Multi-Objective Optimal Dispatch of Hydro-Wind-Solar Systems Using Hyper-Dominance Evolutionary Algorithm
Abstract
1. Introduction
2. Research Objects and Methods
2.1. Analysis of Wind and Solar Scenarios
2.1.1. Analysis of Output Change Trends Within the Year
2.1.2. Complementarity Assessment of Wind and Solar Power
- (1)
- Pearson Correlation Coefficient
- (2)
- Standard Deviation-Based Complementarity Rate
- (3)
- Richard-Baker Flashiness Complementarity Rate
- (4)
- First-Order Difference Complementarity Rate
2.2. Optimisation Dispatch Model for Hydro-Wind-Solar Hybrid Power Generation
2.2.1. Objective Function
- (1)
- Generation-side: Maximizing total system generation
- (2)
- Grid-side: Minimizing the mean square error of the residual load
2.2.2. Constraints
- (1)
- Water Balance Constraints
- (2)
- Water Level Constraints
- (3)
- Reservoir Characteristic Constraints
- (4)
- Output Characteristic Constraints
- (5)
- Output Constraints
- (6)
- Outflow Constraints
- (7)
- Water Level Fluctuation Constraints
- (8)
- Boundary Constraints
3. Model Solution Based on the HEA
3.1. HEA
- Randomly generate a population P of size N in the decision space.
- Create a set of uniformly distributed reference vectors V in the M-dimensional objective space.
- Evaluate all individuals in P on each objective and record the ideal point and nadir point .
- Initialize an empty elite archive and set hyper-dominance tolerance T = 0.
- Apply genetic operators (e.g., SBX crossover, polynomial mutation) to P to produce an offspring population of size N.
- Merge offspring with the current archive: .
- Update and based on P’ and linearly normalize each objective value to [0, 1].
- For each solution in P’, compute its hyper-dominance score (the count of solutions it strictly dominates).
- Remove all solutions whose , thereby discarding weakly converged individuals.
- Associate each remaining solution with the closest reference vector in V by smallest angle.
- From each vector’s associated cluster, select the solution with the highest to form a provisional archive .
- If , fill up to by adding the next-best solutions by hyper-dominance from the residual pool.
- .
- Perform tournament or rank-based selection on (favoring higher ) to form the next parent population P of size N.
- Increase T according to a linear schedule (e.g., ) up to a maximum , shifting emphasis gradually from diversity toward convergence.
- If the maximum number of evaluations or generations is reached, terminate and return as the final Pareto-approximate set; otherwise, go back to STEP 2.
Algorithm 1: HEA |
Input: Inflow runoff sequence for the scheduling period, wind-solar output, boundary conditions for scheduling operation, and various operational constraints. Output: Pareto frontier solutions and corresponding water level, outflow, and output processes. 1: Initialize population P and reference vectors V; 2: Evaluate fitness of P; ; 4: S = ∅; 5: T = 0; 6: iteration = 0; 7: while iteration < MaxFEs/N do 8: Update P by GA optimizer; ; ; ; ; ; 14: Update T; ; 16: end |
3.2. Performance Evaluation Indicators for Multi-Objective Algorithms
3.3. Function Testing and Analysis
4. Case Study
5. Conclusions
- (1)
- Based on the station’s wind and solar output data, the variation patterns of renewable energy generation were thoroughly analyzed. Four complementarity indicators—Pearson correlation coefficient, standard deviation complementarity ratio, RBF complementarity ratio, and first-order difference complementarity ratio—were employed to quantify the wind–solar complementarity. The results show that intraday complementarity varies significantly under different conditions.
- (2)
- For the optimal scheduling of wind–solar–hydropower hybrid systems, a bi-objective model was established to maximize power generation and minimize residual load variance. The model fully incorporates critical operational constraints such as water balance, reservoir level limits, and output restrictions. To address the drawbacks of traditional algorithms—such as susceptibility to local optima, slow convergence, and lack of robustness—the HEA was introduced.
