Geochemical Characteristics and Origin of Heavy Metals and Dispersed Elements in Qarhan Salt Lake Brine
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Field Sample Collection and Testing
2.3. Assessment Methods
2.3.1. Self-Organizing Map (SOM)
2.3.2. Positive Matrix Factorization (PMF) Models
2.3.3. Statistical Analysis
3. Results and Discussion
3.1. Main Chemical Indicators of Salt Lake Brine
3.2. Characteristics of Major Constant Ionic Composition in Salt Lake Brine
3.3. Distribution Characteristics of Heavy Metals and Dispersed Elements in Brines
3.4. Correlation Analysis Between Heavy Metal and Constant Elements
3.5. Geospatial Clustering via SOM
3.6. Source Apportionment Using the PMF Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, Q.S.; Ma, Y.Q.; Cheng, H.D.; Wei, H.C.; Yuan, Q.; Qin, Z.J.; Shan, F.S. Boron occurrence in halite and boron isotope geochemistry of halite in the Qarhan Salt Lake, western China. Sediment. Geol. 2015, 332, 34–42. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.Z.; Wang, S.H.; Che, F.F.; Zhang, Y.; Yang, P.J.; Zhang, J.B.; Liu, Y.X.; Guo, H.C.; Fu, Z.H. Adsorption and desorption of heavy metals at water sediment interface based on bayesian model. J. Environ. Manag. 2023, 329, 117035. [Google Scholar] [CrossRef] [PubMed]
- Dima, A.H.; Amina, B.; Mohammad, A.A. Sustainable waste utilization: Geopolymeric fly ash waste as an effective phenol adsorbent for environmental remediation. Resour. Environ. Sustain. 2024, 15, 10014. [Google Scholar] [CrossRef]
- Korkanç, S.Y.; Korkanç, M.; Amiri, A.F. Effects of land use/cover change on heavy metal distribution of soils in wetlands and ecological risk assessment. Sci. Total Environ. 2024, 923, 171603. [Google Scholar] [CrossRef]
- Li, X.X.; Wei, Y.F.; Wang, L.J.; Jin, S.J.; Wang, P.; Chang, J.; Yin, Q.Q.; Liu, C.Q.; Li, M.L.; Liu, Y.Y.; et al. Effects of multi-component passivator on heavy metal passivation, compost quality and plant growth. Resour. Environ. Sustain. 2024, 17, 100166. [Google Scholar] [CrossRef]
- Li, C.C.; Quan, Q.; Gan, Y.D.; Dong, J.Y.; Fang, J.H.; Wang, L.F.; Liu, J. Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management. Sci. Total Environ. 2020, 749, 141555. [Google Scholar] [CrossRef]
- Sharma, M.; Kant, R.; Sharma, A.K. Exploring the impact of heavy metals toxicity in the aquatic ecosystem. Int. J. Energ. Water Res. 2025, 9, 267–280. [Google Scholar] [CrossRef]
- Wan, Y.A.; Liu, J.; Zhuang, Z.; Wang, Q.; Li, H.F.; Henriquez-Hernandez, L.A. Heavy Metals in Agricultural Soils: Sources, Influencing Factors, and Remediation Strategies. Toxics 2024, 12, 63. [Google Scholar] [CrossRef]
- Roberts, L.R.; Do, N.T.; Panizzo, V.N.; Taylor, S.; Watts, M.; Hamilton, E.; McGowan, S.; Trinh, D.A.; Leng, M.J.; Salgado, J. In flux: Annual transport and deposition of suspended heavy metals and trace elements in the urbanised, tropical Red River Delta, Vietnam. Water Res. 2022, 224, 119053. [Google Scholar] [CrossRef]
- Zhang, S.T.; Han, G.L.; Gao, X.; Liu, J.K.; Qiao, N. Megacity river as a critical anthropogenic source of strontium release in global Sr cycle: Insights from Bayesian mixing model and Sr isotope. Water Res. 2025, 278, 123402. [Google Scholar] [CrossRef]
