Influence of Particle Size on the Dynamic Non-Equilibrium Effect (DNE) of Pore Fluid in Sandy Media
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Apparatus
2.3. Calibration of TDR and T5 Tensiometer Probes
2.4. Multi-Step Drainage Processes
3. Results and Discussion
3.1. Temporal Evolution of Hydraulic Saturation and Capillary Pressure
3.2. Characterization of the Dynamic Non-Equilibrium Effect
3.3. DNE in Multi-Step Drainage Operations
3.3.1. Temporal Decoupling Between Capillary Pressure Peaks and Water Saturation Minima (Δt)
3.3.2. Capillary Pressure Differential Between Dynamic and Static Conditions (ΔP)
4. Conclusions
- Pressure maxima and saturation minima exhibited asynchronous occurrence during drainage cycles. Saturation–capillary pressure interdependencies displayed non-monotonic behavioral patterns throughout drainage sequences.
- The DNE manifests during drainage through three quantifiable parameters: the temporal decoupling (Δt) between capillary pressure maxima (PMAX) and water saturation minima (SMIN), the hysteretic pressure differential (ΔP) denoting the disparity between dynamic transient and static equilibrium capillary states, and residual water saturation representing irreducible fluid retention.
- The strength of the DNE is inversely proportional to particle size and directly proportional to wetting phase saturation. In particular, reduced saturation systematically diminishes the intensity of the DNE. Coarser porous media demonstrated negligible hysteresis due to reduced capillary retention; this is in stark contrast to fine sands, where the DNE persisted even during advanced drying stages. Residual water saturation decreases progressively with larger particle sizes.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diamantopoulos, E.; Durner, W. Dynamic nonequilibrium of water flow in porous media: A review. Vadose Zone J. 2012, 11, 811–822. [Google Scholar] [CrossRef]
- Hassanizadeh, S.M.; Celia, M.A.; Dahle, H.K. Dynamic Effect in the Capillary Pressure-Saturation Relationship and its Impacts on Unsaturated Flow. Vadose Zone J. 2002, 1, 38–57. [Google Scholar] [CrossRef]
- Tian, L.; Feng, B.; Zheng, S.; Gu, D.; Ren, X.; Yang, D. Performance evaluation of gas production with consideration of dynamic capillary pressure in tight sandstone reservoirs. J. Energy Res. Technol. 2019, 141, 022902. [Google Scholar] [CrossRef]
- Pettersson, K.; Maggiolo, D.; Sasic, S.; Johansson, P.; Kalagasidis, A.S. Contribution of dynamic capillary pressure to rainfall infiltration in thin homogeneous growth substrates. J. Hydrol. 2021, 603, 126851. [Google Scholar] [CrossRef]
- Almaliki, D.F.; Ramli, H.; Zaiter, A.; Sheriff, I. Review on migration and entrapment of light nonaqueous phase liquids in the subsurface environment. Desalination Water Treat. 2025, 322, 101095. [Google Scholar] [CrossRef]
- Zakirov, T.R.; Khramchenkov, M.G. Wettability effect on the invasion patterns during immiscible displacement in heterogeneous porous media under dynamic conditions: A numerical study. J. Pet. Sci. Eng. 2012, 206, 109049. [Google Scholar] [CrossRef]
- Dejam, M. Advective-diffusive-reactive solute transport due to non-Newtonian fluid flows in a fracture surrounded by a tight porous medium. Int. J. Heat Mass Transf. 2019, 128, 1307–1321. [Google Scholar] [CrossRef]
- O’Carroll, D.M.; Mumford, K.G.; Abriola, L.M.; Gerhard, J.I. Influence of wettability variations on dynamic effects in capillary pressure. Water Resour. Res. 2010, 46, W08505. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, H.; Hu, J.; Lu, J.; Ni, J.; Liu, H.; Zhang, K.; Gao, D.; Ding, H. Dynamic wetting mechanism of coal under different CO2 pressure: A new analytical basis through T2 cutoff. Process Saf. Environ. Prot. 2024, 192, 460–470. [Google Scholar] [CrossRef]
- Hu, J.; Sun, R.; Zhang, Y. Investigating the horizontal well performance under the combination of micro-fractures and dynamic capillary pressure in tight oil reservoirs. Fuel 2020, 269, 117375. [Google Scholar] [CrossRef]
