Correlating Parameters Evaluating Sludge Dewaterability and Morphological Characteristics of Sludge Flocs by a Commercial Smartphone and Image Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Sludge Sampling and Characteristics
2.2. Experimental Procedures
2.3. Validation Experiments
2.4. Analyses
2.4.1. Image Analysis
2.4.2. Fractal Image Analysis
2.4.3. Other Analytical Methods
2.5. Statistical Analysis
3. Results and Discussion
3.1. Sludge Dewatering Performance
3.2. The Morphology of Sludge Flocs
3.2.1. Fractal Dimension Analysis
3.2.2. Floc Area
3.3. The Relationship Between the Percentage of Each Floc Area and Parameters Reflecting Sludge Dewaterability
3.4. Validation Experiment
4. Conclusions
- Significant correlations were observed between sludge floc area and key dewaterability parameters: The number of flocs in area range of 10−6–10−5 cm2 showed a negative correlation with capillary suction time (CST) (regression coefficient (R) = −0.511, probability (p) < 0.05) and a positive correlation with median particle size (R = 0.470, p < 0.05); the number of flocs in area range of 10−5–10−4 cm2 exhibited a stronger negative correlation with CST (R = −0.538, p < 0.05) and a positive correlation with median particle size (R = 0.480, p < 0.05);
- When the proportion of the number of flocs in the area range of 10−5–10−4 cm2 relative to the total floc of conditioned sludge fell below 70%, the dewatered sludge cake achieved a water content of less than 60%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | Area |
ANOVA | One-way analysis of variance |
COD | Chemical oxygen demand |
CST | Capillary suction time |
D | Fractal dimension |
DSC | Differential scanning calorimetry |
EPS | Extracellular polymeric substances |
LSD | Least significant difference |
p | Probability |
P | Perimeter |
PAM | Polyacrylamide |
R | Regression coefficient |
SCOD | Soluble chemical oxygen demand |
SRF | Specific resistance to filtration |
TCOD | Total chemical oxygen demand |
TS | Total solids |
VS | Volatile solids |
WWTPs | Wastewater treatment plants |
References
- Nabi, M.; Jiang, Y.; Ding, W.; Wang, R.; Jiang, Y.; Lin, Y.; Xu, Z.; Xiao, K. Characterization of glycoprotein and its interaction with sludge dewatering: The neglected role of glycoprotein. Chem. Eng. J. 2025, 506, 160187. [Google Scholar] [CrossRef]
- Wang, H.F.; Gao, Y.Y.; Zeng, Y.P.; Chen, X.X.; He, Z.Y.; Zeng, R.J. Overcoming deep-dewatering challenges in food waste digestate with polyethylene oxide as an innovative conditioning agent. Water Res. 2025, 269, 122831. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Fang, W.; Wang, R.; Wang, X.; Wang, X.; Zheng, G.; Zhou, L. Persistence evaluation of fecal pollution indicators in dewatered sludge and dewatering filtrate of municipal sewage sludge: The impacts of ambient temperature and conditioning treatments. Water Res. 2025, 268, 122641. [Google Scholar] [CrossRef]
- Liu, W.H.; Gao, Y.Y.; Zeng, Y.P.; Zhang, H.; Sun, P.; Wang, H.F.; Zeng, R.J. Comprehensive analysis of the relationship between yield stress and dewatering performance in sludge conditioning: Insights from various treatment methods. Chemosphere 2024, 365, 143377. [Google Scholar] [CrossRef]
- Yokoyama, H.; Yamashita, T.; Kojima, Y.; Nakamura, K. Deep learning-based flocculation sensor for automatic control of flocculant dose in sludge dewatering processes during wastewater treatment. Water Res. 2024, 260, 121890. [Google Scholar] [CrossRef]