- Jiang, X.; Gong, Y.Z.; Xiong, J.X.; Ren, B.X.; Qiu, Y.W.; Lin, Z.G.; Tang, Y.; Wang, S.X.; Wang, X.L.; Li, C.; et al. Reducing arsenic mobilization in sediments: A synergistic effect of oxidation and adsorption with zirconium-manganese binary metal oxides. Water Res. 2025, 283, 123798. [Google Scholar] [CrossRef] [PubMed]
- Jafarabadi, A.R.; Raudonyte-Svirbutaviciene, E.; Toosi, A.S.; Bakhtiari, A.R. Positive matrix factorization receptor model and dynamics in fingerprinting of potentially toxic metals in coastal ecosystem sediments at a large scale (Persian Gulf, Iran). Water Res. 2021, 188, 116509. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.; Li, Y.J.; Luo, Z.H.; Xiong, R.; Liu, J.Q.; Jiang, K.; Men, Y.T.; Shen, H.Z.; Shen, G.F.; Tao, S. Household energy use and barriers in clean transition in the Tibetan Plateau. Resour. Environ. Sustain. 2024, 18, 100178. [Google Scholar] [CrossRef]
- Fan, Q.S.; Lowenstein, T.K.; Wei, H.C.; Yuan, Q.; Qin, Z.J.; Shan, F.S.; Ma, H.Z. Sr isotope and major ion compositional evidence for formation of Qarhan Salt Lake, western China. Chem. Geol. 2018, 497, 128–145. [Google Scholar] [CrossRef]
- Wang, D.; Liu, C.L.; Shen, L.J.; Hu, Y.F. Quantitative records of paleotemperature in Qarhan Salt Lake, Qaidam Basin and its relationship with potassium deposits. Sci. Rep. 2024, 14, 18678. [Google Scholar] [CrossRef]
- HJ 494-2009; Water quality-Guidance on sampling techniques. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2009.
- Feng, Z.H.; Xu, C.J.; Zuo, Y.P.; Luo, X.; Wang, L.Q.; Chen, H.; Xie, X.J.; Yan, D.; Liang, T. Analysis of water quality indexes and their relationships with vegetation using self-organizing map and geographically and temporally weighted regression. Environ. Res. 2023, 216, 114587. [Google Scholar] [CrossRef]
- Rahman, A.T.M.S.; Kono, Y.; Hosono, T. Self-organizing map improves understanding on the hydrochemical processes in aquifer systems. Sci. Total Environ. 2022, 846, 157281. [Google Scholar] [CrossRef]
- Han, X.; Huang, L.; Gan, J.L.; Yang, M.F.; Zhu, G.Y.; Li, Y.N.; Xu, J. Hydrochemical Characteristics, Mechanisms of Formation, and Sources of Different Water Bodies in the Northwest Coal-Electricity Agglomeration Area. Water 2024, 16, 1521. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Li, F.; Liu, S.; You, Y.; Liu, C. Enhanced Assessment of Water Quality and Pollutant Source Apportionment Using APCS-MLR and PMF Models in the Upper Reaches of the Tarim River. Water 2024, 16, 3061. [Google Scholar] [CrossRef]
- Miranda, L.S.; Wijesiri, B.; Ayoko, G.A.; Egodawatta, P.; Goonetilleke, A. Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Res. 2021, 202, 117386. [Google Scholar] [CrossRef]
- Li, M.L. Dynamic Characteristics of Brine and Its Indicative Effect on Solid-Liquid Transformation Process in the Qarhan Salt Lake. Ph.D. Thesis, Xining, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xi’ning, China, 2023. [Google Scholar]
- Kedra, M.; Wiejaczka, L. Climatic and dam-induced impacts on river water temperature: Assessment and management implications. Sci. Total Environ. 2018, 626, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xue, H.X.; Lü, C.W.; Fan, Q.Y.; Liang, Y.; Sun, Y.; Shen, L.L.; Bai, S. The impacts of common ions on the adsorption of heavy metal. Environ. Geol. 2009, 58, 1499–1508. [Google Scholar] [CrossRef]