- Abidoye, L.K.; Das, D.B. Impacts of dynamic capillary pressure effects in supercritical CO2-Water flow: Experiments and numerical simulations. Adv. Water Resour. 2020, 136, 103504. [Google Scholar] [CrossRef]
- Diamantopoulos, E.; Iden, I.C.; Durner, W. Inverse modeling of dynamic non-equilibrium in water flow with an effective approach. Water Resour. Res. 2012, 48, W03503. [Google Scholar] [CrossRef]
- Manthey, S.; Hassanizadeh, S.M.; Helmig, R. Macro-scale dynamic effects in homogeneous and heterogeneous porous media. Transp. Porous Media 2005, 58, 121–145. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.; Xu, H.; Liu, Y.; Meng, X.; Peng, B. An analytical solution model of oil–water dynamic imbibition considering dynamic contact angle effect and osmotic pressure at micro-nano scale. Fuel 2025, 379, 132979. [Google Scholar] [CrossRef]
- Wang, X.; Qin, C.; Guo, B.; Pop, S.; Tian, J. Experimental validation of an image-based dynamic pore-network model for spontaneous imbibition in sandstones. Adv. Water Resour. 2025, 195, 104859. [Google Scholar] [CrossRef]
- Tian, W.; Wu, K.; Chen, Z.; Lei, Z.; Gao, Y.; Li, J. Mathematical model of dynamic imbibition in nanoporous reservoirs. Pet. Explor. Dev. 2022, 49, 170–178. [Google Scholar] [CrossRef]
- Tian, W.; Wu, K.; Chen, Z.; Gao, Y.; Li, J.; Wang, M. A relative permeability model considering nanoconfinement and dynamic contact angle effects for tight reservoirs. Energy 2022, 258, 124846. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, D. A two-phase flow model coupled with geomechanics for simulating transient production behaviour in an unconventional reservoir by considering fracture geometry and capillary pressure. Fuel 2024, 364, 130959. [Google Scholar] [CrossRef]
- Abreu, E.; Ferraz, P.; Vieira, J. Numerical resolution of a pseudo-parabolic Buckley-Leverett model with gravity and dynamic capillary pressure in heterogeneous porous media. J. Comput. Phys. 2020, 411, 109395. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, Y.; Yang, L.; Wei, W.; Meng, Q.; Cai, J. A comprehensive review of factors affecting dynamic capillary effect in two-phase flow. Transp. Porous Media 2022, 144, 33–54. [Google Scholar] [CrossRef]
- Yang, G.; Wang, M. Surface roughness effect on dynamic wettability in imbibition process. Comput. Fluids 2023, 263, 105959. [Google Scholar] [CrossRef]
- Souza, R.; Ghannam, K.; Calabrese, S. Dynamic coupling between soil properties and water content in shrink-swell soils: Effects on surface hydrologic partitioning. Adv. Water Resour. 2024, 184, 104630. [Google Scholar] [CrossRef]
- Bagarello, V.; Castellini, M.; Di Prima, S.; Iovino, M. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma 2014, 213, 492–501. [Google Scholar] [CrossRef]
- Aghaei, A.; Piri, M. Direct pore-to-core up-scaling of displacement processes: Dynamic pore network modeling and experimentation. J. Hydrol. 2015, 522, 488–509. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Li, H.; Chen, S.; Lu, K.; Zhang, Q.; Luo, H. A review on measurement of the dynamic effect in capillary pressure. J. Pet. Sci. Eng. 2022, 208, 109672. [Google Scholar] [CrossRef]
- Cai, J.; Chen, Y.; Qiao, J.; Yang, L.; Zeng, J.; Sun, C. Determination of dynamic capillary effect on two-phase flow in porous media: A perspective from various methods. Pet. Sci. 2022, 19, 1641–1652. [Google Scholar] [CrossRef]
- Plagge, R. Bestimmung der Ungesättigten Wasserleitfähigkeit im Boden. Ph.D. Thesis, Department of Landscape Development, Technical University of Berlin, Berlin, Germany, 1991. [Google Scholar]
- Plagge, R.; Haeupl, P.; Renger, M. Transient effects on the hydraulic properties of porous media. In Proceedings of the International Workshop on Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media, Riverside, CA, USA, 22–24 October 1997; van Genuchten, M.T., Leij, F.J., Wu, L., Eds.; University of California: Riverside, CA, USA, 1999; pp. 905–912. [Google Scholar]