- (3)
- Benchmark and case study results demonstrate that the HEA outperforms MOPSO, MOBCA, NSGA-III, and LSMOF in terms of convergence speed and solution accuracy. Under different typical-month scenarios, HEA consistently achieved the best Pareto solutions, effectively smoothing the volatility of wind and solar output, enhancing system operational stability, and meeting the practical requirements of integrated wind–solar–hydropower scheduling.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, S.W. Research on Investment Risk Management of New Energy Projects in Electric Power Enterprises from the Perspective of Dual Carbon. Bus. Obs. 2024, 10, 101–104. [Google Scholar] [CrossRef]
- Tan, Q.; Zhang, Z.; Wen, X.; Fang, G.; Xu, S.; Nie, Z.; Wang, Y. Risk Control of Hydropower-Photovoltaic Multi-Energy Complementary Scheduling Based On Energy Storage Allocation. Appl. Energy 2024, 358, 16. [Google Scholar] [CrossRef]
- Shen, J.J.; Wang, Y.; Cheng, C.T.; Li, X.F.; Miao, S.M.; Zhang, Y.; Zhang, J.T. Research Status and Prospect of Generation Scheduling for Hydropower-wind-solar Energy Complementary System. Proc. CSEE 2022, 42, 3871–3885. [Google Scholar] [CrossRef]
- Liu, B.; Liu, T.; Liao, S.; Wang, H.; Jin, X. Short-Term Operation of Cascade Hydropower System Sharing Flexibility Via High Voltage Direct Current Lines for Multiple Grids Peak Shaving. Renew. Energy 2023, 213, 11–29. [Google Scholar] [CrossRef]
- Cheng, C.T. Function Remolding of Hydropower Systems for Carbon Neutral and Its Key Problems. Autom. Electr. Power Syst. 2021, 45, 29–36. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, J.; Wang, M.; Hu, W.; Peng, Y.; Xu, Y.; Zhang, Y.; Qin, H. Bearing Fault Diagnosis Under Unknown Operating Conditions Using Distribution Robust Optimization Theory with Distribution Exploration Strategy and Wasserstein Constraints. Meas. Sci. Technol. 2025, 36, 21. [Google Scholar] [CrossRef]
- Zhao, G.; Yu, C.; Huang, H.; Yu, Y.; Zou, L.; Mo, L. Optimization Scheduling of Hydro-Wind-Solar Multi-Energy Complementary Systems Based On an Improved Enterprise Development Algorithm. Sustainability 2025, 17, 25. [Google Scholar] [CrossRef]
- Bo, L.; Jiangang, L.; Wenjie, Z.; Ruifeng, Z.; Kaiyan, P.; Haixiang, G. Power System Optimal Dispatch and Transaction Model Considering Renewable Energy Output and Electricity Price Volatility. In Proceedings of the 2023 International Conference on Power, Electrical Engineering, Electronics and Control (PEEEC), Athens, Greece, 25–27 September 2023; pp. 108–112. [Google Scholar] [CrossRef]