- Xia, Z.G.; Lin, Y.J.; Wei, H.Z.; Hu, Z.Y.; Liu, C.; Li, W.Q. Reconstruct hydrological history of terrestrial saline lakes using Mg isotopes in halite: A case study of the Quaternary Dalangtan playa in Qaidam Basin, NW China. Palaeogeography, Palaeoclimatology. Palaeoecology 2022, 587, 110804. [Google Scholar] [CrossRef]
- Jiang, W.J.; Sheng, Y.Z.; Shi, Z.M.; Guo, H.M.; Chen, X.L.; Mao, H.R.; Liu, F.T.; Ning, H.; Liu, N.N.; Wang, G.C. Hydrogeochemical characteristics and evolution of formation water in the continental sedimentary basin: A case study in the Qaidam Basin, China. Sci. Total Environ. 2024, 957, 177672. [Google Scholar] [CrossRef]
- Yu, S.S.; Liu, X.Q.; Tan, H.B.; Cao, G.C. Sustainable Utilization of Qarhan Salt Lake Resources; Science Press: Beijing, China, 2009; pp. 27–265. [Google Scholar]
- Lowenstein, T.K.; Risacher, F. Closed basin brine evolution and the influence of CaCl inflow waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile. Aquetic Geochem. 2009, 15, 71–94. [Google Scholar] [CrossRef]
- Chen, T.Y.; Honarparvar, S.; Reible, D.; Chen, C.C. Thermodynamic modeling of calcium carbonate scale precipitation: Aqueous Na+-Ca2+-Cl−-HCO3−-CO32−-CO2 system. Fluid Phase Equilibr. 2021, 552, 113263. [Google Scholar] [CrossRef]
- Wang, Z.; Pei, J.L.; Ruan, C.X.; Adimalla, N.; Liu, H.Y.; Guo, H.M. Hydrochemical characteristics and salinity formation mechanism of different water bodies in the southern Tibet, China. Environ. Geochem. Health 2025, 47, 7. [Google Scholar] [CrossRef]
- Li, Y.W.; Li, J.S.; Fan, Q.S.; Wang, M.X.; Shan, F.S. Origin of Deep Intercrystalline Brines from Dayantan Mine Area in Qaidam Basin. J. Salt Lake Res. 2019, 27, 82–88. [Google Scholar] [CrossRef]
- Wang, K.; Sun, M.G.; Ma, L.C.; Tang, Q.F.; Yan, H.; Zhang, Y. Spatial variability in thegeochemical characteristics of the K-rich brines in the Lop Nor. Acta Geol. Sin. 2020, 94, 1183–1191. [Google Scholar] [CrossRef]
- Yue, X.; Liu, X.X.; Lu, L.; Zhang, X.D.; Fan, Z.L.; Yu, X.L. Hydrochemical Characteristics and Origin of Deep Pore Brine Deposits in Mahai Baisn. Acta Sedimentol. Sin. 2019, 37, 532–540. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Zhang, M.G.; Xu, X.; Li, B.X. Chinese Salt Lake; Science Press: Beijing, China, 2002. [Google Scholar]
- Zheng, X.Y.; Tang, Y.; Xu, X.; Li, B.X.; Zhang, B.Z.; Yu, S.S. Tibetan Salt Lake; Science Press: Beijing, China, 1988. [Google Scholar]
- Li, Y.L.; Miao, W.L.; He, M.Y.; Li, C.Z.; Gu, H.E.; Zhang, X.Y. Origin of lithium-rich salt lakes on the western Kunlun Mountains of the Tibetan Plateau: Evidence from hydrogeo chemistry and lithium isotopes. Ore Geol. Rev. 2023, 155, 105356. [Google Scholar] [CrossRef]
- Zhang, C.; Richard, A.; Hao, W.L.; Liu, C.H.; Tang, Z.S. Trace metals in saline waters and brines from China: Implications for tectonic and climatic controls on basin-related mineralization. J. Asian Earth Sci. 2022, 233, 105263. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental quality standards for surface water. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2002.
