Research on Ecological–Environmental Geological Survey and Evaluation Methods for the Kundulun River Basin in Baotou City
Abstract
1. Introduction
2. The Study Area
3. Materials and Methods
3.1. Establishment of the Evaluation Indicator System
3.2. Selection of Evaluation Indicators
3.3. Data Collection and Processing
3.4. Calculation of Indicator Weights
3.4.1. Determination of Indicator Weights Based on the Analytic Hierarchy Process (AHP)
3.4.2. Determination of Indicator Weights Based on the Coefficient of Variation Method
3.4.3. Comprehensive Analysis
3.4.4. Sensitivity Analysis
3.5. Comprehensive Evaluation of Ecological and Geological–Environmental Quality
4. Results and Discussion
4.1. Analysis of Indicator Weights
4.2. Analysis of the Comprehensive Evaluation Results for Ecological and Geological–Environmental Quality
4.3. Zoning of Ecological and Geological–Environmental Quality
4.3.1. Areas with Good Ecogeological–Environmental Quality (Category I)
4.3.2. Areas with Better Ecogeological–Environmental Quality (Category II)
4.3.3. Areas with Relatively Poor Ecogeological–Environmental Quality (Category III)
4.3.4. Areas with Poor Ecogeological–Environmental Quality (Category IV)
4.4. Discussion and Comparison
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, W.; Wang, G.; Sheng, Y.; Shi, Z.; Zhang, H. Isotopes in groundwater (2H, 18O, 14C) revealed the climate and groundwater recharge in the Northern China. Sci. Total Environ. 2019, 666, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wang, G.; Liu, F.; Zhang, J.; Chen, D. Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins: A review. Environ. Chem. Lett. 2022, 20, 1497–1528. [Google Scholar] [CrossRef]
- Jiang, W.; Sheng, Y.; Shi, Z.; Guo, H.; Chen, X.; Mao, H.; Liu, F.; Ning, H.; Liu, N.; Wang, G. Hydrogeochemical characteristics and evolution of formation water in the continental sedimentary basin: A case study in the Qaidam Basin, China. Sci. Total Environ. 2024, 957, 177672. [Google Scholar] [CrossRef]
- Sheng, Y.; Baars, O.; Guo, D.; Whitham, J.; Srivastava, S.; Dong, H. Mineral-bound trace metals as cofactors for anaerobic biological nitrogen fixation. Environ. Sci. Technol. 2023, 57, 7206–7216. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Sheng, Y.; Zheng, Y.; Jiang, M.; Wang, M.; Zhu, Z.; Li, G.; Baars, O.; Dong, H. Bioavailability of molybdenite to support nitrogen fixation on early Earth by an anoxygenic phototroph. Earth Planet. Sci. Lett. 2024, 647, 119056. [Google Scholar] [CrossRef]
- Bernardino, P.N.; De Keersmaecker, W.; Fensholt, R. Global-scale characterization of turning points in arid and semi-arid ecosystem functioning. Glob. Ecol. Biogeogr. 2020, 29, 1230–1245. [Google Scholar] [CrossRef]
- Fan, X.; Yu, H.; Tiando, D.S.; Rong, Y.; Luo, W.; Eme, C.; Ou, S.; Li, J.; Liang, Z. Impacts of Human Activities on Ecosystem Service Value in Arid and Semi-Arid Ecological Regions of China. Int. J. Environ. Res. Public Health 2021, 18, 11121. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, H.; Sheng, Y.; Ma, Z.; Zhang, J.; Liu, F.; Chen, S.; Meng, Q.; Bai, Y. Distribution, source apportionment, and health risk assessment of heavy metals in groundwater in a multi-mineral resource area, North China. Expo. Health 2022, 14, 807–827. [Google Scholar] [CrossRef]
