Bioadsorption of Manganese with Modified Orange Peel in Aqueous Solution: Box–Behnken Design Optimization and Adsorption Isotherm
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization, and Pre-Processing of Orange Peel
2.2. Synthesis of the Bioadsorbent
2.3. Characterization of the Modified Shell
2.4. Box–Behnken Experimental Design
2.5. Adsorption Isotherms
2.6. Data Analysis
3. Results
3.1. Characterization of Orange Peel
3.2. Characterization of the Bioadsorbent
3.2.1. FTIR Analysis
3.2.2. SEM–EDX
3.3. Response Surface Model
3.3.1. ANOVA Analysis
3.3.2. Effect of Study Factors on Manganese Removal
3.3.3. Model Optimization
3.3.4. Results of Adsorption Isotherms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marzano Vasquez, L.M.; Torres López, G.G. Bioadsorción con cáscara de naranja para la remoción de manganeso en soluciones sintéticas a nivel laboratorio, Callao–2024. Bachelor’s Thesis, Universidad Nacional del Callao, Bellavista, Peru, 2024. [Google Scholar]
- Kosarev, A.V.; Ivanov, D.E.; Kamenets, A.F. The effect of manganese ions (II) on representatives of aquatic biota. IOP Conf. Ser. Earth Environ. Sci. 2022, 949, 12013. [Google Scholar] [CrossRef]
- Gibson, R.N.; Atkinson, R.J.A.; Gordon, J.D.M. Role, routes and effects of manganese in crustaceans. Oceanogr. Mar. Biol. An Annu. Rev. 2006, 44, 61–83. [Google Scholar]
- Hussain, M.; Ali, A.S.; Kousar, T.; Mahmood, F.; Haruna, A.; Zango, Z.U.; Adamu, H.; Kotp, M.G.; Abdulganiyyu, I.A.; Keshta, B.E. Efficient removal of manganese (II) ions from aqueous solution using biosorbent derived from rice husk. Sustain. Chem. One World 2025, 5, 100047. [Google Scholar] [CrossRef]
- Patil, D.S.; Chavan, S.M.; Oubagaranadin, J.U.K. A review of technologies for manganese removal from wastewaters. J. Environ. Chem. Eng. 2016, 4, 468–487. [Google Scholar] [CrossRef]
- Keshta, B.E.; Yu, H.; Wang, L.; Uddin, M.A.; El-Attar, H.G.; Keshta, A.E.; Gemeay, A.H.; Hassan, F.; Eid, S.M. Cost-effective synthesis of MIL-101 (Cr) from recyclable wastes and composite with polyaniline as an ion-to-electron transducer for potentiometric Pb2+ sensing. Chem. Eng. J. 2024, 485, 150049. [Google Scholar] [CrossRef]
- Montano, Y.; Tapia, P.M.; Quispe, C.; Fuentealba, B. El Drenaje Ácido de Roca y sus Potenciales Impactos Ambientales; Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña: Huaraz, Peru, 2022. [Google Scholar]
- Budinger, D.; Barral, S.; Soo, A.K.S.; Kurian, M.A. The role of manganese dysregulation in neurological disease: Emerging evidence. Lancet Neurol. 2021, 20, 956–968. [Google Scholar] [CrossRef] [PubMed]
- Babuji, P.; Thirumalaisamy, S.; Duraisamy, K.; Periyasamy, G. Human health risks due to exposure to water pollution: A review. Water 2023, 15, 2532. [Google Scholar] [CrossRef]
- Liu, W.; Xin, Y.; Li, Q.; Shang, Y.; Ping, Z.; Min, J.; Cahill, C.M.; Rogers, J.T.; Wang, F. Biomarkers of environmental manganese exposure and associations with childhood neurodevelopment: A systematic review and meta-analysis. Environ. Heal. 2020, 19, 104. [Google Scholar] [CrossRef] [PubMed]
- Tobiason, J.E.; Bazilio, A.; Goodwill, J.; Mai, X.; Nguyen, C. Manganese removal from drinking water sources. Curr. Pollut. Rep. 2016, 2, 168–177. [Google Scholar] [CrossRef]
- Boersma, A.S.; Haukelidsaeter, S.; Kirwan, L.; Corbetta, A.; Vos, L.; Lenstra, W.K.; Schoonenberg, F.; Borger, K.; van der Wielen, P.W.J.J.; van Kessel, M.A.H.J. Influence of filter backwashing on iron, manganese, and ammonium removal in dual-media rapid sand filters used for drinking water production. Water Res. 2025, 270, 122809. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, C.; Altunkaynak, Y. Using low-cost, eco-friendly natural and modified potato peels to effectively remove Mn (II) ions from aqueous solutions. Environ. Prog. Sustain. Energy 2024, 43, e14496. [Google Scholar] [CrossRef]