- Zhong, C.; Wu, Z.X.; Hu, J.J.; Li, Z.X.; Ma, L.C.; Wang, J.Q. Discovery of the Lower Permian from the west section of the northern margin of the Qaidam Basin and its geological implications. Nat. Gas Geosci. 2024, 35, 299. [Google Scholar] [CrossRef]
- Sun, H.S.; Li, H.; Algeo, T.J.; Gabo-Ratio, J.A.S.; Yang, H.; Wu, J.H.; Wu, P. Geochronology and geochemistry of volcanic rocks from the Tanjianshan Group, NW China: Implications for the early Palaeozoic tectonic evolution of the North Qaidam Orogen. Geol. J. 2019, 54, 1769–1796. [Google Scholar] [CrossRef]
- Torghabeh, A.K.; Pimentel, N.; Jahandari, A.; Wang, G.L. Mineralogy, composition and heavy metals’ concentration, distribution and source identification of surface sediments from the saline Maharlou Lake (Fars Province, Iran). Environ. Earth Sci. 2018, 77, 19. [Google Scholar] [CrossRef]
- Chen, H.; Yan, Y.L.; Hu, D.M.; Peng, L.; Wang, C. PM 2.5-bound heavy metals in a typical industrial city of Changzhi in North China: Pollution sources and health risk assessment. Atmos. Environ. 2024, 321, 120344. [Google Scholar] [CrossRef]
- Elenga, H.I.; Tan, H.B.; Su, J.B.; Yang, J.Y. Origin of the enrichment of B and alkali metal elements in the geothermal water in the Tibetan Plateau: Evidence from B and Sr isotopes. Geochemistry 2021, 81, 125797. [Google Scholar] [CrossRef]
- Xue, F.; Tan, H.B.; Zhang, X.Y.; Santosh, M.; Cong, P.X.; Ge, L.; Li, C.; Chen, G.H.; Zhang, Y. Contrasting sources and enrichment mechanisms in lithium-rich salt lakes:A Li-H-O isotopic and geochemical study from northern Tibetan Plateau. Geosci. Front. 2024, 15, 101768. [Google Scholar] [CrossRef]
- Yu, J.Q.; Gao, C.L.; Cheng, A.Y.; Liu, Y.; Zhang, L.; He, X.H. Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, Northern Tibetan Plateau, China. Ore Geol. Rev. 2013, 50, 171–183. [Google Scholar] [CrossRef]
- Li, J.S.; Chen, F.K.; Ling, Z.Y.; Li, T.W. Lithium sources in oilfield waters from the Qaidam Basin, Tibetan Plateau: Geochemical and Li isotopic evidence. Ore Geol. Rev. 2021, 139, 104481. [Google Scholar] [CrossRef]
- Song, H.L.; Fan, Q.S.; Li, Q.K.; Liu, W.P.; Han, G.; Han, C.M. Distribution and source of bromine in the brines from the salt-bearing basins in China. Acta Geol. Sin. 2024, 98, 1198–1210. [Google Scholar] [CrossRef]
- Li, J.S.; Li, T.W.; Ma, Y.Q.; Chen, F.K. Distribution and origin of brine-type Li-Rb mineralization in the Qaidam Basin, NW China. Sci. China Earth Sci. 2022, 65, 477–489. [Google Scholar] [CrossRef]
- Ejeckam, R.B.; Sherriff, B. A 133Cs, 29Si, and 27Al MAS NMR spectroscopic study of Cs adsorption by clay minerals: Implications for the disposal of nuclear wastes. Can. Mineral. 2005, 43, 1131–1140. [Google Scholar] [CrossRef]
- Park, S.M.; Lee, J.; Jeon, E.K.; Kang, S.; Alam, M.S.; Tsang, D.C.W.; Alessi, D.S.; Baek, K. Adsorption characteristics of cesium on the clay minerals: Structural change under wetting and drying condition. Geoderma 2019, 340, 49–54. [Google Scholar] [CrossRef]