- Chen, X.; Sheng, Y.; Wang, G.; Zhou, P.; Liao, F.; Mao, H.; Zhang, H.; Qiao, Z.; Wei, Y. Spatiotemporal Successions of N, S, C, Fe, and As Cycling Genes in Groundwater of a Wetland Ecosystem: Enhanced Heterogeneity in Wet Season. Water Res. 2024, 251, 121105. [Google Scholar] [CrossRef]
- Tudes, S.; Ceryan, S.; Bulut, F. Geoenvironmental evaluation for planning: An example from Gumushane City, close to the North Anatolia Fault Zone, NE Turkey. Bull. Eng. Geol. Environ. 2012, 71, 679–690. [Google Scholar] [CrossRef]
- Ren, B.Y.; Cheng, J.; Shi, L.P.; Liu, H.; Guo, Y.; Jackson, T.J.; Chen, J.M.; Gong, P.; Liang, S. Eco-Geological Environment Assessment of Datong Basin Using Satellite Remote Sensing; SPIE: Bellingham, WA, USA, 2014; p. 92604E. [Google Scholar]
- Wang, Z.F.; Wang, Y.J.; Wang, L.; Zhang, T.; Tang, Z. Research on the comprehensive evaluation system of eco-geological environmental carrying capacity based on the analytic hierarchy process. Clust. Comput. 2019, 22, 5347–5356. [Google Scholar] [CrossRef]
- Duan, J.S.; Huang, J.; Chen, Y.F.; Du, K. Research on Eco-geological Environment Carrying Capacity Based on GIS Technology. IOP Conf. Ser. Earth Environ. Sci. 2021, 651, 042003. [Google Scholar] [CrossRef]
- Saaty, T.L.; Bennett, J.P. A theory of analytical hierarchies applied to political candidacy. Syst. Res. Behav. Sci. 1977, 22, 237–245. [Google Scholar] [CrossRef]
- Shi, J.T.; Liu, J.J.; Zhang, J.C.; Wang, J.Y.L.; Jiang, Y.G.; Wang, M.; Li, H.F.; Yang, W.H.; Yan, X.J. Analysis of soil heavy metal influencing factors and sources in typical small watersheds in shallow mountainous area. Geophys. Geochem. Explor. 2024, 48, 834–846. (In Chinese) [Google Scholar]
- Long, X.J.; Zheng, J.S.; Li, X.J.; He, Z.W.; Liu, Y.S. An evaluation system of ecogeology environment. Sci. Surv. Mapp. 2018, 43, 65–70. [Google Scholar]
- Sun, X.F.; Shao, H.Y.; Xiang, X.Y.; Yuan, L.; Zhou, Y.; Xian, W. A Coupling Method for Eco-Geological Environmental Safety Assessment in Mining Areas Using PCA and Catastrophe Theory. Nat. Resour. Res. 2020, 29, 4133–4148. [Google Scholar] [CrossRef]
- Zhang, J.C.; Pan, X.C. Comprehensive Assessment for Changes of Ecological Environment in Qinghai-Tibet Plateau Based on RS/GIS and AHP-GPCA Model. J. Earth Sci. Environ. 2011, 33, 434–440. [Google Scholar]
- Zhao, F.F.; He, M.C.; Wang, Y.T.; Tao, Z.-G.; Li, C. Eco-geological environment quality assessment based on multi-source data of the mining city in red soil hilly region, China. J. Mt. Sci. 2021, 19, 253–275. [Google Scholar] [CrossRef]
- Du, Y.F.; Guo, H.; Wang, S.; Sun, J.; Siqi, Z.; Zeshi, C. Hydrochemical Characteristics and Formation Mechanism of Groundwater in the West of Kundulun River in Baotou City. Environ. Sci. Technol. 2024, 47, 121–130. [Google Scholar]
- Chang, F.; Xing, X.F.; Wang, F. Study on Dynamic Monitoring of Soil and Water Loss in Baotou City in 2019. Soil Water Conserv. China 2021, 7, 56–58. [Google Scholar]
- Chen, J. Simulation of Rainfall-Runoff in the Kundulun River, Baotou City, Inner Mongolia. J. Sichuan Univ. (Eng. Sci. Ed.) 2003, 1, 31–33. [Google Scholar]
