Comprehensive Evaluation of Pollution Status and Health Risk Assessment of Water Bodies in Different Reaches of the Shaying River
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Point Setting
2.3. Sample Collection, Water Physicochemical Parameters, and Heavy Metal Determination
2.4. Data Analysis
2.4.1. Water Quality Index Calculation
2.4.2. Principal Component Analysis of Water Physicochemical Parameters
2.4.3. Calculation of Potential Ecological Risk Index
2.5. Health Risk Assessment
2.5.1. Chronic Daily Intake
2.5.2. Hazard Index
2.5.3. Carcinogenic Risk Index (CRI)
3. Results
3.1. Shaying River Evaluation of Water Pollution in Different Regional River Reaches
3.1.1. Evaluation Results of the Integrated Water Quality Index Method
3.1.2. Evaluation Results of the Shaying River Water Quality Comprehensive Evaluation Index Method
3.2. Potential Ecological Risk Assessment of Heavy Metals in Shaying River Sediments and Health Risk Assessment
3.2.1. Potential Ecological Risk Assessment of Sediment Heavy Metals
3.2.2. Sediment Health Risk Assessment for Heavy Metals
4. Discussion
4.1. Spatial Variation in Water Quality and Analysis of Influencing Factors
4.2. Sediment Heavy Metal Risk Assessment and Differences in Spatial Distribution
4.2.1. Evaluation of the Potential Ecological Risk of Sediment Heavy Metals
4.2.2. Health Risk Assessment for Heavy Metals in the Shaying River
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample Points | Adult Male | Adult Female | Children | |||
---|---|---|---|---|---|---|
CRI (×10−3) | HI (×10−2) | CRI (×10−3) | HI (×10−2) | CRI (×10−3) | HI (×10−2) | |
S1 | 3.32 | 4.92 | 3.83 | 5.67 | 27.78 | 41.09 |
S2 | 3.67 | 6.30 | 4.22 | 7.26 | 30.63 | 52.65 |
S3 | 2.44 | 7.52 | 2.81 | 8.67 | 20.36 | 62.85 |
S4 | 2.36 | 6.48 | 2.71 | 7.47 | 19.69 | 54.17 |
S5 | 3.57 | 6.91 | 4.11 | 7.96 | 29.83 | 57.74 |
S6 | 2.21 | 5.60 | 2.55 | 6.45 | 18.46 | 46.80 |
S7 | 5.20 | 9.55 | 6.00 | 11.00 | 43.50 | 79.79 |
S8 | 3.32 | 7.18 | 3.82 | 8.27 | 27.73 | 60.00 |
S9 | 2.29 | 4.94 | 2.64 | 5.69 | 19.11 | 41.27 |
S10 | 4.65 | 6.49 | 5.36 | 7.48 | 38.89 | 54.26 |
S11 | 3.59 | 5.13 | 4.14 | 5.91 | 30.00 | 42.88 |
S12 | 3.14 | 4.99 | 3.62 | 5.75 | 26.28 | 41.70 |
S13 | 3.45 | 5.00 | 3.97 | 5.76 | 28.79 | 41.79 |
S14 | 4.12 | 5.81 | 4.75 | 6.70 | 34.46 | 48.56 |
S15 | 5.49 | 7.88 | 6.33 | 9.08 | 45.87 | 65.87 |
S16 | 4.35 | 6.15 | 5.01 | 7.08 | 36.34 | 51.36 |
S17 | 5.39 | 7.58 | 6.22 | 8.74 | 45.07 | 63.35 |
S18 | 4.61 | 8.00 | 5.31 | 9.22 | 38.51 | 66.86 |
S19 | 5.08 | 7.19 | 5.85 | 8.29 | 42.43 | 60.09 |
S20 | 4.86 | 7.22 | 5.60 | 8.32 | 40.58 | 60.32 |
S21 | 4.97 | 7.34 | 5.72 | 8.46 | 41.51 | 61.37 |
S22 | 4.26 | 6.98 | 4.91 | 8.05 | 35.57 | 58.37 |
S23 | 4.28 | 6.36 | 4.94 | 7.33 | 35.79 | 53.12 |
S24 | 4.37 | 6.26 | 5.04 | 7.21 | 36.51 | 52.28 |
S25 | 4.32 | 6.42 | 4.97 | 7.40 | 36.07 | 53.66 |
S26 | 4.46 | 7.00 | 5.15 | 8.07 | 37.31 | 58.52 |
S27 | 4.44 | 6.45 | 5.11 | 7.43 | 37.07 | 53.89 |
S28 | 6.14 | 7.80 | 7.08 | 8.99 | 51.36 | 65.19 |
S29 | 9.96 | 11.13 | 11.48 | 12.83 | 83.22 | 93.05 |
S30 | 8.07 | 9.49 | 9.31 | 10.94 | 67.47 | 79.30 |
S31 | 6.31 | 8.07 | 7.28 | 9.30 | 52.77 | 67.46 |
S32 | 5.84 | 7.53 | 6.73 | 8.67 | 48.77 | 62.90 |
S33 | 6.26 | 7.82 | 7.22 | 9.01 | 52.35 | 65.32 |
References
- Jiang, J.Q.; Zhao, G.F.; Wang, D.W.; Liu, L.; Yan, X.; Song, H.R. Identifying trends and driving factors of spatio-temporal water quality variation in Guanting Reservoir Basin, North China. Environ. Dev. Sustain. 2022, 29, 88347–88358. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, P.; Raj, A.; Kisku, G.C. Assessment of influence of heavy metal, organochlorine pesticide, and bacterial presence on water quality of Gomti River, India. Environ. Dev. Sustain. 2022, 6, 1879–1901. [Google Scholar] [CrossRef]