- Li, Y.; Li, H.; Chen, S.; Ma, Q.; Liu, C. Two-phase fluid flow characterizations in a tight rock: A fractal bundle of the capillary tube model. Ind. Eng. Chem. Res. 2019, 58, 20806–20814. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Chen, S.; Luo, H.; Liu, C. Investigation of the dynamic capillary pressure during displacement process in fractured tight rocks. AIChE J. 2020, 66, e16783. [Google Scholar] [CrossRef]
- Li, Y.; Luo, H.; Li, H.; Chen, S.; Jiang, X.; Li, J. Dynamic capillarity during displacement process in fractured tight reservoirs with multiple fluid viscosities. Energy Sci. Eng. 2020, 8, 300–311. [Google Scholar] [CrossRef]
- Ahmed, A.; Sanedrin, R.; Willers, T.; Waghmare, P.R. The effect of dynamic wetting pressure on contact angle measurements. J. Colloid Interface Sci. 2022, 608, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Standnes, D.C.; Ebeltoft, E.; Haugen, Å.; Kristoffersen, A. Using the total chemical potential to generalize the capillary pressure concept and therefrom derive a governing equation for two-phase flow in porous media. Int. J. Multiph. Flow 2024, 181, 105024. [Google Scholar] [CrossRef]
- Yan, G.; Li, Z.; Bore, T.; Torres, S.A.G.; Scheuermann, A.; Li, L. A lattice Boltzmann exploration of two-phase displacement in 2D porous media under various pressure boundary conditions. J. Rock Mech. Geotech. Eng. 2022, 14, 1782–1798. [Google Scholar] [CrossRef]
- Konangi, S.; Palakurthi, N.K.; Karadimitriou, N.K.; Comer, K.; Ghia, U. Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions. Adv. Water Resour. 2021, 147, 103792. [Google Scholar] [CrossRef]
- Lysyy, M.; Liu, N.; Landa-Marbán, D.; Ersland, G.; Fernø, M. Impact of gas type on microfluidic drainage experiments and pore network modeling relevant for underground hydrogen storage. J. Energy Storage 2024, 87, 111439. [Google Scholar] [CrossRef]
- Lan, Z.; Zhuravljov, A.; Jing, Y.; Armstrong, R.T.; Mostaghimi, P. Coupling of pore network modelling and volume of fluid methods for multiphase flow in fractured media. Fuel 2022, 319, 123563. [Google Scholar] [CrossRef]
- Purswani, P.; Johns, R.T.; Karpyn, Z.T. Impact of wettability on capillary phase trapping using pore-network modeling. Adv. Water Resour. 2024, 184, 104606. [Google Scholar] [CrossRef]
- Jin, K.; Zhao, J.; Yao, G.; Xu, D.; Wen, D. A fully coupled multiscale phase-change model at the porous interface for transpiration cooling: Coupling dynamics pore-scale networks to continuum-scale free flow. Int. J. Heat Mass Transf. 2025, 236, 126396. [Google Scholar] [CrossRef]
- Hosseinzadegan, A.; Raoof, A.; Mahdiyar, H.; Nikooee, E.; Ghaedi, M.; Qajar, J. Review on pore-network modeling studies of gas-condensate flow: Pore structure, mechanisms, and implementations. Geoenergy Sci. Eng. 2023, 226, 211693. [Google Scholar] [CrossRef]
- Nikooee, E.; Hassanizadeh, S.M.; Habibagahi, G. Mechanics of Unsaturated Soils: From Equilibrium to Transient Conditions. In Proceedings of the Biot Conference on Poromechanics, Vienne, Austria, 10–12 July 2013. [Google Scholar] [CrossRef]
- Camps-Roach, G.; DM O’Carroll; Newson, T.A.; Sakaki, T.; Illangasekare, T.H. Experimental investigation of dynamic effects in capillary pressure: Grain size dependency and upscaling. Water Resour. Res. 2010, 46, W08527. [Google Scholar] [CrossRef]
- Rastiello, G.; Leclaire, S.; Belarbi, R.; Bennacer, R. Unstable two–phase flow rate in micro-channels and cracks under imposed pressure difference. Int. J. Multiph. Flow 2015, 77, 131–141. [Google Scholar] [CrossRef]
- Joekar-Niasar, V.; Prodanovic, M.; Wildenschild, D.; Hassanizadeh, S.M. Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media. Water Resour. Res. 2010, 46, W06526. [Google Scholar] [CrossRef]
- Joekar-Niasar, V.; Hassanizadeh, S.M. Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network modeling. Int. J. Multiph. Flow 2011, 37, 198–214. [Google Scholar] [CrossRef]