- Li, M.Z.; Guo, X.; Du, Z. Correlation Analysis of Precipitation and Runoff in Kundulun Reservoir. Inn. Mong. Water Resour. 2015, 1, 12–13. [Google Scholar]
- Zhao, J.; Geng, D.J. Analysis of Hydrogeological Characteristics in the Area West of Kundulun River, Baotou City, Inner Mongolia. Ground Water 2016, 38, 240–241+265. [Google Scholar]
- Han, X.D.; Li, H.J.; Su, M.X.; An, P. Spatial network analysis of surface soil pollution from heavy metals and some other elements: A case study of the Baotou region of China. J. Soils Sediments 2019, 19, 629–640. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Rong, L.H.; Li, Y.T.; Hui, D. Land use function transformation in the agro-pastoral ecotone based on ecological-production-living spaces and associated eco-environment effects:A case of Baotou City. Arid Land Geogr. 2023, 46, 958–967. [Google Scholar]
- Yang, B.; Ning, X.L. Study on Construction of Ecological City’s Evaluation of Ecological Environment in Baotou City. J. Inn. Mong. Norm. Univ. (Nat. Sci. Ed.) 2015, 44, 104–107+112. [Google Scholar]
- Deng, J.X.; Liu, Z.H.; Xu, Z.Y. Subdivision and correlation of the late Pleistocene-Holocene strata in the Baotou area and its paleoenvironment variation. J. Stratigr. 2007, 31, 133–140. [Google Scholar]
- Liao, Z.L.; Long, Y.H.; Wei, Y.F.; Guo, Z.; Jiao, R.; Son, Y.; Cui, Y. Responses of the sustainable yield of groundwater to annual rainfall and pumping patterns in the Baotou Plain. Desalination Water Treat. 2018, 131, 96–106. [Google Scholar] [CrossRef]
- Bai, L.P.; Wang, Y.Y.; Guo, Y.L.; Zhou, Y.; Liu, L.; Yan, Z.; Li, F.; Xie, X. Health Risk Assessment Research on Heavy Metals Ingestion through Groundwater Drinking Pathway for the Residents in Baotou, China. J. Environ. Health 2016, 78, 84–90. [Google Scholar]
- Zhang, C.M. Discussion on the Development and Utilization of Groundwater Resources in Baotou City, Inner Mongolia. Inn. Mong. Sci. Technol. Econ. 2021, 15, 84–85. [Google Scholar]
- Xin, S.Q. The research on cold resistance of several kinds of cover plant in Baotou area. J. North. Agric. 2016, 44, 83–85. [Google Scholar]
- Zhao, Y.; Yu, Z.C.; Chen, F. Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China. Quat. Int. 2009, 194, 6–18. [Google Scholar] [CrossRef]
- DZ/T 0295-2016; Specifications for Geochemical Survey of Land Quality. Ministry of Land and Resources of the People’s Republic of China: Beijing, China, 2016.
- DZ/T 0167-2012; Specifications for Regional Geochemical Exploration. Ministry of Land and Resources of the People’s Republic of China: Beijing, China, 2012.
- DD2019-03; Specifications for 1:50,000 Hydrogeological Survey. China Geological Survey: Beijing, China, 2019.
- Technical Specifications for Unified Groundwater Measurement (Trial Version 20200831); Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences: Shijiazhuang, China, 2020.
- Specifications for Multi-Purpose Geochemical Survey (1:250,000); China Geological Survey: Beijing, China, 2016.
- GB/T 14848-2017; Groundwater Quality Standard. State Administration for Market Regulation and Standardization Administration of China: Beijing, China, 2017.