- Li, L.M.; Wu, J.; Lu, J.; Li, K.X.; Zhang, X.Y.; Min, X.Y.; Gao, C.L.; Xu, J. Water quality evaluation and ecological-health risk assessment on trace elements in surface water of the northeastern Qinghai-Tibet Plateau. Ecotoxicol. Environ. Saf. 2022, 241, 113775. [Google Scholar] [CrossRef]
- Shi, W.P.; Liu, J.T.; Li, B.; Chen, X. Hydrochemical characteristics and solute sources of the Yanhu Areas on the Qinghai-Tibet Plateau. Environ. Chem. 2023, 42, 101–112. [Google Scholar] [CrossRef]
- Zhan, R.Z. Study on Chemical Evolution Law and Mechanism of Subsurface Birne in Qarhan Salt Lake of Qinghai Province; Chang’an University: Xi’An, China, 2023. [Google Scholar] [CrossRef]
- Zeng, L.Q.; Yang, F.; Chen, Y.Y.; Chen, S.M.; Xu, M.; Gu, C.Y. Temperature and Dissolved Oxygen Drive Arsenic Mobility at the Sediment-Water Interface in the Lake Taihu. Toxics 2024, 12, 471. [Google Scholar] [CrossRef]
- Ma, K.K.; Li, C.X.; Ai, C.; Zhang, B.; Huang, H.Y.; Xiao, J. Hydrochemical characteristics and water quality assessment of snow cover in the northeastern Tibet plateau. Atmos. Pollut. Res. 2023, 14, 101660. [Google Scholar] [CrossRef]
- Cai, N.; Wang, X.P.; Wang, W.L.; Wang, L.Q.; Tian, S.H.; Zhu, H.X.; Zhang, X.Y. Accumulation, ecological health risks, and source identification of potentially toxic elements in river sediments of the Qinghai-Tibet Plateau, China. Process Saf. Environ. 2024, 182, 703–718. [Google Scholar] [CrossRef]
- Liu, G.F.; Li, Y.; Hou, J.; Wang, Y.J.; Lin, D.S. A review on the industrial waste based adsorbents for the removal of pollutants from water: Modification methods and adsorption study. Resour. Environ. Sustain. 2025, 19, 100183. [Google Scholar] [CrossRef]
Ions | This Area | Kunteyi Salt Lake | Mahai Salt Lake | Xitaijinar Salt Lake | Lop Nur Salt Lake | Zabuye Salt Lake |
---|---|---|---|---|---|---|
Na+ | 46.49 | 97.10 | 86.69 | 86.88 | 98.00 | 135.42 |
K+ | 17.47 | 11.80 | 2.44 | 7.11 | 8.90 | 36.56 |
Mg2+ | 44.76 | 20.38 | 7.17 | 23.81 | 21.40 | 0.00 |
Ca2+ | 1.51 | 2.60 | 4.04 | / | 0.08 | 0.00 |
Cl− | 216.41 | 178.97 | 160.72 | 186.38 | 172.00 | 166.04 |
SO42− | 5.02 | 54.82 | 2.48 | 31.84 | 56.00 | 44.78 |
References | [31] | [33] | [34] | [32] | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, N.; Wang, W.; Xiao, G.; Yang, Z.; Zhu, H.; Wang, X. Geochemical Characteristics and Origin of Heavy Metals and Dispersed Elements in Qarhan Salt Lake Brine. Water 2025, 17, 1927. https://doi.org/10.3390/w17131927
Cai N, Wang W, Xiao G, Yang Z, Zhu H, Wang X. Geochemical Characteristics and Origin of Heavy Metals and Dispersed Elements in Qarhan Salt Lake Brine. Water. 2025; 17(13):1927. https://doi.org/10.3390/w17131927
Chicago/Turabian StyleCai, Na, Wei Wang, Guotao Xiao, Zhiping Yang, Haixia Zhu, and Xueping Wang. 2025. "Geochemical Characteristics and Origin of Heavy Metals and Dispersed Elements in Qarhan Salt Lake Brine" Water 17, no. 13: 1927. https://doi.org/10.3390/w17131927
APA StyleCai, N., Wang, W., Xiao, G., Yang, Z., Zhu, H., & Wang, X. (2025). Geochemical Characteristics and Origin of Heavy Metals and Dispersed Elements in Qarhan Salt Lake Brine. Water, 17(13), 1927. https://doi.org/10.3390/w17131927