- Alejo-Guerra, D.; López-Valdivieso, A.; Robledo-Cabrera, A. Selective removal of Mn2+ ions from solutions containing Mn2+, Co2+, and Zn2+ ions using ozone. MRS Adv. 2024, 10, 841–845. [Google Scholar] [CrossRef]
- dos Santos, E.V.; de Araújo, E.G.; Cabral, S.P.M.; Monteiro, M.K.S.; Santos, J.E.L.; Martínez-Huitle, C.A.; Fernandes, N.S. Applicability of a chitosan-perlite nanocomposite for removing Mn (II) by adsorption approach. Emergent Mater. 2025, 1–13. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Nima, G.; Wang, Z.; Huang, C. Removal of iron and manganese from acidic aqueous solution by pyrite and pyrite-calcium sulfite. Sci. Rep. 2025, 15, 4197. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Song, Y.; Jin, X.; Fu, J.; Zhang, S. Study on the efficiency of manganese oxide-bearing manganese sand for removing Mn2+ from aqueous solution. Microporous Mesoporous Mater. 2024, 364, 112859. [Google Scholar] [CrossRef]
- Samad, H.A.; Kamal, N.; Mohd Nurddin, S.M.A.S. Preparation and Characterization of Sodium Alginate Based Composite Beads for Manganese Removal. Key Eng. Mater. 2024, 974, 39–45. [Google Scholar] [CrossRef]
- Dal-Bó, A.G.; Westrup, J.L.; Fiorin, D.G.; Ruschel, P.M.C.; da Silva, C.K.H.; Cercena, R.; Peterson, M.; Colonetti, E.; Fernandes, A.N. Efficient removal of Mn2+ ions from aqueous solutions using apple pomace biochar. Chem. Eng. Commun. 2024, 211, 84–101. [Google Scholar] [CrossRef]
- Chwastowski, J.; Staroń, P. Equilibrium, kinetic and thermodynamic studies of manganese removal from aqueous solutions by adsorption process using beet pulp shreds as a biosorbent. Desalin. Water Treat. 2021, 242, 117–127. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, W.; Xiong, X.; Guo, Y.; Huang, D.; Liu, H. Removal of manganese from aqueous solution by a permeable reactive barrier loaded with hydroxyapatite-coated quartz sand. Environ. Sci. Pollut. Res. 2023, 30, 19393–19409. [Google Scholar] [CrossRef] [PubMed]
- Munawar, A.; Mulyanto, D.; Asrifah, R.R.D. Equilibrium studies for the removal of manganese (Mn) from aqueous solution using natural zeolite from West Java, Indonesia. J. Degrad. Min. Lands Manag. 2023, 10, 4191–4198. [Google Scholar] [CrossRef]
- Zango, Z.U.; Garba, A.; Garba, Z.N.; Zango, M.U.; Usman, F.; Lim, J.-W. Montmorillonite for adsorption and catalytic elimination of pollutants from wastewater: A state-of-the-arts review. Sustainability 2022, 14, 16441. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Aguilar Salas, M.B.; Flores Rodriguez, C.P. Evaluación de la Cáscara de Naranja (Citrus cinensis) como Material Adsorbente Natural de Ion Metálico Cu (II); Universidad Nacional de San Agustín: Arequipa, Peru, 2018. [Google Scholar]
- de Sousa, T.M.I.; de Sá, G.B.; de Amorim Coura, M.; de Oliveira, A.M.B.M.; de Oliveira Coelho, L.F.; Gomes, N.A.; Menezes, J.M.C.; Oliveira, J.T.; de Paula Filho, F.J. Cu (II) adsorption in rice husk for water treatment: Batch and fixed column experiments. Desalin. Water Treat. 2024, 320, 100762. [Google Scholar] [CrossRef]
- Caldera-Villalobos, M.; Herrera-González, A.M.; Carreón-Castro, M.d.P. Improving the adsorption capacity of Opuntia ficus-indica fruit peels by graft-copolymerization using gamma radiation. Radiat. Phys. Chem. 2021, 189, 109653. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Eusoff, M.A.; Oladoye, P.O.; Adegoke, K.A.; Bello, O.S. Optimization and batch studies on adsorption of Methylene blue dye using pomegranate fruit peel based adsorbent. Chem. Data Collect. 2021, 32, 100676. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Ngo, H.H.; Guo, W.; Wen, H.; Li, C.; Zhang, Y.; Ma, C. Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci. Total Environ. 2020, 707, 135544. [Google Scholar] [CrossRef] [PubMed]