- Wind, Y.; Saaty, T.L. Marketing Applications of the Analytic Hierarchy Process. Manag. Sci. 1980, 26, 641–658. [Google Scholar] [CrossRef]
- Chen, H.G.; Li, X.N.; Li, C.Y. Resilience Evaluation of Water Resource System Based on Coefficient of Variation Entropy Weight Method: A Case Study of Water Resources in Heilongjiang Province from 2007 to 2016. Ecol. Econ. 2021, 37, 179–184. [Google Scholar]
- Cao, D.; Yu, F.; Zhu, W.Q.; Xie, G.X.; Song, C.Y. Evaluation of economic losses caused by grassland ecosystem degradation based on remote sensing technology. Acta Sci. Circumstantiae 2011, 31, 1799–1807. [Google Scholar]
- Yang, Y.; Wang, G.X.; Li, Y.; Wang, Z.W. Spatial-Temporal Changes in the Critical Vegetation Coverage of Grasslands with Functions of Soil-Water Conservation, Wind-Breaking and Sand-Fixing in the Three-Rivers Headwater Region, China. Mt. Res. 2024, 42, 143–153. [Google Scholar]
- Su, J.S.; Xu, F.W.; Wang, Y.; Zhao, Y.; Bai, Y. Collaborative restoration between vegetation and soil attributes in degraded grassland of different grassland types. Chin. Sci. Bull. 2024, 70, 1519–1536. [Google Scholar] [CrossRef]
- Yu, Z.X.; Wang, T.Y.; Wang, P.; Yu, J. The Spatiotemporal Response of Vegetation Changes to Precipitation and Soil Moisture in Drylands in the North Temperate Mid-Latitudes. Remote Sens. 2022, 14, 3511. [Google Scholar] [CrossRef]
- Venkatesan, G.; Subramani, T.; Karunanidhi, D.; Sathya, U.; Li, P. Correction to: Impact of precipitation disparity on groundwater fluctuation in a semi-arid region (Vellore district) of southern India using geospatial techniques. Environ. Sci. Pollut. Res. 2021, 28, 18552. [Google Scholar] [CrossRef]
- Rahul, W.S.; Arnab, B.; Aditi, B. Assessment of impact of climate change on streamflow and soil moisture in Pare watershed of Arunachal Pradesh, India. Sustain. Water Resour. Manag. 2024, 10, 82. [Google Scholar]
- Wang, P.S.; Dong, S.G.; Zang, X.C.; Yang, X.; Ji, Y.; Li, L.; Han, X.; Hou, F. Effects of groundwater level changes on soil characteristics and vegetation response in arid and semiarid coal mining areas. Environ. Geochem. Health 2024, 46, 441. [Google Scholar] [CrossRef]
- Zhang, J.T.; Xi, H.Y. Spatiotemporal dynamics of groundwater levels in a desert riparian forest and its response to surface runoff. Arid Land Geogr. 2020, 43, 388–397. [Google Scholar]
- Tran, T.V.; Vuong, H.M.T.; Ram, A.; Kumar, P.; Van Hiep, H.; Kurasaki, M. Spatiotemporal variations in groundwater levels and the impact on land subsidence in CanTho, Vietnam. Groundw. Sustain. Dev. 2021, 15, 100680. [Google Scholar]
- Shen, H.; Jiang, F.Q.; Du, X.J.; Lu, T. Evaluation on soil anti-erodibility of soil and water conservation forest. Chin. J. Appl. Ecol. 2000, 11, 345–348. [Google Scholar]
- Song, Y.; Zhang, Z.X. The Effect of Different Tillage Measures on Soil Erosion in Slope Farmland in Black Soil Region. Res. Soil Water Conserv. 2011, 18, 14–16+25. [Google Scholar]