- Lkr, A.; Singh, M.R.; Puro, N. Assessment of water quality status of Doyang River, Nagaland, India, using Water Quality Index. Appl. Water Sci. 2020, 10, 46. [Google Scholar] [CrossRef]
- Singh, R.; Majumder, C.B.; Vidyarthi, A.K. Assessing the impacts of industrial wastewater on the inland surface water quality: An application of analytic hierarchy process (AHP) model-based water quality index and GIS techniques. Phys. Chem. Earth 2023, 129, 103314. [Google Scholar] [CrossRef]
- Wang, X.N.; Li, J.; Chen, J.; Cui, L.; Li, W.W.; Gao, X.; Liu, Z.T. Water quality criteria of total ammonia nitrogen (TAN) and un-ionized ammonia (NH3–N) and their ecological risk in the Liao River, China. Chemosphere 2020, 243, 125328. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, L. Multiple evaluations of the spatial and temporal characteristics of surface water quality in the typical area of the Yangtze River Delta of China using the water quality index and multivariate statistical analysis: A case study in Shengzhou city. Int. J. Environ. Res. Public Health 2023, 20, 2883. [Google Scholar] [CrossRef]
- Wu, T.; Wang, S.R.; Su, B.L.; Wu, H.X.; Wang, G.Q. Understanding the water quality change of the Yilong Lake based on comprehensive assessment methods. Ecol. Indic. 2021, 126, 107714. [Google Scholar] [CrossRef]
- Naik, M.R.; Mahanty, B.; Sahoo, S.K.; Jha, V.N.; Sahoo, N.K. Assessment of groundwater geochemistry using multivariate water quality index and potential health risk in industrial belt of central Odisha, India. Environ. Pollut. 2022, 303, 119161. [Google Scholar] [CrossRef]
- Singh, G.; Chaudhary, S.; Giri, S.B.; Mishra, V.K. Assessment of geochemistry and irrigation suitability of the River Ganga, Varanasi, India: PCA reduction for water quality index and health risk evaluation. Environ. Sci. Pollut. Res. Int. 2025, 32, 4199–4218. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, P.P.; Zha, X.B.; Xu, C.Y.; Kang, S.X.; Zhou, M.M.; Nover, D.; Wang, Y.H. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. J. Clean. Prod. 2022, 379, 0959–6526. [Google Scholar] [CrossRef]
- Shi, W.C.; Li, T.; Feng, Y.; Su, H.; Yang, Q.L. Source apportionment and risk assessment for available occurrence forms of heavy metals in Dongdahe Wetland sediments, southwest of China. Sci. Total Environ. 2022, 815, 152837. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, H.; Tooba, D.; Vali, A. Heavy metal pollution of road dust in a city and its highly polluted suburb; quantitative source apportionment and source-specific ecological and health risk assessment. Chemosphere 2021, 273, 129656. [Google Scholar]
- Wang, Z.; Lin, K.X.; Liu, X.S. Distribution and pollution risk assessment of heavy metals in the surface sediment of the intertidal zones of the Yellow River Estuary, China. Mar. Pollut. Bull. 2022, 174, 113286. [Google Scholar] [CrossRef]
- Dan, S.F.; Udoh, E.C.; Wang, Q.Q. Contamination and ecological risk assessment of heavy metals, and relationship with organic matter sources in surface sediments of the Cross River Estuary and nearshore areas. J. Hazard. Mater. 2022, 438, 129531. [Google Scholar] [CrossRef] [PubMed]
- Lian, G.Q.; Lee, X.Q. Concentrations, distribution, and pollution assessment of metals in river sediments in China. Int. J. Env. Res. Public Health 2021, 18, 6908. [Google Scholar] [CrossRef]