- Nakaya, Y.; Jia, J.; Satoh, H. Tracing morphological characteristics of activated sludge flocs by using a digital microscope and their effects on sludge dewatering and settling. Environ. Technol. 2024, 45, 4042–4052. [Google Scholar] [CrossRef]
- Dias, P.A.; Dunkel, T.; Fajado, D.A.; Gallegos, E.D.L.; Denecke, M.; Wiedemann, P.; Schneider, F.K.; Suhr, H. Image processing for identification and quantification of filamentous bacteria in in situ acquired images. Biomed. Eng. Online 2016, 15, 64. [Google Scholar] [CrossRef]
- Grijspeerdt, K.; Verstraete, W. Image analysis to estimate the settleability and concentration of activated sludge. Water Res. 1997, 31, 1126–1134. [Google Scholar] [CrossRef]
- Campbell, K.; Wang, J.; Daniels, M. Assessing activated sludge morphology and oxygen transfer performance using image analysis. Chemosphere 2019, 223, 694–703. [Google Scholar] [CrossRef]
- Li, Z.H.; Han, D.; Yang, C.J.; Zhang, T.Y.; Yu, H.Q. Probing operational conditions of mixing and oxygen deficiency using HSV color space. J. Environ. Manag. 2019, 232, 985–992. [Google Scholar] [CrossRef]
- Maier, T.; Kulichova, D.; Schotten, K.; Astrid, R.; Ruzicka, T.; Berking, C.; Udrea, A. Accuracy of a smartphone application using fractal image analysis of pigmented moles compared to clinical diagnosis and histological result. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 663–667. [Google Scholar] [CrossRef]
- Blahnik, V.; Schindelbeck, O. Smartphone imaging technology and its applications. Adv. Opt. Technol. 2021, 10, 145–232. [Google Scholar] [CrossRef]
- Kelishami, A.S.; Kelishami, S.S. Cell phone image-based Persian rice detection and classification using deep learning techniques. Comput. Sci. 2024, 1, 1–9. [Google Scholar]
- Skandarajah, A.; Reber, C.D.; Switz, N.A.; Fletcher, D.A. Quantitative imaging with a mobile phone microscope. PLoS ONE 2014, 9, e96906. [Google Scholar] [CrossRef]
- Zhao, P.; Ge, S.; Chen, Z.; Li, X. Study on pore characteristics of flocs and sludge dewaterability based on fractal methods (pore characteristics of flocs and sludge dewatering). Appl. Therm. Eng. 2013, 58, 217–223. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination for Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Lee, D. Structural analysis of sludge floc. WIT Trans. Ecol. Environ. 2004, 73, 10. [Google Scholar]
- Jin, L.Y.; Zhang, P.Y.; Zhang, G.M.; Li, J. Study of sludge moisture distribution and dewatering characteristic after cationic polyacrylamide (C-PAM) conditioning. Desalin. Water Treat. 2016, 57, 29377–29383. [Google Scholar] [CrossRef]
- Kopp, J.; Dichtl, N. Prediction of full-scale dewatering results by determining the water distribution of sewage sludges. Water Sci. Technol. 2000, 42, 141–149. [Google Scholar] [CrossRef]
- Katsiris, N.; Kouzeli-Katsiri, A. Bound water content of biological sludges in relation to filtration and dewatering. Water Res. 1987, 21, 1319–1327. [Google Scholar] [CrossRef]
- Smollen, M. Evaluation of municipal sludge drying and dewatering with respect to sludge volume reduction. Water Sci. Technol. 1990, 22, 153–161. [Google Scholar] [CrossRef]
- Wu, C.C.; Huang, C.; Lee, D. Effects of polymer dosage on alum sludge dewatering characteristics and physical properties. Colloids Surf. A Physicochem. Eng. Asp. 1997, 122, 89–96. [Google Scholar] [CrossRef]