- Din, M.I.; Mujahid, A.; Bock, U.; Khalid, R.; Hussain, Z. A kinetic and thermodynamic investigation for adsorption of cadmium (ii) ions on the microwave modified sugar cane bagasse. Desalin. Water Treat. 2024, 317, 100194. [Google Scholar] [CrossRef]
- Khademi, D.; Mohammadi, M.J.; Shokri, R.; Takdastan, A.; Mohammadi, M.; Momenzadeh, R.; Yari, A.R. Application of cane bagasse adsorption on nitrate removal from groundwater sources: Adsorption isotherm and reaction kinetics. Desalin. Water Treat. 2018, 120, 241–247. [Google Scholar] [CrossRef]
- Lou, L.; Li, W.; Yao, H.; Luo, H.; Liu, G.; Fang, J. Corn stover waste preparation cerium-modified biochar for phosphate removal from pig farm wastewater: Adsorption performance and mechanism. Biochem. Eng. J. 2024, 212, 109530. [Google Scholar] [CrossRef]
- Zhuo, S.-N.; Dai, T.-C.; Ren, H.-Y.; Liu, B.-F. Simultaneous adsorption of phosphate and tetracycline by calcium modified corn stover biochar: Performance and mechanism. Bioresour. Technol. 2022, 359, 127477. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yue, Y. Phosphate adsorption from phosphorus-polluted wastewater by peanut hull-derived biochar functionalized with eggshell-based calcium chloride: Preparation, adsorption performance and mechanism. Desalin. Water Treat. 2024, 320, 100880. [Google Scholar] [CrossRef]
- Ogundiran, A.A.; Ofudje, E.A.; Ogundiran, O.O.; Adewusi, A.M. Cationic dye adsorptions by eggshell waste: Kinetics, isotherms and thermodynamics studies. Desalin. Water Treat. 2022, 280, 157–167. [Google Scholar] [CrossRef]
- Seid, S.M.; Gonfa, G. Adsorption of Cr(V) from aqueous solution using eggshell-based cobalt oxide- zinc oxide nano-composite. Environ. Chall. 2022, 8, 100574. [Google Scholar] [CrossRef]
- Uddin, M.T.; Rukanuzzaman, M.; Islam, M.A. Enhanced adsorption performance of activated carbon prepared from peanut shell for the adsorption of dyes from aqueous solution. Desalin. Water Treat. 2022, 280, 60–75. [Google Scholar] [CrossRef]
- Duwiejuah, A.B.; Quainoo, A.K.; Abubakari, A.-H. Simultaneous adsorption of toxic metals in binary systems using peanut and sheanut shells biochars. Heliyon 2022, 8, e10558. [Google Scholar] [CrossRef] [PubMed]
- Verdugo Vergara, J.F. Bioadsorción de Iones de Plomo y Cromo Procedentes de Aguas Residuales Utilizando la Cáscara de la Mandarina (Citrus reticuata var. Clementina). Bachelor’s Thesis, Universidad Politécnica Salesiana, Cuenca, Ecuador, 2017. [Google Scholar]
- Shehzad, K.; Waheed, B.; Shehzad, A.; Ahmad, M.; Meng, S.; Jing, J.; Chen, M.; Xie, M.; Xu, Y. Modified waste orange peels biomass residues for sustainable and promising As(V) removal: Insights into batch and column adsorption experiments and Box-behnken Design (BBD) analysis. Colloids Surf. A Physicochem. Eng. Asp. 2025, 711, 136352. [Google Scholar] [CrossRef]
- Pavithra, S.; Thandapani, G.; Sugashini, S.; Sudha, P.N.; Alkhamis, H.H.; Alrefaei, A.F.; Almutairi, M.H. Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater. Chemosphere 2021, 271, 129415. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Z.; Tang, Y.; Li, X.; Liu, Y.; Luo, F. Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto pretreated chemically modified orange peel. Biochem. Eng. J. 2006, 31, 160–164. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Pesticidal Activity of Citrus Fruits for the Development of Sustainable Fruit-Processing Waste Management and Agricultural Production. Plants 2025, 14, 754. [Google Scholar] [CrossRef] [PubMed]
- Andrianou, C.; Passadis, K.; Malamis, D.; Moustakas, K.; Mai, S.; Barampouti, E.M. Upcycled animal feed: Sustainable solution to orange peels waste. Sustainability 2023, 15, 2033. [Google Scholar] [CrossRef]
- del Castillo, S. Peru Achieves Record Citrus Exports in 2024. 2024. Available online: https://www.freshfruitportal.com/news/2024/12/16/peru-achieves-record-citrus-exports-in-2024/ (accessed on 15 April 2025).