- Hu, Y. Study on automatic monitoring system of sediment environmental pollution for ecological environment protection. Chin. Energy Environ. Prot. 2023, 45, 67–72+79. [Google Scholar]
- Proshad, R.; Kormoker, T.; Islam, S. Distribution, source identification, ecological and health risks of heavy metals in surface sediments of the Rupsa River, Bangladesh. Toxin Rev. 2021, 40, 77–101. [Google Scholar] [CrossRef]
- Cheng, Y.; Ma, J.X.; Zuo, Q.T. Level measurement and driving factors analysis of water resources intensive utilization in Shaying River Basin. Water Res. Plan. Des. 2024, 12, 164–170. [Google Scholar]
- Yu, T.Z.; Liu, Y.T.; Cao, D.; Fang, L.J.; Wang, Y.C.; Ma, G.B.; Cao, Z.H. Study on pollution control factors and their influencing laws on heavy metal migration in the Shaying River Basin. Environ. Eng. 2023, 41, 30–36+52. [Google Scholar]
- Du, S.L. The Research on Screening of Priority Pollutants in the Water Environment and Potential Ecological Risk Assessment in Shaying River Basin. Master’s Thesis, Guilin University of Technology, Guilin, China, 2020. [Google Scholar]
- Ma, W.; Fan, K.M.; Wang, P. Pollution characteristics and ecological risk assessment of heavy metals in the sediments of Shaying River controlled by sluice station. J. Anhui Agric. Sci. 2020, 48, 77–79+83. [Google Scholar]
- Wang, W.L.; Du, W.; Han, Y.J.; Cao, B.S.; Li, W.J.; Tong, Y.; Dai, S.Y.; Liu, B. Ammonia emission characteristics and construction of an emission reduction system for livestock and poultry farming in China. J. Agro-Environ. Sci. 2021, 40, 2305–2316. [Google Scholar]
- Sahoo, M.M.; Swain, J.B. Investigation and comparative analysis of ecological risk for heavy metals in sediment and surface water in east coast estuaries of India. Mar. Pollut. Bull. 2023, 190, 114894. [Google Scholar] [CrossRef] [PubMed]
- Li, B.L.; Yang, L.H.; Song, X.F.; Qin, M.Z. The influence of soil physics and chemical properties on groundwater nitrogen pollution in the riparian zone of Shaying River. Chin. Environ. Sci. 2024, 44, 3955–3965. [Google Scholar]
- Zhang, H.J.; Zhang, W.L. Remediation status of polluted river sediments in Guizhou Province and research on the in-situ remediation of sediments. Chin. Res. Comp. Util. 2025, 43, 183–186. [Google Scholar]
- Zhou, K.S. Assessing heavy metal pollution in surface sediments of China’s Shaying River. Pol. J. Environ. Stud. 2019, 28, 4495–4502. [Google Scholar] [CrossRef]
- Chu, Y.J.; He, B.N.; He, J.T.; Zou, H.; Sun, J.C.; Wen, D.G. Revealing the drivers and genesis of NO3-N pollution classification in shallow groundwater of the Shaying River Basin by explainable machine learning and pathway analysis method. Sci. Total Environ. 2024, 918, 170742. [Google Scholar] [CrossRef]
- Hao, M.H.; Zuo, Q.T.; Li, J.L.; Shi, S.J.; Li, B.; Zhao, X.N. A comprehensive exploration on distribution, risk assessment, and source quantification of heavy metals in the multi-media environment from Shaying River Basin, China. Ecotoxicol. Environ. Saf. 2022, 231, 113190. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.M.; Shang, M.; Wang, X.; Cui, X.R.; Huang, R.J.; Song, Z.X.; Han, Y.J. Soil heavy metals assessment of the Zhoukou riparian zone base of Shaying river basin, China: Spatial distribution, source analysis and ecological risk. Environ. Geochem. Health 2025, 47, 77. [Google Scholar] [CrossRef]
- GB 11893-89; Water Quality-Determination of Total Phosphorus—Ammonium Molybdate Spectrophotometric Method. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 1990.
