://doi.org/10.3390/w17152325
Chicago/Turabian StyleLiu, Yongqi, Ziheng Xiong, Mo Wang, Menghan Zhang, Rana Muhammad Adnan, Weicong Fu, Chuanhao Sun, and Soon Keat Tan. 2025. "Decentralized Coupled Grey–Green Infrastructure for Resilient and Cost-Effective Stormwater Management in a Historic Chinese District" Water 17, no. 15: 2325. https://doi.org/10.3390/w17152325
APA StyleLiu, Y., Xiong, Z., Wang, M., Zhang, M., Adnan, R. M., Fu, W., Sun, C., & Tan, S. K. (2025). Decentralized Coupled Grey–Green Infrastructure for Resilient and Cost-Effective Stormwater Management in a Historic Chinese District. Water, 17(15), 2325. https://doi.org/10.3390/w17152325