- Tang, H.; Zhang, Y.; Wu, Y.; Wu, W.; Bi, S.; Wu, J.; Yang, S. Discard the dross and select the essence: Purified orange peel with coupled alkali-acid hydrolysis as potential Cd (II)-capturing adsorbent. J. Environ. Chem. Eng. 2023, 11, 110033. [Google Scholar] [CrossRef]
- Cardoso, A.P.; da Silva Carvalho, N.; Veneu, D.M.; Valdiviezo-Gonzales, L.; Pino, A.H.; Torem, M.L. Comparative Evaluation of Lead and Manganese Removal from Contaminated Water Using Cocos nucifera Shell Powder in Batch and Continuous Adsorption Systems. South Afr. J. Chem. Eng. 2025, 53, 483–494. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Zong, X.; Wang, Y.; Wu, J.; Deng, Y.; Ye, Y.; Li, W.; Li, Q.; Pan, F. Enhanced degradation of tetracycline over the novel biochar doped with Cu-Mn by peroxymonosulfate activation: Performance evaluation and mechanisms. J. Environ. Chem. Eng. 2025, 13, 117611. [Google Scholar] [CrossRef]
- Ahmad, T.; Danish, M.; Dadi, M.; Siraj, K.; Sundaram, T.; Raj, D.S.; Majeed, S.; Ramasamy, S. Potentials of orange wastes in wastewater treatment technology: A comprehensive review. J. Water Process Eng. 2024, 67, 106113. [Google Scholar] [CrossRef]
- Vera, M.; Flores, M.; Vanegas, E.; Cruzat, C.; Juela, D. Removal of Mn (II) from aqueous solution via biosorption technology for a drinking water treatment plant: From laboratory-scale tests to semi-industrial scale predictions. Chem. Eng. Res. Des. 2023, 193, 787–800. [Google Scholar] [CrossRef]
- Rudi, N.N.; Muhamad, M.S.; Te Chuan, L.; Alipal, J.; Omar, S.; Hamidon, N.; Hamid, N.H.A.; Sunar, N.M.; Ali, R.; Harun, H. Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon 2020, 6, e05049. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, E.L.; Mocanu, A.L.; Stroe, C.A.; Panciu, C.M.; Berca, L.; Sionel, R.M.; Mustatea, G. Agricultural byproducts used as low-cost adsorbents for removal of potentially toxic elements from wastewater: A comprehensive review. Sustainability 2023, 15, 5999. [Google Scholar] [CrossRef]
- Chen, G.; Viengvilay, K.; Yu, W.; Mao, T.; Qu, Z.; Liang, B.; Chen, Z.; Li, Z. Effect of different modification methods on the adsorption of manganese by biochar from rice straw, coconut shell, and bamboo. ACS Omega 2023, 8, 28467–28474. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.H.; Shartooh, S.M.; Trigui, M. Biosorption and Isotherm Modeling of Heavy Metals Using Phragmites australis. Sustainability 2025, 17, 5366. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 1119113474. [Google Scholar]
- Gorbounov, M.; Taylor, J.; Petrovic, B.; Soltani, S.M. To DoE or not to DoE? A technical review on & roadmap for optimisation of carbonaceous adsorbents and adsorption processes. South Afr. J. Chem. Eng. 2022, 41, 111–128. [Google Scholar]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; Dos Reis, P.S.; Souza, A.S. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Szpisják-Gulyás, N.; Al-Tayawi, A.N.; Horváth, Z.H.; László, Z.; Kertész, S.; Hodúr, C. Methods for experimental design, central composite design and the Box–Behnken design, to optimise operational parameters: A review. Acta Aliment. 2023, 52, 521–537. [Google Scholar] [CrossRef]