- HJ 199-2023; Water Quality—Determination of Total Nitrogen—Gas-Phase Molecular Absorption Spectrometry. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2024.
- HJ/T 346-2007; Water Quality—Determination of Nitrate-Nitrogen—Ultraviolet Spectrophotometry. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2007.
- HJ 195-2023; Water Quality—Determination of Ammonia Nitrogen—Gas-Phase Molecular Absorption Spectrometry. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2024.
- GB 11892-89; Water Quality—Determination of Permanganate Index. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 1989.
- GB/T 9727-2007; Chemical Reagent—General Method for the Determination of Phosphate. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2008.
- GB/T 15453-2018; Determination of Chloride in Water for Industrial Circulating Cooling System and Boiler. State Administration of Market Supervision: Beijing, China, 2019.
- GB 8538-2016; Methods for Examination of Drinking Natural Mineral Water. National Health and Family Planning Commission of PRC: Beijing, China, 2017.
- Wang, S.; Liu, X.F.; Hou, Q.; Zhao, Z.J. Analysis of Water Environmental Quality Characteristics in Leshan in 2023. Environ. Monit. 2025; in press. [Google Scholar]
- Koukoulakis, P.H.; Kanatas, P.; Kyritsis, S.S.; Ntzala, G.; Kalavrouziotis, I.K. The Impact of the Elemental Interactions on Soil Fertility and Toxicity in the Presence of Wastewater and Biosolids: A Quantitative Evaluation. Water 2023, 15, 3743. [Google Scholar] [CrossRef]
- Arumugam, T.; Kinattinkara, S.; Kannithottathil, S.; Velusamy, S.; Krishna, M.; Shanmugamoorthy, M.; Sivakumar, V.; Boobalakrishnan, K.V. Comparative assessment of groundwater quality indices of Kannur District, Kerala, India using multivariate statistical approaches and GIS. Environ. Monit. Assess. 2022, 195, 29. [Google Scholar] [CrossRef]
- Wu, M.; Liu, S.L.; Yuan, Y.Y.; Zhao, J.Y.; Liu, Y.; Liu, S.Y.; Liu, Y.L. Optimization of potential ecological risk index method for soil heavy metals—A case study of Chengkou County, Chongqing City. Chin. J. Soil Sci. 2023, 54, 473–480. [Google Scholar]
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; U.S. Environmental Protection Agency: Washington, DC, USA, 2002.
- Ministry of Health of the People’s Republic of China. China Health Statistics Yearbook; Peking Union Medical College Press: Beijing, China, 2007; pp. 207–208.