- Baker, J.; Block, P.; Strzepek, K.; de Neufville, R. Power of Screening Models for Developing Flexible Design Strategies in Hydropower Projects: Case Study of Ethiopia. J. Water Resour. Plan. Manag. 2014, 140, 4014031–4014038. [Google Scholar] [CrossRef]
- Ming, B.; Liu, P.; Cheng, L.; Zhou, Y.; Wang, X. Optimal Daily Generation Scheduling of Large Hydro-Photovoltaic Hybrid Power Plants. Energy Convers. Manag. 2018, 171, 528–540. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Chen, S.J.; Ma, G.W.; Han, X.Y.; Wang, L. Short-Term Complementary Operation of Hydro-Photovoltaic Integrated System Considering Power Generation and Output Fluctuation. Trans. China Electrotech. Soc. 2020, 35, 2769–2779. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Tang, H.H.; Tan, H.; Luo, B.; Zhou, C.; Huang, L.Y. Benefit-stability multi-objective optimal operation of wind-solar-hydropower hybrid system. J. Hydraulic Eng. 2022, 53, 1073–1082. [Google Scholar] [CrossRef]
- Liu, T.; Min, H.; Li, C.; Zhou, W.; Xiao, F. MBCT-SR Coupled Cloud Model for Wind-Photovoltaic-Hydro Hybrid Power Generation System. In Proceedings of the 2022 6th International Conference on Power and Energy Engineering, ICPEE, Shanghai, China, 25–27 November 2022; pp. 7–11. [Google Scholar] [CrossRef]
- Zhang, J.T.; Cheng, C.T.; Shen, J.J.; Li, G.; Li, X.F.; Zhao, Z.Y. Short-term Joint Optimal Operation Method for High Proportion Renewable Energy Grid Considering Wind-solar Uncertainty. Proc. CSEE 2020, 40, 5921–5931. [Google Scholar] [CrossRef]
- Jin, X.; Liu, B.; Liao, S.; Cheng, C.; Li, G.; Liu, L. Impacts of Different Wind and Solar Power Penetrations On Cascade Hydroplants Operation. Renew. Energy 2022, 182, 227–244. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, Q.; Xu, W.; He, C.; Xie, W. An Improved Extreme Learning Machine Algorithm for Prospectivity Mapping of Copper Deposits Using Multi-Source Remote Sensing Data: A Case Study in the North Altyn Tagh, Xinjiang, China. Int. J. Digit. Earth 2025, 18, 2510567. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Tian, H.; Zheng, P.; Chi, L.; Xue, L.; Su, Q.; Jiang, Q.; He, Y.; Li, L.; et al. Intelligent Generative Design: A Transfer Learning-Enhanced Bidirectional Mapping Framework for Customised Parametric Structural Design. Virtual Phys. Prototyp. 2025, 20, e2510001. [Google Scholar] [CrossRef]
- Xu, Y.; Gan, X.; Pei, J.; Wang, W.; Chen, J.; Yuan, S. Applications of Artificial Intelligence and Computational Intelligence in Hydraulic Optimization of Centrifugal Pumps: A Comprehensive Review. Eng. Appl. Comput. Fluid Mech. 2025, 19, 2474675. [Google Scholar] [CrossRef]