- Prasad, N.; Namdeti, R.; Baburao, G.; Al-Kathiri, D.S.M.S.; Meka, U.R.; Tabook, K.M.A.; Joaquin, A.A. Central composite design for the removal of copper by an Adansonia digitata. Desalin. Water Treat. 2024, 317, 100164. [Google Scholar] [CrossRef]
- Sasidharan, R.; Kumar, A. Response surface methodology for optimization of heavy metal removal by magnetic biosorbent made from anaerobic sludge. J. Indian Chem. Soc. 2022, 99, 100638. [Google Scholar] [CrossRef]
- Razmi, B.; Ghasemi-Fasaei, R.; Ronaghi, A.; Mostowfizadeh-Ghalamfarsa, R. Application of Taguchi optimization for evaluating the capability of hydrochar, biochar, and activated carbon prepared from different wastes in multi-elements bioadsorption. J. Clean. Prod. 2022, 347, 131292. [Google Scholar] [CrossRef]
- Puari, A.T.; Azora, A.; Rusnam, R.; Yanti, N.R. Biosorption optimization and mechanism of biochar from exhausted coffee husk on iron in aqueous solution using response surface methodology. Case Stud. Chem. Environ. Eng. 2024, 10, 100816. [Google Scholar] [CrossRef]
- Surovka, D.; Pertile, E. Sorption of Iron, Manganese, and Copper from Aqueous Solution Using Orange Peel: Optimization, Isothermic, Kinetic, and Thermodynamic Studies. Polish J. Environ. Stud. 2017, 26, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Michael-Igolima, U.; Abbey, S.J.; Ifelebuegu, A.O.; Eyo, E.U. Modified orange peel waste as a sustainable material for adsorption of contaminants. Materials 2023, 16, 1092. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, R.; Yu, J.; Guo, L.; Li, X.; Xiao, C.; Hou, H.; Chi, R.; Feng, G. Simultaneous removal of lead, manganese, and copper released from the copper tailings by a novel magnetic modified biosorbent. J. Environ. Manage. 2022, 322, 116157. [Google Scholar] [CrossRef] [PubMed]
- Buenaño, L.; Ali, E.; Jafer, A.; Zaki, S.H.; Hammady, F.J.; Khayoun Alsaadi, S.B.; Karim, M.M.; Ramadan, M.F.; Omran, A.A.; Alawadi, A. Optimization by Box–Behnken design for environmental contaminants removal using magnetic nanocomposite. Sci. Rep. 2024, 14, 6950. [Google Scholar] [CrossRef] [PubMed]
- Iamsaard, K.; Weng, C.-H.; Tzeng, J.-H.; Anotai, J.; Jacobson, A.R.; Lin, Y.-T. Systematic optimization of biochars derived from corn wastes, pineapple leaf, and sugarcane bagasse for Cu (II) adsorption through response surface methodology. Bioresour. Technol. 2023, 382, 129131. [Google Scholar] [CrossRef] [PubMed]
- Schiewer, S.; Patil, S.B. Modeling the effect of pH on biosorption of heavy metals by citrus peels. J. Hazard. Mater. 2008, 157, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Norma ASTM E1252-98; Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis. ASTM International: West Conshohocken, PA, USA, 1998.