- Tong, X.X.; Tang, H.; Gan, R.; Li, Z.T.; He, X.L.; Gu, S.Q. Characteristics and causes of changing groundwater quality in the boundary line of the middle and lower Yellow River (right bank). Water 2022, 14, 1846. [Google Scholar] [CrossRef]
- Gani, M.A.; Sajib, A.M.; Siddik, M.A.; Moniruzzaman, M. Assessing the impact of land use and land cover on river water quality using water quality index and remote sensing techniques. Environ. Monit. Assess. 2023, 195, 449. [Google Scholar] [CrossRef]
- Matta, G.; Kumar, A.; Nayak, A.; Kumar, P. Appraisal of spatial–temporal variation and pollution source estimation of Ganga River system through pollution indices and environmetrics in Upper Ganga basin. Appl. Water Sci. 2022, 12, 33. [Google Scholar] [CrossRef]
- Wang, R.J.; Wang, Q.B.; Dong, L.S.; Zhang, J.F. Cleaner agricultural production in drinking-water source areas for the control of non-point source pollution in China. J. Environ. Manag. 2021, 285, 112096. [Google Scholar] [CrossRef]
- Andrade, A.F.O.; Lima, C.; Bacha, L.; Oliveira, M.A.P.; Leomil, L.; Rezende, C.E.; Wasserman, J.C.F.A.; Costa, P.M.S.; Costa, R.; Siegle, E.; et al. Large polluted river plumes threats sustainable mariculture in the Baia da Ilha Grande. Reg. Stud. Mar. Sci. 2025, 83, 104049. [Google Scholar] [CrossRef]
- Zhang, W.P.; Gao, D.D.; Wang, C.; Shi, H.L.; Tian, X.G.; Ren, X.N.; Liu, S.Y.; Guo, M.K.; He, P. Quantitative tracking of seasonal river pollution sources and integration of sustainable development goals in hilly regions. Sustainability 2024, 16, 9235. [Google Scholar] [CrossRef]
- Nishat, M.H.; Khan, M.H.R.B.; Ahmed, T.; Hossain, S.N.; Ahsan, A.; Sergany, M.M.E.; Shafiquzzaman, M.; Imteaz, M.A.; Alresheedi, M.T. Comparative analysis of machine learning models for predicting water quality index in Dhaka’s rivers of Bangladesh. Environ. Sci. Eur. 2025, 37, 31. [Google Scholar] [CrossRef]
- Xu, G.C.; Li, P.; Lu, K.X.; Zhan, T.T.; Zhang, J.X.; Ren, Z.P.; Wang, X.K.; Yu, K.X.; Shi, P.; Cheng, Y.T. Seasonal changes in water quality and its main influencing factors in the Dan River basin. Catena 2019, 173, 131–140. [Google Scholar] [CrossRef]
- Xu, H.X.; Gao, Q.; Yuan, B. Analysis and identification of pollution sources of comprehensive river water quality: Evidence from two river basins in China. Ecol. Indic. 2022, 135, 108561. [Google Scholar] [CrossRef]
- Ma, P.; Liu, S.X.; Yu, Q.B.; Li, X.Y.; Han, X.Q. Sources and transformations of anthropogenic nitrogen in the highly disturbed Huai River Basin, Eastern China. Environ. Sci. Pollut. Res. 2019, 26, 11153–11169. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.M. Research on Regional Water Environment Evaluation and Sustainable Development—A Case Study of Lhasa River basin and Huairou District. Master’s Thesis, Beijing University of Chemical Technology, Beijing, China, 2024. [Google Scholar]
- Yang, Q.; Zhang, Y.Y. Non-point source pollution simulation of ammonia nitrogen and spatial-temporal characteristics analysis in Shaying River catchment (Henan section). Res. Environ. Sci. 2021, 34, 319–327. [Google Scholar]