- Chu, C.; Lee, D. Moisture distribution in sludge: Effects of polymer conditioning. J. Environ. Eng. 1999, 125, 340–345. [Google Scholar] [CrossRef]
- Tsang, K.; Vesilind, P. Moisture distribution in sludges. Water Sci. Technol. 1990, 22, 135–142. [Google Scholar] [CrossRef]
- Wei, Q.; Ran, F.; Wu, S.; Zheng, X.; Zhao, M.; Liu, S.; Wang, L.; Fan, C. Effect of flocculant addition and organic matter content on flocculation-electroosmotic coupled dewatering of river sludge. J. Environ. Chem. Eng. 2025, 13, 116725. [Google Scholar] [CrossRef]
- Zeng, Y.; Shen, Y.; Lin, H.; Tan, Q.; Sun, J.; Shen, L.; Li, R.; Xu, Y.; Teng, J. A synergistic approach integrating potassium ferrate oxidation with polyacrylamide flocculation to enhance sludge dewatering and its mechanisms. J. Environ. Manag. 2025, 382, 125323. [Google Scholar] [CrossRef]
- He, D.; Zhu, T.; Sun, M.; Chen, J.; Luo, H.; Li, J. Unraveling synergistic mechanisms of polyacrylamide coagulation and Fe2+/CaO2 Fenton-like oxidation to enhance sludge dewatering. Chem. Eng. J. 2024, 479, 147576. [Google Scholar] [CrossRef]
- Zhang, P. Enhancing dewatering efficiency of wall protection slurry using a novel AlCl3-APAM-Ca(OH)2 compound flocculant: Synergistic mechanisms and performance. Int. J. Environ. Res. 2025, 19, 117. [Google Scholar] [CrossRef]
- Chakraborti, R.K.; Gardner, K.H.; Atkinson, J.F.; Benschoten, J.E.V. Changes in fractal dimension during aggregation. Water Res. 2003, 37, 873–883. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; He, C.; Xiao, H.; Jin, M.; Yao, H. Correlation between sewage sludge pore structure evolution and water filtration performance: Effect of thermal hydrolysis with or without carbonaceous skeleton-assisted. Water Res. 2025, 268, 122578. [Google Scholar] [CrossRef]
- Broeke, J.; Pérez, J.M.M.; Pascau, J. Image Processing with ImageJ; Packt Publishing Ltd.: Birmingham, UK, 2015. [Google Scholar]
- Amasa, W.; Leta, S.; Gnaro, M.A. The application of Scoria-based horizontal subsurface flow constructed wetland for efficient textile wastewater treatment. Results Eng. 2025, 26, 105495. [Google Scholar] [CrossRef]
- Wu, Y.; Li, R.; Zhang, X.; Gao, M.; Zang, X.; Quang, C.N.X. Coupled effects of initial water content with refrigeration temperature and freeze-thaw cycles on dewatering of sludge. Environ. Res. 2025, 270, 120970. [Google Scholar] [CrossRef] [PubMed]
- Sebteoui, K.; Csabai, Z.; Stanković, J.; Baranov, V.; Jovanović, B.; Milošević, D. Downsizing plastics, upsizing impact: How microplastic particle size affects Chironomus riparius bioturbation activity. Environ. Res. 2025, 270, 121055. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environmental Protection of China. Standard for Pollution Control on the Landfill Site of Municipal Solid Waste; Standards Press of China: Beijing, China, 2008.
Parameters | WAS1 | WAS2 | WAS3 |
---|---|---|---|
TS (g/L) | 24.0 ± 0.6 | 23.7 ± 0.3 | 24.4 ± 0.7 |
VS (g/L) | 10.7 ± 0.1 | 12.6 ± 0.0 | 11.0 ± 0.3 |
pH | 7.04 ± 0.04 | 7.13 ± 0.01 | 7.25 ± 0.05 |
Conductivity (μS/cm) | 1446.2 ± 1.5 | 1104.0 ± 1.2 | 1636.1 ± 1.2 |
Soluble polysaccharide (mg/L) | 96.5 ± 0.7 | 32.7 ± 0.7 | 119.1 ± 9.6 |
Soluble protein (mg/L) | 22.5 ± 1.4 | 11.6 ± 0.9 | 52.0 ± 0.5 |
Ammonium (mg/L) | 5.9 ± 0.1 | 16.3 ± 0.1 | 2.4 ± 0.2 |
Soluble phosphorus (mg/L) | 3.3 ± 0.0 | 11.8 ± 0.1 | 0.2 ± 0.0 |
Total chemical oxygen demand (TCOD) (mg/L) | 21,785.6 ± 213.4 | 15,367.9 ± 1222.1 | 20,538.7 ± 386.0 |