- Fatnassi, K.; Zahaf, S.; Gargouri, F. Artificial Intelligence Integration for Extension of Big Data for Decision-Making. Future Gener. Comput. Syst. Int. J. Escience 2025, 166, 107635. [Google Scholar] [CrossRef]
- Huang, S.J. Enhancement of Hydroelectric Generation Scheduling Using Ant Colony System Based Optimization Approaches. Ieee Trans. Energy Convers. 2001, 16, 296–301. [Google Scholar] [CrossRef]
- Yazdi, J.; Moridi, A. Multi-Objective Differential Evolution for Design of Cascade Hydropower Reservoir Systems. Water Resour. Manag. 2018, 32, 4779–4791. [Google Scholar] [CrossRef]
- Liu, Z.; Han, F.; Ling, Q.; Han, H.; Jiang, J. A Many-Objective Optimization Evolutionary Algorithm Based On Hyper-Dominance Degree. Swarm Evol. Comput. 2023, 83, 101411. [Google Scholar] [CrossRef]
- Jung, C.; Sander, L.; Schindler, D. Global Climate Change Impacts Onshore Wind Resource Complementarity and Temporal Variability. Energy Convers. Manag. 2025, 339, 119963. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, H.; Yang, X.; Wen, Z.; Wu, Y.; Wang, Y.; Duan, G.; Gormley, A.G.; Yang, G.; Li, J. Tracking Drought Dynamics On China’s Loess Plateau with the Rapid Change Index of Solar -Induced Chlorophyll Fluorescence. Int. J. Digit. Earth 2025, 18, 2473128. [Google Scholar] [CrossRef]
- Liu, Y.L.; Chen, Y.X.; Wang, K. Research on Climate Change Adaptation Strategy in Yunnan Province. Environ. Sci. Surv. 2024, 43, 12. [Google Scholar]
- Shen, L.; Wang, Q.; Wan, Y.; Xu, X.; Liu, Y. Multi-Timescale Scheduling Optimization of Cascade Hydro-Solar Complementary Power Stations Considering Spatio-Temporal Correlation. Sci. Technol. Energy Transit. 2025, 80, 17. [Google Scholar] [CrossRef]
- Pierce, C.M.; Kim, Y.; Bazarov, I. A Comparison-Relationship-Surrogate Evolutionary Algorithm for Multi-Objective Optimization. Swarm Evol. Comput. 2025, 95, 101947. [Google Scholar] [CrossRef]
Function | Decomposability | Modality (Unimodal/Multimodal) | Parameter Dependence | Pareto Front Shape |
---|---|---|---|---|
WFG 1 | Decomposable | Unimodal | None | Regular |
WFG 2 | Decomposable | Unimodal | None | Disconnected |
WFG 3 | Non-decomposable | Unimodal | None | Regular |
WFG 4 | Non-decomposable | Multimodel | None | Regular |
WFG 5 | Non-decomposable | Multimodel | Yes | Regular |
WFG 6 | Decomposable | Unimodal | Yes | Convex with bias |
WFG 7 | Decomposable | Unimodal | None | Mixed linear-convex |
WFG 8 | Decomposable | Unimodal | None | Mixed concave-convex |
WFG 9 | Non-decomposable | Multimodel | Yes | Complex (multiply connected) |