- Huang, J.C.; Zhang, Y.J.; Bing, H.J.; Peng, J.; Dong, F.F.; Gao, J.F.; Arhonditsis, G.B. Characterizing the river water quality in China: Recent progress and on-going challenges. Water Res. 2021, 201, 117309. [Google Scholar] [CrossRef] [PubMed]
- Savic, R.; Stajic, M.; Blagojevic, B.; Bezdan, A.; Vranesevic, M.; Jokanovic, V.N.; Baumgertel, A.; Kovacic, M.B.; Horvatinec, J.; Ondrasek, G. Nitrogen and phosphorus concentrations and their ratios as indicators of water quality and eutrophication of the hydro-system Danube-Tisza-Danube. Agriculture 2022, 12, 935. [Google Scholar] [CrossRef]
- Shukla, G.S.; Singhal, R.L. The present status of biological effects of toxic metals in the environment: Lead, cadmium, and manganese. Can. J. Physiol. Pharm. 1984, 62, 1015–1031. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Nabi, M.; Tabassum, N. Role of Environmental Toxicants on Neurodegenerative Disorders. Front. Toxicol. 2022, 4, 837579. [Google Scholar] [CrossRef]
- Hu, B.F.; Shao, S.; Ni, H.; Fu, Z.Y.; Hu, L.S.; Zhou, Y.; Min, X.X.; She, S.F.; Chen, S.C.; Huang, M.X.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef]
- Zheng, P.; Cui, X.L.; Li, H.X.; Che, X.K.; Shi, X.Y.; Wang, L.; Zheng, Q. Research progress and development trend of antimony contaminated soil remediation technology. Chin. J. Rare Met. 2024, 48, 411–426. [Google Scholar]
- Zhang, Y.X.; Li, T.S.; Guo, Z.H.; Xie, H.M.; Hu, Z.H.; Ran, H.Z.; Li, C.Z.; Jiang, Z.C. Spatial heterogeneity and source apportionment of soil metal(loid)s in an abandoned lead/zinc smelter. J. Environ. Sci. 2023, 127, 519–529. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, Q.; Fang, J.M.; Liu, F.Q.; Li, A.M.; Tandon, P.J.; Shan, A.D. Spatial distribution, ecological risk assessment, and potential sources of heavy metal(loid)s in surface sediments from the Huai River within the Bengbu section, China. Environ. Sci. Pollut. Res. 2017, 24, 11360–11370. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Wu, Q.; Liu, P.; Hu, W.; Huang, B.; Shi, B.; Zhou, Y.; Kwon, B.O.; Choi, K.; Ryu, J.S.; et al. Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea. Environ. Int. 2020, 136, 105512. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, G.J.; Liu, H.Q.; Lam, P.K.S. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017, 583, 421–431. [Google Scholar] [CrossRef]
- Ding, T.T.; Li, Q.; Du, S.L.; Liu, Y.F.; Zhang, Y.H.; Zhang, J.; Wang, Y.Z.; He, L.S. Pollution characteristics and ecological risk assessment of heavy metals in Shaying River Basin. Environ. Chem. 2019, 38, 2386–2401. [Google Scholar]
- Zhang, J.; Li, S.Y.; Dong, R.Z.; Jiang, C.S.; Ni, M.F. Influences of land use metrics at multi-spatial scales on seasonal water quality: A case study of river systems in the Three Gorges Reservoir Area, China. J. Clean. Prod. 2018, 206, 76–85. [Google Scholar] [CrossRef]
- Fang, X.H.; Peng, B.; Wang, X.; Song, Z.L.; Zhou, D.X.; Wang, Q.; Qin, Z.L.; Tan, C.Y. Distribution, contamination and source identification of heavy metals in bed sediments from the lower reaches of the Xiangjiang River in Hunan province, China. Sci. Total Environ. 2019, 689, 557–570. [Google Scholar] [CrossRef]
- Liang, J.L.; Huang, X.M.; Yan, J.W.; Li, Y.Y.; Zhao, Z.W.; Liu, Y.Y.; Ye, J.Y.; Wei, Y.M. A review of the formation of Cr (VI) via Cr (III) oxidation in soils and groundwater. Sci. Total Environ. 2021, 774, 145762. [Google Scholar] [CrossRef]