- Li, J.J.; Zhao, X.; Pan, T.H.; Yan, J.X.; Li, H.J. Effects of Different Land-use Types on Labile Organic Matter. J. Soil Water Conserv. 2011, 25, 147–151. [Google Scholar]
- Zhou, X.Y.; Xu, M.G.; Zhou, S.W.; Gilles, C. Soil acidification characteristics in southern China’s croplands under long-term fertilization. J. Plant Nutr. Fertil. 2015, 21, 1615–1621. [Google Scholar]
- Yang, Z.X. Study on Integrated Assessment of Positive and Negative Value of Beijing Cropland Ecological System. Ph.D. Thesis, China Agricultural University, Beijing, China, 2006. [Google Scholar]
- Mo, H.W.; Ren, Z.Y.; Wang, X. Study on the Dynamic Change of Value of Vegetation Sand-fixing Effect—A Case Study in the Yuyang Region. Arid. Zone Res. 2006, 2, 56–59. [Google Scholar]
- Li, H. Eco-Geological Survey and Assessment: A Case Study of Ertaizhen Town, Zhangbei County. Chin. Acad. Geol. Sci. 2022, 43, 665–675. [Google Scholar]
Data Name | Data Source |
---|---|
Vegetation Cover | Multispectral remote sensing images from Landsat 8 OLI_TIRS satellite digital products available on the Geospatial Data Cloud |
Slope Gradient | 30 m resolution ASTER GDEM (Digital Elevation Model) data from the Geospatial Data Cloud |
Precipitation | 1 km raster data of 2020 precipitation from the National Earth System Science Data Center, part of the National Science and Technology Infrastructure Platform |
Temperature | 1 km raster data of 2020 temperature from the National Earth System Science Data Center, part of the National Science and Technology Infrastructure Platform |
Groundwater Depth | Field measurements conducted in July 2020 under the China Geological Survey project (ZD20220217) |
Groundwater Quality | Field measurements conducted in July 2020 under the China Geological Survey project (ZD20220217) |
Soil Quality | Field measurements conducted from June to August 2020 under the China Geological Survey project (ZD20220217) |
Geological Hazards | Field measurement results from the First Hydrogeological and Engineering Geological Survey Institute of Inner Mongolia Autonomous Region |
Cultivated Land | China Land Cover Dataset, CLCD (30 m Fine Land Cover Dataset of Inner Mongolia in 2020) |
Grassland | |
Forest Land | |
Water Bodies | |
Construction Land | |
Unused Land | |
Population Density | 1 km resolution population spatial distribution raster data from the LandScan dataset for 2020 |
Risk Level | Assigned Value |
---|---|
Low risk | 9 |
Medium risk | 7 |
Higher risk | 5 |
High risk | 3 |
Goal Layer | Criterion Layer | Indicator Layer | Classification Standards | |||
---|---|---|---|---|---|---|
Low Risk (9) | Medium Risk (7) | Higher Risk (5) | High Risk (3) | |||
A | B1 | C1 | 0.63~1 | 0.32~0.63 | 0.12~0.32 | <0.12 |
C2 | 0~12° | 12~32° | 32~43° | 43~75° | ||
B2 | C3 | >440 mm | 405~440 mm | 370~405 mm | <370 mm | |
C4 | >6 °C | 3.5~6 °C | 1~3.5 °C | <1 °C | ||
B3 | C5 | 0.4~3 m | 3~5 m | 5~10 m | >10 m | |
C6 | Class I, Class II | Class III | Class IV | Class V | ||
C7 | Class I, Class II | Class III | ||||
C8 | Rare | Low Probability | Moderate Probability | High Probability | ||