- Mokhtar, A.; Abdelkrim, S.; Sardi, A.; Hachemaoui, M.; Chaibi, W.; Chergui, F.; Boukoussa, B.; Djelad, A.; Sassi, M.; Abboud, M. A strategy for the efficient removal of acidic and basic dyes in wastewater by organophilic magadiite@alginate beads: Box-Behnken Design optimization. Int. J. Biol. Macromol. 2024, 277, 134348. [Google Scholar] [CrossRef] [PubMed]
- Do, T.T.; Van, H.-T.; Nguyen, T.D.; Nguyen, L.H.; Ta, N.B. Box–Behnken design to optimize Ni (II) adsorption using coffee husk-derived biochar compositing with MnFe2O4. Chem. Pap. 2023, 77, 5773–5786. [Google Scholar] [CrossRef]
- Seyedi, M.S.; Sohrabi, M.R.; Motiee, F.; Mortazavinik, S. Removal of reactive orange 16 with nZVI-activated carbon/Ni: Optimization by Box-Behnken design and performance prediction using artificial neural networks. Pigment. Resin Technol. 2022, 51, 463–476. [Google Scholar] [CrossRef]
- Masilela, V.; Nguegang, B.; Ambushe, A.A. Investigating the removal of Mn (II) from water and wastewater using low-cost bio-sorbents: Orange peels and sugarcane bagasse. Adv. Environ. Technol. 2025, 11, 13–35. [Google Scholar]
- Tolkou, A.K.; Maroulas, K.N.; Theologis, D.; Katsoyiannis, I.A.; Kyzas, G.Z. Comparison of modified peels: Natural peels or peels-based activated carbons for the removal of several pollutants found in wastewaters. C 2024, 10, 22. [Google Scholar] [CrossRef]
- Elewa, A.M.; Amer, A.A.; Attallah, M.F.; Gad, H.A.; Al-Ahmed, Z.A.M.; Ahmed, I.A. Chemically activated carbon based on biomass for adsorption of Fe (III) and Mn (II) ions from aqueous solution. Materials 2023, 16, 1251. [Google Scholar] [CrossRef] [PubMed]
- Nyairo, W.; Njewa, J.B.; Shikuku, V.O. Adsorption of heavy metals onto food wastes: A review. Front. Environ. Chem. 2025, 6, 1526366. [Google Scholar] [CrossRef]
- Rahman, A.; Yoshida, K.; Islam, M.M.; Kobayashi, G. Investigation of efficient adsorption of toxic heavy metals (chromium, lead, cadmium) from aquatic environment using orange peel cellulose as adsorbent. Sustainability 2023, 15, 4470. [Google Scholar] [CrossRef]
- Mora, B.P.; Bertoni, F.A.; Mangiameli, M.F.; González, J.C.; Bellú, S.E. Batch and fixed-bed column studies of selenite removal from contaminated water by orange peel-based sorbent. Water Sci. Eng. 2020, 13, 307–316. [Google Scholar] [CrossRef]
- Behera, M.; Singh, J.; Kumari, N.; Singh, R. Fabrication of novel glutathione-Fe3O4-loaded/activated carbon encapsulated sand bionanocomposites for enhanced removal of diethyl phthalate from aqueous environment in a vertical flow reactor. Environ. Res. 2024, 260, 119588. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.D.; da Boit Martinello, K.; Knani, S.; Lütke, S.F.; Machado, L.M.M.; Manera, C.; Perondi, D.; Godinho, M.; Collazzo, G.C.; Silva, L.F.O. Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu (II), H2, and d-limonene. Waste Manag. 2022, 152, 17–29. [Google Scholar] [CrossRef] [PubMed]
Run | Factor 1 | Factor 2 | Factor 3 | Results |
---|---|---|---|---|
Bioadsorbent Concentration | Manganese Concentration | Contact Time | Mn Removal (%) | |
(g L−1) | (mg L−1) | (h) | ||
1 | 7.2 | 190 | 3 | 85.73 |
2 | 5.8 | 100 | 5.25 | 90.07 |
3 | 10 | 300 | 8 | 82.72 |
4 | 10 | 300 | 8 | 84.39 |
5 | 10 | 100 | 8 | 92.73 |
6 | 10 | 210 | 5.25 | 84.03 |
7 | 6.15 | 300 | 4.75 | 75.99 |
8 | 3 | 100 | 7 | 83.87 |
9 | 3 | 210 | 3 | 84.66 |
10 | 3 | 230 | 5.75 | 77.58 |