- Liu, N.T.; Liu, H.Y.; Wu, P.; Meng, W.; Li, X.X.; Chen, X. Distribution characteristics and potential pollution assessment of heavy metals (Cd, Pb, Zn) in reservoir sediments from a historical artisanal zinc smelting area in Southwest China. Environ. Sci. Pollut. R Int. 2021, 46, 85–89. [Google Scholar] [CrossRef]
- Ran, H.Z.; Guo, Z.H.; Yi, L.W.; Xiao, X.Y.; Zhang, L.; Hu, Z.H.; Li, C.Z.; Zhang, Y.X. Pollution characteristics and source identification of soil metal(loid)s at an abandoned arsenic-containing mine, China. J. Hazard Mater. 2021, 413, 125382. [Google Scholar] [CrossRef]
- Wu, W.H.; Qu, S.Y.; Nel, W.; Ji, J.F. The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds: A comparative study from different regions in China. Chemosphere 2021, 262, 127897. [Google Scholar] [CrossRef]
- Mei, M.; Zhang, J.; Lei, J.S.; Yang, F.Y.; Wang, X.K. Assessment and source apportionment of heavy metal pollution in alluvial soils of the Anhui section of the Yangtze River. Environ. Ecol. 2025, 7, 31–39. [Google Scholar]
- Sun, H.Y.; Ma, F.; Chen, Z.R.; Zhu, X.; Wei, X.F. Source apportionment and ecological risk of soil heavy metals in a typical vanadium-titanium magnetite mining areas affected by intensive transportation activities in Chengde. Environ. Sci. 2025; in press. [Google Scholar]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Li, T.Q.; Ma, J.H.; Ruan, X.J.; Wang, L.; Zou, G.Y. Nitrate nitrogen pollution and health risks in typical cancer prone areas of the Shaying River Basin. J. Environ. Sci. 2019, 39, 1698–1707. [Google Scholar]
- Wu, P.; Shu, Q.; Luo, X.F.; Wu, G. Surface water pollution characteristics and risk assessment of the manganese mine area in Guzhang, Xiangxi. Soil Water Conse Notif. 2019, 39, 70–74, 79. [Google Scholar]
- Adimalla, N.; Chen, J.; Qian, H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicol. Environ. Saf. 2020, 194, 110406. [Google Scholar] [CrossRef]
- Wang, Z.G.; Zhan, H.M.; Xu, L.G.; Guo, H.K.; Li, J.L. Distribution of heavy metal and human health risk assessment of water bodies in the basin of Poyang Lake into the Yangtze River. Resour. Environ. Yangtze Basin 2023, 32, 1281–1290. [Google Scholar]
- Peng, J.Y.; Zhang, S.; Han, Y.Y.; Bate, B.; Ke, H.; Chen, Y.M. Soil heavy metal pollution of industrial legacies in China and health risk assessment. Sci. Total Environ. 2022, 816, 151632. [Google Scholar] [CrossRef]
Parameters | Pi | Ci | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ||
pH | 1 | 7 | 7–8 | 7–8.5 | 7–9 | 6.5–7 | 6–9.5 | 5–10 | 4–11 | 3–12 | 2–13 | 1–14 |
DO | 4 | ≥7.5 | >7.0 | >6.5 | >6.0 | >5.0 | >4.0 | >3.5 | >3.0 | >2.0 | ≥1.0 | <1.0 |
CODMn | 3 | <1 | <2 | <3 | <4 | <6 | <8 | <10 | <12 | <14 | ≤15 | >15 |
NH3–N | 3 | <0.01 | <0.05 | <0.10 | <0.20 | <0.30 | <0.40 | <0.50 | <0.75 | <1.00 | ≤1.25 | >1.25 |
TP | 1 | <0.01 | <0.02 | <0.05 | <0.1 | <0.15 | <0.2 | <0.25 | <0.3 | <0.35 | ≤0.4 | >0.4 |
Evaluating Indicator | Contamination Degree | ||||
---|---|---|---|---|---|
Low | Moderate | High | Higher | Serious | |
< 40 | < 80 | < 160 | < 320 | ≥ 320 | |
RI | RI < 120 | 120 ≤ RI < 240 | 240 ≤ RI < 480 | RI ≥ 480 |