Function | HV | HEA | MOPSO | MOBCA | NSGA III | LSMOF |
---|---|---|---|---|---|---|
WFG 1 | mean | 9.31 × 10−1 | 3.22 × 10−1 | 3.50 × 10−1 | 9.29 × 10−1 | 7.07 × 10−1 |
median | 9.31 × 10−1 | 3.26 × 10−1 | 3.54 × 10−1 | 9.31 × 10−1 | 7.12 × 10−1 | |
variance | 2.45 × 10−1 | 4.25 × 10−2 | 2.77 × 10−2 | 3.73 × 10−3 | 5.52 × 10−2 | |
WFG 2 | mean | 9.21 × 10−1 | 7.27 × 10−1 | 8.34 × 10−1 | 9.13 × 10−1 | 8.92 × 10−1 |
median | 9.21 × 10−1 | 8.02 × 10−1 | 8.36 × 10−1 | 9.13 × 10−1 | 8.94 × 10−1 | |
variance | 2.55 × 10−3 | 1.59 × 10−1 | 1.31 × 10−2 | 1.72 × 10−3 | 6.86 × 10−3 | |
WFG 3 | mean | 3.90 × 10−1 | 7.58 × 10−2 | 1.55 × 10−1 | 3.69 × 10−1 | 3.79 × 10−1 |
median | 3.90 × 10−1 | 5.77 × 10−2 | 1.58 × 10−1 | 3.70 × 10−1 | 3.79 × 10−1 | |
variance | 3.82 × 10−3 | 7.44 × 10−2 | 2.23 × 10−2 | 8.44 × 10−3 | 4.43 × 10−3 | |
WFG 4 | mean | 5.36 × 10−1 | 1.10 × 10−1 | 3.35 × 10−1 | 5.35 × 10−1 | 4.92 × 10−1 |
median | 5.36 × 10−1 | 1.08 × 10−1 | 3.34 × 10−1 | 5.35 × 10−1 | 4.95 × 10−1 | |
variance | 5.86 × 10−4 | 9.78 × 10−3 | 1.28 × 10−2 | 1.15 × 10−3 | 1.47 × 10−2 | |
WFG 5 | mean | 4.97 × 10−1 | 7.36 × 10−2 | 3.99 × 10−1 | 4.97 × 10−1 | 4.62 × 10−1 |
median | 4.97 × 10−1 | 6.83 × 10−2 | 4.01 × 10−1 | 4.97 × 10−1 | 4.61 × 10−1 | |
variance | 3.02 × 10−5 | 2.21 × 10−2 | 1.02 × 10−2 | 1.95 × 10−4 | 6.49 × 10−3 | |
WFG 6 | mean | 4.80 × 10−1 | 1.78 × 10−1 | 3.24 × 10−1 | 4.79 × 10−1 | 4.73 × 10−1 |
median | 4.83 × 10−1 | 1.63 × 10−1 | 3.27 × 10−1 | 4.80 × 10−1 | 4.79 × 10−1 | |
variance | 1.69 × 10−2 | 4.58 × 10−2 | 1.72 × 10−2 | 1.40 × 10−2 | 2.35 × 10−2 | |
WFG 7 | mean | 5.36 × 10−1 | 2.09 × 10−1 | 3.06 × 10−1 | 5.35 × 10−1 | 4.80 × 10−1 |
median | 5.36 × 10−1 | 2.21 × 10−1 | 3.05 × 10−1 | 5.35 × 10−1 | 4.90 × 10−1 | |
variance | 3.94 × 10−4 | 5.87 × 10−2 | 2.63 × 10−2 | 6.13 × 10−4 | 3.08 × 10−2 | |
WFG 8 | mean | 4.52 × 10−1 | 9.81 × 10−2 | 2.36 × 10−1 | 4.45 × 10−1 | 4.12 × 10−1 |
median | 4.52 × 10−1 | 1.01 × 10−1 | 2.39 × 10−1 | 4.46 × 10−1 | 4.13 × 10−1 | |
variance | 2.73 × 10−3 | 6.54 × 10−2 | 1.49 × 10−2 | 3.30 × 10−3 | 9.39 × 10−3 | |
WFG 9 | mean | 4.84 × 10−1 | 2.40 × 10−1 | 3.41 × 10−1 | 4.91 × 10−1 | 4.58 × 10−1 |
median | 5.03 × 10−1 | 2.49 × 10−1 | 3.38 × 10−1 | 5.01 × 10−1 | 4.60 × 10−1 | |
variance | 4.37 × 10−2 | 5.17 × 10−2 | 1.56 × 10−2 | 3.65 × 10−2 | 1.32 × 10−2 |
Function | IGDp | HEA | MOPSO | MOBCA | NSGAIII | LSMOF |
---|---|---|---|---|---|---|
WFG 1 | mean | 9.96 × 10−2 | 1.63 | 1.31 | 1.03 × 10−1 | 5.23 × 10−1 |
median | 1.00 × 10−1 | 1.62 | 1.31 | 9.81 × 10−2 | 5.09 × 10−1 | |