- Rogers, J.S.; Klute, A. The hydraulic conductivity-water content relationship during nonsteady flow through a sand column. Soil Sci. Soc. Am. J. 1971, 35, 695–700. [Google Scholar] [CrossRef]
- Constantz, J. Confirmation of rate-dependent behavior in water retention during drainage in nonswelling porous materials. Water Resour. Res. 1993, 29, 1331–1334. [Google Scholar] [CrossRef]
- Hassanizadeh, S.M.; Gray, W.G. Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 1993, 29, 3389–3405. [Google Scholar] [CrossRef]
- Li, J.; He, X.; Li, C.; Du, Y.; Li, Y.; Xia, J.; Gao, J.; Yang, Y.; Li, Y. Factors influencing dynamic nonequilibrium effects in drainage processes of an air-water two-phase fine sandy medium. Water Resour. Res. 2019, 55, 2232–2256. [Google Scholar] [CrossRef]
- Li, Y.; Flores, G.; Xu, J.; Yue, W.; Wang, Y.; Luan, T.; Gu, Q. Residual air saturation changes during consecutive drainage–imbibition cycles in an air–water fine sandy medium. J. Hydrol. 2013, 503, 77–88. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Sakaki, T.; O’Carroll, D.M.; Illangasekare, T.H. Direct quantification of dynamic effects in capillary pressure for drainage-wetting cycles. Vadose Zone J. 2010, 9, 424–437. [Google Scholar] [CrossRef]
- O’Carroll, D.M.; Phelan, T.J.; Abriola, L.M. Exploring dynamic effects in capillary pressure in multistep outflow experiments. Water Resour. Res. 2005, 41, W11419. [Google Scholar] [CrossRef]
- Thibodeau, L.; Guo, T.; Neale, G.H. Effects of connate water on immiscible displacement processes in porous media. Powder Technol. 1997, 93, 209–217. [Google Scholar] [CrossRef]
Sand | Sand 1 | Sand 2 | Sand 3 | Sand 4 |
---|---|---|---|---|
Size distribution/μm | 76–352 | 211–756 | 310–976 | 586–2100 |
Median particle diameter (d50)/μm | 188 | 417 | 568 | 988 |
Uniformity coefficient | 0.301 | 0.199 | 0.173 | 0.208 |
Particle density/(g/cm3) | 2.66 | 2.67 | 2.67 | 2.70 |
TDR | T5 | ||||
---|---|---|---|---|---|
a | b | c | d | ||
S1 | 2.1459 | 0.0043 | P1 | 10.319 | −2.2861 |
S2 | 2.3641 | 0.0118 | P2 | 10.234 | −6.5081 |
S3 | 2.4038 | 0.0072 | P3 | 10.213 | −4.9278 |
S4 | 2.0833 | 0.0042 | P4 | 10.219 | 0.0187 |
Sand 1 | Sand 2 | Sand 3 | Sand 4 | |||||
---|---|---|---|---|---|---|---|---|
Step | ∆t | ∆p | ∆t | ∆p | ∆t | ∆p | ∆t | ∆p |
1 | 10 | 14.07 | 25 | 5.23 | 15 | 3.03 | 30 | 2.65 |
2 | 10 | 12.30 | 55 | 4.02 | 50 | 2.43 | −5 | 1.99 |
3 | 40 | 11.40 | 20 | 3.45 | 60 | 2.12 | −10 | 1.47 |
4 | 5 | 9.36 | 25 | 2.86 | 20 | 2.11 | 20 | 1.29 |
5 | 60 | 6.88 | 20 | 2.57 | 10 | 1.51 | −5 | 1.30 |
6 | 40 | 2.33 | / | / | / | / | / | / |
Test 1 | Test 2 | |||||
Average size (d50)/µm | 188 | 417 | ||||
Residual water saturation | 0.240 | 0.364 | 0.305 | 0.102 | 0.104 | 0.142 |
Test 3 | Test 4 | |||||
Average size (d50)/µm | 568 | 988 | ||||
Residual water saturation | 0.090 | 0.094 | 0.099 | 0.086 | 0.087 | 0.098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, Y.; Wan, Z.; Xu, H.; Li, Y.; Sun, Y.; Xi, J.; Hou, H.; Yang, Y. Influence of Particle Size on the Dynamic Non-Equilibrium Effect (DNE) of Pore Fluid in Sandy Media. Water 2025, 17, 2115. https://doi.org/10.3390/w17142115
Ai Y, Wan Z, Xu H, Li Y, Sun Y, Xi J, Hou H, Yang Y. Influence of Particle Size on the Dynamic Non-Equilibrium Effect (DNE) of Pore Fluid in Sandy Media. Water. 2025; 17(14):2115. https://doi.org/10.3390/w17142115
Chicago/Turabian StyleAi, Yuhao, Zhifeng Wan, Han Xu, Yan Li, Yijia Sun, Jingya Xi, Hongfan Hou, and Yihang Yang. 2025. "Influence of Particle Size on the Dynamic Non-Equilibrium Effect (DNE) of Pore Fluid in Sandy Media" Water 17, no. 14: 2115. https://doi.org/10.3390/w17142115
APA StyleAi, Y., Wan, Z., Xu, H., Li, Y., Sun, Y., Xi, J., Hou, H., & Yang, Y. (2025). Influence of Particle Size on the Dynamic Non-Equilibrium Effect (DNE) of Pore Fluid in Sandy Media. Water, 17(14), 2115. https://doi.org/10.3390/w17142115