B4 | C9 | <30% | 30~50% | 50~80% | >80% | |
C10 | >80% | 50~80% | 30~50% | <30% | ||
C11 | >80% | 50~80% | 30~50% | <30% | ||
C12 | >80% | 50~80% | 30~50% | <30% | ||
C13 | <30% | 30~50% | 50~80% | >80% | ||
C14 | <30% | 30~50% | 50~80% | >80% | ||
B5 | C15 | <1000 people/km2 | 1000~3000 people/km2 | 3000~5000 people/km2 | >5000 people/km2 |
Indicator | Original Weight | Score Change Rate After +10% Weight | Score Change Rate After −10% Weight |
---|---|---|---|
Grassland (C10) | 0.083 | +7.2% | −7.5% |
Precipitation (C3) | 0.109 | +9.3% | −10.1% |
Groundwater Depth (C5) | 0.093 | +3.1% | −3.4% |
Forest Land (C11) | 0.114 | +8.7% | −9.6% |
Cultivated Land (C9) | 0.077 | +2.5% | −2.8% |
Evaluation Results | Poor Ecological and Geological–Environmental Quality | Fair Ecological and Geological–Environmental Quality | Good Ecological and Geological–Environmental Quality | Excellent Ecological and Geological–Environmental Quality |
---|---|---|---|---|
Evaluation Grades | 3.26~4.08 | 4.08~4.45 | 4.45~4.74 | 4.74~5.53 |
Goal Layer | Criterion Layer | AHP Weight | CV Weight | Comprehensive Weight | Indicator Layer | AHP Weight | CV Weight | Comprehensive Weight |
---|---|---|---|---|---|---|---|---|
A | B1 | 0.097 | 0.141 | 0.119 | C1 | 0.065 | 0.043 | 0.054 |
C2 | 0.032 | 0.047 | 0.04 | |||||
B2 | 0.160 | 0.166 | 0.163 | C3 | 0.12 | 0.093 | 0.107 | |
C4 | 0.04 | 0.075 | 0.058 | |||||
B3 | 0.263 | 0.236 | 0.250 | C5 | 0.123 | 0.063 | 0.093 | |
C6 | 0.025 | 0.089 | 0.057 | |||||
C7 | 0.042 | 0.04 | 0.041 | |||||
C8 | 0.073 | 0.064 | 0.069 | |||||
B4 | 0.418 | 0.318 | 0.368 | C9 | 0.106 | 0.045 | 0.076 | |
C10 | 0.156 | 0.068 | 0.112 | |||||
C11 | 0.068 | 0.093 | 0.081 | |||||
C12 | 0.043 | 0.098 | 0.071 | |||||
C13 | 0.027 | 0.045 | 0.036 | |||||
C14 | 0.018 | 0.04 | 0.029 | |||||
B5 | 0.061 | 0.139 | 0.100 | C15 | 0.061 | 0.04 | 0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Wan, J.; Xin, Y.; Zhou, W.; Li, Y.; Mao, L.; Li, X.; Mo, L.; Li, R. Research on Ecological–Environmental Geological Survey and Evaluation Methods for the Kundulun River Basin in Baotou City. Water 2025, 17, 1926. https://doi.org/10.3390/w17131926
Hao Y, Wan J, Xin Y, Zhou W, Li Y, Mao L, Li X, Mo L, Li R. Research on Ecological–Environmental Geological Survey and Evaluation Methods for the Kundulun River Basin in Baotou City. Water. 2025; 17(13):1926. https://doi.org/10.3390/w17131926
Chicago/Turabian StyleHao, Yi, Junwei Wan, Yihui Xin, Wenhui Zhou, Yongli Li, Lei Mao, Xiaomeng Li, Limei Mo, and Ruijia Li. 2025. "Research on Ecological–Environmental Geological Survey and Evaluation Methods for the Kundulun River Basin in Baotou City" Water 17, no. 13: 1926. https://doi.org/10.3390/w17131926
APA StyleHao, Y., Wan, J., Xin, Y., Zhou, W., Li, Y., Mao, L., Li, X., Mo, L., & Li, R. (2025). Research on Ecological–Environmental Geological Survey and Evaluation Methods for the Kundulun River Basin in Baotou City. Water, 17(13), 1926. https://doi.org/10.3390/w17131926