variance | 4.93 × 10−3 | 2.56 × 10−1 | 8.72 × 10−2 | 5.43 × 10−3 | 1.06 × 10−1 | |
WFG 2 | mean | 8.28 × 10−2 | 6.91 × 10−1 | 2.47 × 10−1 | 9.55 × 10−2 | 1.87 × 10−1 |
median | 9.54 × 10−2 | 2.90 × 10−1 | 2.49 × 10−1 | 8.28 × 10−2 | 1.90 × 10−1 | |
variance | 5.49 × 10−3 | 8.28 × 10−1 | 3.09 × 10−2 | 3.30 × 10−3 | 2.83 × 10−2 | |
WFG 3 | mean | 7.21 × 10−2 | 7.56 × 10−1 | 5.56 × 10−1 | 1.13 × 10−1 | 1.13 × 10−1 |
median | 1.15 × 10−1 | 7.74 × 10−1 | 5.55 × 10−1 | 7.01 × 10−2 | 1.14 × 10−1 | |
variance | 8.29 × 10−3 | 2.48 × 10−1 | 4.99 × 10−2 | 2.21 × 10−2 | 1.80 × 10−2 | |
WFG 4 | mean | 1.13 × 10−1 | 1.74 | 4.72 × 10−1 | 1.14 × 10−1 | 1.73 × 10−1 |
median | 1.14 × 10−1 | 1.65 | 4.55 × 10−1 | 1.12 × 10−1 | 1.68 × 10−1 | |
variance | 7.88 × 10−4 | 2.45 × 10−1 | 7.23 × 10−2 | 1.49 × 10−3 | 2.17 × 10−2 | |
WFG 5 | mean | 1.65 × 10−1 | 1.73 | 3.43 × 10−1 | 1.65 × 10−1 | 2.07 × 10−1 |
median | 1.65 × 10−1 | 1.74 | 3.33 × 10−1 | 1.65 × 10−1 | 2.06 × 10−1 | |
variance | 4.83 × 10−3 | 3.33 × 10−1 | 3.65 × 10−1 | 2.31 × 10−4 | 1.00 × 10−2 | |
WFG 6 | mean | 1.90 × 10−1 | 1.20 | 4.80 × 10−1 | 1.91 × 10−1 | 2.00 × 10−1 |
median | 1.89 × 10−1 | 1.25 | 4.73 × 10−1 | 1.85 × 10−1 | 1.87 × 10−1 | |
variance | 2.47 × 10−2 | 2.78 × 10−1 | 4.74 × 10−2 | 2.05 × 10−2 | 3.61 × 10−2 | |
WFG 7 | mean | 1.13 × 10−1 | 1.26 | 5.20 × 10−1 | 1.14 × 10−1 | 1.91 × 10−1 |
median | 1.14 × 10−1 | 1.12 | 5.15 × 10−1 | 1.13 × 10−1 | 1.75 × 10−1 | |
variance | 6.18 × 10−4 | 4.18 × 10−1 | 7.45 × 10−2 | 8.75 × 10−4 | 4.52 × 10−2 | |
WFG 8 | mean | 2.41 × 10−1 | 1.53 | 7.12 × 10−1 | 2.49 × 10−1 | 2.88 × 10−1 |
median | 2.48 × 10−1 | 1.56 | 6.96 × 10−1 | 2.40 × 10−1 | 2.87 × 10−1 | |
variance | 3.95 × 10−3 | 2.91 × 10−1 | 6.48 × 10−2 | 5.46 × 10−3 | 1.38 × 10−2 | |
WFG 9 | mean | 1.83 × 10−1 | 1.00 | 4.50 × 10−1 | 1.70 × 10−1 | 2.13 × 10−1 |
median | 1.52 × 10−1 | 9.69 × 10−1 | 4.50 × 10−1 | 1.53 × 10−1 | 2.10 × 10−1 | |
variance | 6.63 × 10−2 | 3.25 × 10−2 | 4.38 × 10−2 | 5.68 × 10−2 | 1.86 × 10−2 |
Function | MOPSO | MOBCA | NSGA-III | LSMOF |
---|---|---|---|---|
WFG1 | 1.91 × 10−6 (Y) | 1.91 × 10−6 (Y) | 7.84 × 10−3 (Y) | 2.33 × 10−5 (Y) |
WFG2 | 4.00 × 10−2 (Y) | 1.53 × 10−2 (Y) | 8.12 × 10−3 (Y) | 4.09 × 10−2 (Y) |
WFG3 | 1.68 × 10−4 (Y) | 3.81 × 10−6 (Y) | 3.12 × 10−4 (Y) | 4.75 × 10−2 (Y) |
WFG4 | 1.91 × 10−6 (Y) | 1.34 × 10−5 (Y) | 8.69 × 10−4 (Y) | 2.02 × 10−2 (Y) |
WFG5 | 1.91 × 10−6 (Y) | 7.08 × 10−4 (Y) | 8.69 × 10−4 (Y) | 1.05 × 10−2 (Y) |
WFG6 | 4.77 × 10−5 (Y) | 4.86 × 10−3 (Y) | 8.12 × 10−4 (Y) | 7.84 × 10−3 (Y) |
WFG7 | 1.34 × 10−5 (Y) | 1.91× 10−5 (Y) | 8.12 × 10−4 (Y) | 1.77 10−2 (Y) |