11 | 10 | 100 | 3 | 90.84 |
12 | 10 | 300 | 3 | 79.38 |
13 | 10 | 300 | 3 | 81.53 |
14 | 10 | 100 | 8 | 94.79 |
15 | 4.75 | 200 | 8 | 78.70 |
16 | 3 | 300 | 8 | 69.34 |
Factor | n | Mean | Median | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|---|
Bioadsorbent concentration (g L−1) | 16 | 7.24 | 8.6 | 3.08 | 3 | 10 |
Manganese concentration (mg L−1) | 16 | 208.75 | 210 | 85.63 | 100 | 300 |
Contact time (h) | 16 | 5.69 | 5.5 | 2.18 | 3 | 8 |
Mn removal (%) | 16 | 83.52 | 83.95 | 6.6 | 69.34 | 94.79 |
Parameter | Unit | Value |
---|---|---|
Total sugars | g/100 g | 2.77 ± 0.09 |
Ash | g/100 g | 0.85 ±0.07 |
Fat | g/100 g | 0.6 ± 0.04 |
Moisture | g/100 g | 81.08 ± 3.16 |
Protein (N × 6.25) | g/100 g | 0.91 ± 0.07 |
Total solids | g/100 g | 18.92 ± 1.28 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 638.81 | 6 | 106.47 | 64.48 | <0.0001 |
A-Bioadsorbent concentration | 21.97 | 1 | 21.97 | 13.3 | 0.0053 |
B-Manganese concentration | 299.3 | 1 | 299.3 | 181.26 | <0.0001 |
C-Contact time | 10.65 | 1 | 10.65 | 6.45 | 0.0317 |
AB | 5.53 | 1 | 5.53 | 3.35 | 0.1004 |
AC | 72.88 | 1 | 72.88 | 44.14 | <0.0001 |
BC | 0.3165 | 1 | 0.3165 | 0.1917 | 0.6718 |
Residual | 14.86 | 9 | 1.65 | ||
Lack of fit | 9.03 | 6 | 1.51 | 0.7751 | 0.6396 |
Pure error | 5.83 | 3 | 1.94 | ||
Cor total | 653.67 | 15 |
Model | Parameter | Value |
---|---|---|
Langmuir model | 29.661 ± 7.162 | |
0.088 ± 0.056 | ||
0.890 | ||
0.853 | ||
Freundlich model | 5.450 ± 1.026 | |
0.403 ± 0.061 | ||
0.968 | ||
0.958 | ||
Temkin model | 8.964 ± 9.965 | |
3.482 ± 0.870 | ||
0.842 | ||
0.790 | ||
SIPS model | qm | 1674.905 ± 3.144 × 107 |
k | 6.833 × 10−7 ± 0.032 | |
n | 0.404 ± 0.181 | |
0.969 | ||
0.937 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzano-Vasquez, L.; Torres-López, G.; Baca-Neglia, M.; Chávez-Sánchez, W.; Solís-Farfán, R.; Curay-Tribeño, J.; Rodríguez-Aburto, C.; Vallejos-Zuta, A.; Vara-Sanchez, J.; Madueño-Sulca, C.; et al. Bioadsorption of Manganese with Modified Orange Peel in Aqueous Solution: Box–Behnken Design Optimization and Adsorption Isotherm. Water 2025, 17, 2152. https://doi.org/10.3390/w17142152
Marzano-Vasquez L, Torres-López G, Baca-Neglia M, Chávez-Sánchez W, Solís-Farfán R, Curay-Tribeño J, Rodríguez-Aburto C, Vallejos-Zuta A, Vara-Sanchez J, Madueño-Sulca C, et al. Bioadsorption of Manganese with Modified Orange Peel in Aqueous Solution: Box–Behnken Design Optimization and Adsorption Isotherm. Water. 2025; 17(14):2152. https://doi.org/10.3390/w17142152
Chicago/Turabian StyleMarzano-Vasquez, Liz, Giselle Torres-López, Máximo Baca-Neglia, Wilmer Chávez-Sánchez, Roberto Solís-Farfán, José Curay-Tribeño, César Rodríguez-Aburto, Alex Vallejos-Zuta, Jesús Vara-Sanchez, César Madueño-Sulca, and et al. 2025. "Bioadsorption of Manganese with Modified Orange Peel in Aqueous Solution: Box–Behnken Design Optimization and Adsorption Isotherm" Water 17, no. 14: 2152. https://doi.org/10.3390/w17142152
APA StyleMarzano-Vasquez, L., Torres-López, G., Baca-Neglia, M., Chávez-Sánchez, W., Solís-Farfán, R., Curay-Tribeño, J., Rodríguez-Aburto, C., Vallejos-Zuta, A., Vara-Sanchez, J., Madueño-Sulca, C., Rios-Varillas de Oscanoa, C., & Pilco-Nuñez, A. (2025). Bioadsorption of Manganese with Modified Orange Peel in Aqueous Solution: Box–Behnken Design Optimization and Adsorption Isotherm. Water, 17(14), 2152. https://doi.org/10.3390/w17142152