Soluble chemical oxygen demand (SCOD) (mg/L) | 130.1 ± 1.7 | 72.8 ± 1.1 | 209.9 ± 1.0 |
Samples | PAM Concentration % | 10−6–10−5 cm2 | 10−5–10−4 cm2 | 10−4–10−3 cm2 | >10−3 cm2 | >10−6 cm2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Number | Percentage (%) | Number | Percentage (%) | Number | Percentage (%) | Number | Percentage (%) | Number | ||
WAS1 | 0.00 | 75 ± 2 | 28.3 ± 0.8 | 181 ± 1 | 68.3 ± 0.4 | 8 ± 0 | 3.0 ± 0.0 | 0 ± 0 | 0.0 ± 0.0 | 265 ± 2.2 |
0.05 | 95 ± 1 | 29.1 ± 0.3 | 198 ± 3 | 60.7 ± 0.9 | 30 ± 1 | 9.2 ± 0.3 | 2 ± 0 | 0.6 ± 0.0 | 326 ± 0.5 | |
0.10 | 104 ± 5 | 29.3 ± 1.4 | 228 ± 3 | 64.2 ± 0.8 | 22 ± 2 | 6.2 ± 0.6 | 0 ± 0 | 0.0 ± 0.0 | 355 ± 0.4 | |
0.20 | 137 ± 3 | 29.4 ± 0.6 | 285 ± 2 | 61.2 ± 0.4 | 43 ± 1 | 9.2 ± 0.2 | 0 ± 0 | 0.0 ± 0.0 | 466 ± 3.6 | |
0.30 | 174 ± 6 | 28.6 ± 1.0 | 354 ± 4 | 58.2 ± 0.7 | 79 ± 0 | 13.0 ± 0.0 | 0 ± 0 | 0.0 ± 0.0 | 608 ± 1.7 | |
0.50 | 768 ± 10 | 22.4 ± 0.3 | 1927 ± 15 | 56.3 ± 0.4 | 698 ± 6 | 20.4 ± 0.2 | 31 ± 1 | 0.9 ± 0.0 | 3425 ± 6.2 | |
WAS2 | 0.00 | 3 ± 0 | 17.7 ± 0.0 | 12 ± 1 | 70.6 ± 5.9 | 2 ± 0 | 11.8 ± 0.0 | 0 ± 0 | 0.0 ± 0.0 | 17 ± 1.5 |
0.05 | 3 ± 0 | 8.1 ± 0.0 | 30 ± 1 | 81.1 ± 2.7 | 4 ± 0 | 10.8 ± 0.0 | 0 ± 0 | 0.0 ± 0.0 | 37 ± 0.5 | |
0.10 | 15 ± 1 | 23.4 ± 1.5 | 46 ± 0 | 71.2 ± 0.0 | 3 ± 0 | 4.7 ± 0.0 | 0 ± 0 | 0.0 ± 0.0 | 64 ± 0.3 | |
0.20 | 3 ± 0 | 14.3 ± 0.0 | 16 ± 1 | 76.2 ± 4.8 | 2 ± 0 | 9.5 ± 0.0 | 0 ± 0 | 0.0 ± 0.0 | 21 ± 0.4 | |
0.30 | 15 ± 1 | 44.1 ± 2.9 | 18 ± 1 | 52.9 ± 2.9 | 1 ± 0 | 2.9 ± 0.0 | 0 ± 0 | 0.0 ± 0.0 | 34 ± 2.3 | |
0.50 | 26 ± 1 | 32.5 ± 1.2 | 44 ± 2 | 55.0 ± 2.5 | 10 ± 1 | 12.5 ± 1.3 | 0 ± 0 | 0.0 ± 0.0 | 80 ± 1.2 | |
WAS3 | 0.00 | 14 ± 1 | 15.6 ± 1.1 | 72 ± 1 | 80.0 ± 1.1 | 4 ± 0 | 4.4 ± 0.0 | 0 ± 0 | 0.0 ± 0.0 | 90 ± 0.9 |
0.05 | 23 ± 1 | 17.6 ± 0.8 | 89 ± 1 | 67.9 ± 0.8 | 19 ± 1 | 14.5 ± 0.8 | 0 ± 0 | 0.0 ± 0.0 | 131 ± 1.2 | |
0.10 | 271 ± 8 | 31.1 ± 0.9 | 525 ± 6 | 60.3 ± 0.7 | 73 ± 3 | 8.4 ± 0.3 | 2 ± 0 | 0.2 ± 0.0 | 871 ± 2.3 | |
0.20 | 1063 ± 10 | 41.4 ± 0.4 | 1384 ± 11 | 54.0 ± 0.4 | 115 ± 6 | 4.5 ± 0.2 | 3 ± 0 | 0.1 ± 0.0 | 2565 ± 1.2 | |
0.30 | 458 ± 3 | 44.0 ± 0.3 | 548 ± 7 | 52.7 ± 0.7 | 33 ± 0 | 3.2 ± 0.0 | 1 ± 0 | 0.1 ± 0.0 | 1040 ± 2.6 | |
0.50 | 138 ± 2 | 32.1 ± 0.5 | 246 ± 3 | 57.2 ± 0.7 | 46 ± 1 | 10.7 ± 0.2 | 0 ± 0 | 0.0 ± 0.0 | 430 ± 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Xu, Z.; Jiang, Y.; Jiang, Y.; Xiao, K. Correlating Parameters Evaluating Sludge Dewaterability and Morphological Characteristics of Sludge Flocs by a Commercial Smartphone and Image Analysis. Water 2025, 17, 2019. https://doi.org/10.3390/w17132019
Lin Y, Xu Z, Jiang Y, Jiang Y, Xiao K. Correlating Parameters Evaluating Sludge Dewaterability and Morphological Characteristics of Sludge Flocs by a Commercial Smartphone and Image Analysis. Water. 2025; 17(13):2019. https://doi.org/10.3390/w17132019
Chicago/Turabian StyleLin, Yuyan, Zijun Xu, Yizhang Jiang, Yue Jiang, and Keke Xiao. 2025. "Correlating Parameters Evaluating Sludge Dewaterability and Morphological Characteristics of Sludge Flocs by a Commercial Smartphone and Image Analysis" Water 17, no. 13: 2019. https://doi.org/10.3390/w17132019
APA StyleLin, Y., Xu, Z., Jiang, Y., Jiang, Y., & Xiao, K. (2025). Correlating Parameters Evaluating Sludge Dewaterability and Morphological Characteristics of Sludge Flocs by a Commercial Smartphone and Image Analysis. Water, 17(13), 2019. https://doi.org/10.3390/w17132019