WFG8 | 1.91× 10−5 (Y) | 9.54 × 10−6 (Y) | 6.48 × 10−3 (Y) | 1.05 10−2 (Y) |
WFG9 | 1.21 × 10−3 (Y) | 4.86 × 10−3 (Y) | 6.56 10−2 (N) | 7.29 × 10−3 (Y) |
Function | MOPSO | MOBCA | NSGA-III | LSMOF |
---|---|---|---|---|
WFG1 | 1.91 × 10−6 (Y) | 1.91 × 10−6 (Y) | 7.01 × 10−4 (Y) | 2.67× 10−5 (Y) |
WFG2 | 8.31 × 10−3 (Y) | 1.99 × 10−3 (Y) | 5.22 × 10−4 (Y) | 3.28 10−2 (Y) |
WFG3 | 4.77× 10−5 (Y) | 3.81 × 10−6 (Y) | 4.75 × 10−4 (Y) | 3.30 10−2 (Y) |
WFG4 | 1.91 × 10−6 (Y) | 4.77× 10−5 (Y) | 9.56 × 10−4 (Y) | 1.89 10−2 (Y) |
WFG5 | 1.91 × 10−6 (Y) | 4.83 × 10−4 (Y) | 6.48 × 10−4 (Y) | 6.37 × 10−3 (Y) |
WFG6 | 9.54 × 10−6 (Y) | 7.08 × 10−4 (Y) | 1.00 × 10−3 (Y) | 9.85 × 10−4 (Y) |
WFG7 | 5.72 × 10−6 (Y) | 1.91× 10−5 (Y) | 9.56 × 10−4 (Y) | 1.14 10−2 (Y) |
WFG8 | 1.91 × 10−6 (Y) | 9.54 × 10−6 (Y) | 7.29 × 10−4 (Y) | 1.89 × 10−3 (Y) |
WFG9 | 2.67× 10−5 (Y) | 1.21 × 10−3 (Y) | 7.56 10−2 (N) | 6.74 × 10−3 (Y) |
Typical Month | Initial Water Level (m) | Final Water Level (m) | Average Water Level (m) | Average Inflow Rate (m3/s) |
---|---|---|---|---|
Typical Month A (2022.1) | 798.86 | 799.73 | 799.47 | 991.03 |
Typical Month B (2022.8) | 786.87 | 794.04 | 790.26 | 1968.29 |
Plan | Power Generation (104 kWh) | Residual Load RMSE (MW) | Plan | Power Generation (104 kWh) | Residual Load RMSE (MW) |
---|---|---|---|---|---|
1 | 416,344.28 | 463.74 | 26 | 412,314.02 | 384.50 |
2 | 416,010.67 | 453.81 | 27 | 412,076.98 | 382.49 |
3 | 415,888.75 | 447.78 | 28 | 411,914.92 | 379.64 |
4 | 415,848.36 | 446.39 | 29 | 411,763.88 | 378.12 |
5 | 415,679.12 | 444.53 | 30 | 411,524.64 | 373.76 |
6 | 415,550.18 | 441.96 | 31 | 411,307.55 | 371.25 |
7 | 415,406.48 | 437.98 | 32 | 410,959.66 | 370.53 |
8 | 415,277.39 | 430.77 | 33 | 410,878.92 | 367.78 |
9 | 415,072.83 | 426.39 | 34 | 410,838.36 | 367.46 |
10 | 415,035.55 | 425.60 | 35 | 410,551.68 | 366.34 |
11 | 414,756.23 | 421.88 | 36 | 410,277.54 | 363.34 |
12 | 414,580.23 | 419.28 | 37 | 410,064.30 | 361.54 |
13 | 414,378.99 | 417.04 | 38 | 409,662.54 | 360.50 |
14 | 414,180.22 | 412.23 | 39 | 409,478.16 | 357.82 |
15 | 413,976.49 | 409.87 | 40 | 408,871.21 | 357.16 |
16 | 413,636.97 | 404.55 | 41 | 408,764.70 | 357.03 |
17 | 413,459.39 | 402.35 | 42 | 408,489.79 | 356.18 |
18 | 413,372.69 | 399.79 | 43 | 408,487.44 | 354.40 |
19 | 413,280.96 | 397.41 | 44 | 408,247.55 | 352.48 |
20 | 413,116.55 | 395.52 | 45 | 407,960.19 | 350.87 |
21 | 412,920.76 | 392.40 | 46 | 407,922.82 | 347.08 |
22 | 412,772.16 | 391.11 | 47 | 407,537.81 | 346.42 |
23 | 412,679.92 | 388.80 | 48 | 407,300.25 | 346.16 |