Parameters | Principal Components | ||||
---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | |
Cl− | 0.91 | 0.01 | −0.02 | −0.07 | 0.19 |
TDS | 0.87 | 0.33 | 0.04 | −0.18 | 0.13 |
Sal | 0.87 | 0.33 | 0.03 | −0.17 | 0.14 |
TH (CaCO3) | 0.83 | 0.08 | −0.25 | 0.16 | 0.01 |
TN | 0.82 | 0.37 | 0.07 | 0.29 | −0.08 |
NO3–N | 0.82 | 0.35 | 0.10 | 0.20 | −0.09 |
CODMn | 0.74 | 0.11 | 0.01 | 0.26 | 0.34 |
TP | 0.27 | 0.87 | 0.08 | 0.07 | −0.05 |
PO43− | 0.25 | 0.89 | −0.06 | 0.01 | 0.29 |
NH3–N | 0.12 | 0.06 | 0.06 | 0.93 | −0.12 |
DO | −0.23 | −0.15 | 0.02 | 0.16 | −0.90 |
pH | −0.24 | −0.15 | 0.84 | 0.22 | 0.19 |
WT | −0.26 | −0.29 | −0.76 | 0.18 | 0.32 |
Different Regional River Reaches | Adult Male | Adult Female | Children | |||
---|---|---|---|---|---|---|
CRI (×10−3) | HI (×10−2) | CRI (×10−3) | HI (×10−2) | CRI (×10−3) | HI (×10−2) | |
Mountain area | 3.30 ± 0.33 aA | 6.59 ± 0.43 aA | 3.81 ± 0.37 aA | 7.59 ± 0.50 aA | 27.60 ± 2.72 aB | 55.06 ± 3.60 aB |
Urban area | 4.42 ± 0.15 bA | 6.57 ± 0.23 aA | 5.10 ± 0.18 bA | 7.58 ± 0.27 aA | 36.95 ± 1.29 bB | 54.94 ± 1.93 aB |
Agricultural area | 7.10 ± 0.66 cA | 8.64 ± 0.57 bA | 8.18 ± 0.76 cA | 9.96 ± 0.66 bA | 59.32 ± 5.49 cB | 72.20 ± 4.80 bB |
Heavy Metals | Adult Male | Adult Female | Children | |||
---|---|---|---|---|---|---|
CRI (×10−4) | HQ (×10−3) | CRI (×10−4) | HQ (×10−3) | CRI (×10−4) | HQ (×10−3) | |
Cr | 42.20 ± 2.87 a | 34.31 ± 2.33 a | 48.63 ± 3.31 a | 39.54 ± 2.69 a | 352.66 ± 23.97 b | 286.72 ± 19.49 b |
As | 3.47 ± 0.19 a | 7.67 ± 0.42 a | 4.00 ± 0.22 a | 8.84 ± 0.49 a | 29.03 ± 1.60 b | 64.09 ± 3.54 b |
Cd | 0.02 ± 0.00 a | 0.30 ± 0.01 a | 0.02 ± 0.00 a | 0.35 ± 0.02 a | 0.16 ± 0.01 b | 2.55 ± 0.12 b |
Sb | - | 0.47 ± 0.02 a | - | 0.55 ± 0.02 a | - | 3.97 ± 0.16 b |
Pb | - | 26.53 ± 1.28 a | - | 30.57 ± 1.47 a | - | 221.69 ± 10.67 b |
Hg | - | 0.26 ± 0.03 a | - | 0.30 ± 0.04 a | - | 2.15 ± 0.28 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, H.; Wang, X.; Shang, J.; Gong, L.; Luo, H.; Sun, M.; Han, J.; Jiang, W.; Chen, J.; Liang, J.; et al. Comprehensive Evaluation of Pollution Status and Health Risk Assessment of Water Bodies in Different Reaches of the Shaying River. Water 2025, 17, 1892. https://doi.org/10.3390/w17131892
Qin H, Wang X, Shang J, Gong L, Luo H, Sun M, Han J, Jiang W, Chen J, Liang J, et al. Comprehensive Evaluation of Pollution Status and Health Risk Assessment of Water Bodies in Different Reaches of the Shaying River. Water. 2025; 17(13):1892. https://doi.org/10.3390/w17131892
Chicago/Turabian StyleQin, Haiming, Xinxin Wang, Jingwen Shang, Leiqiang Gong, Hao Luo, Minfang Sun, Jiamin Han, Wanxiang Jiang, Jing Chen, Jinhui Liang, and et al. 2025. "Comprehensive Evaluation of Pollution Status and Health Risk Assessment of Water Bodies in Different Reaches of the Shaying River" Water 17, no. 13: 1892. https://doi.org/10.3390/w17131892
APA StyleQin, H., Wang, X., Shang, J., Gong, L., Luo, H., Sun, M., Han, J., Jiang, W., Chen, J., Liang, J., & Yang, Y. (2025). Comprehensive Evaluation of Pollution Status and Health Risk Assessment of Water Bodies in Different Reaches of the Shaying River. Water, 17(13), 1892. https://doi.org/10.3390/w17131892