24 | 412,576.01 | 387.41 | 49 | 406,623.96 | 345.54 |
25 | 412,370.26 | 385.91 | 50 | 406,242.87 | 341.43 |
Plan | Power Generation (104 kWh) | Residual Load RMSE (MW) | Plan | Power Generation (104 kWh) | Residual Load RMSE (MW) |
---|---|---|---|---|---|
1 | 453,333.35 | 331.34 | 26 | 450,748.44 | 288.33 |
2 | 453,333.35 | 331.34 | 27 | 450,602.83 | 288.22 |
3 | 453,126.01 | 326.81 | 28 | 450,590.59 | 286.21 |
4 | 453,025.42 | 324.90 | 29 | 450,425.00 | 285.79 |
5 | 452,910.52 | 322.58 | 30 | 450,413.06 | 284.37 |
6 | 452,869.67 | 321.89 | 31 | 450,318.61 | 282.89 |
7 | 452,786.27 | 320.31 | 32 | 450,174.36 | 281.16 |
8 | 452,668.31 | 319.25 | 33 | 450,045.24 | 279.69 |
9 | 452,616.87 | 317.11 | 34 | 449,872.27 | 278.56 |
10 | 452,559.84 | 316.28 | 35 | 449,738.92 | 276.69 |
11 | 452,450.73 | 314.33 | 36 | 449,621.09 | 275.53 |
12 | 452,338.56 | 312.55 | 37 | 449,442.88 | 274.00 |
13 | 452,218.22 | 311.52 | 38 | 449,319.81 | 272.13 |
14 | 452,163.55 | 310.13 | 39 | 449,173.52 | 270.23 |
15 | 452,106.23 | 308.24 | 40 | 449,037.13 | 270.13 |
16 | 451,934.42 | 307.24 | 41 | 448,779.56 | 267.47 |
17 | 451,809.55 | 304.89 | 42 | 448,687.26 | 266.58 |
18 | 451,674.91 | 302.48 | 43 | 448,460.86 | 265.27 |
19 | 451,598.68 | 300.62 | 44 | 448,204.94 | 264.38 |
20 | 451,406.91 | 298.57 | 45 | 448,079.62 | 263.42 |
21 | 451,207.73 | 298.19 | 46 | 447,921.43 | 263.35 |
22 | 451,182.45 | 295.16 | 47 | 447,815.45 | 261.40 |
23 | 451,026.72 | 294.53 | 48 | 447,625.50 | 260.64 |
24 | 450,968.19 | 291.20 | 49 | 447,341.23 | 260.16 |
25 | 450,900.91 | 291.08 | 50 | 447,114.70 | 258.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Liu, B.; Peng, Y.; Wu, D.; Qian, R.; Yang, F. Multi-Objective Optimal Dispatch of Hydro-Wind-Solar Systems Using Hyper-Dominance Evolutionary Algorithm. Water 2025, 17, 2127. https://doi.org/10.3390/w17142127
Xie M, Liu B, Peng Y, Wu D, Qian R, Yang F. Multi-Objective Optimal Dispatch of Hydro-Wind-Solar Systems Using Hyper-Dominance Evolutionary Algorithm. Water. 2025; 17(14):2127. https://doi.org/10.3390/w17142127
Chicago/Turabian StyleXie, Mengfei, Bin Liu, Ying Peng, Dianning Wu, Ruifeng Qian, and Fan Yang. 2025. "Multi-Objective Optimal Dispatch of Hydro-Wind-Solar Systems Using Hyper-Dominance Evolutionary Algorithm" Water 17, no. 14: 2127. https://doi.org/10.3390/w17142127
APA StyleXie, M., Liu, B., Peng, Y., Wu, D., Qian, R., & Yang, F. (2025). Multi-Objective Optimal Dispatch of Hydro-Wind-Solar Systems Using Hyper-Dominance Evolutionary Algorithm. Water, 17(14), 2127. https://doi.org/10.3390/w17142127