Analysis of the Driving Factors for Land Subsidence in the Northern Anhui Plain: A Case Study of Bozhou City
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of the Study Area
2.2. Data
2.2.1. Sentinel-1
2.2.2. SRTM DEM
2.2.3. Other Data
3. Methodology and Data Processing
3.1. Land Subsidence Monitoring
3.1.1. Principle of SBAS-InSAR
3.1.2. Data Processing Workflow
3.2. Geographical Detector Model
4. Results and Analysis
4.1. Accuracy Validation
4.2. Spatiotemporal Characteristics of Land Subsidence
4.3. Single-Factor Detection Results of the GeoDetector Model
4.4. Interaction Detection Outcomes of the GeoDetector-Based Investigation
5. Discussion
5.1. Synergistic Effects of the Groundwater System and Geological Setting
5.2. Coupled Feedback Mechanisms Between Urbanization and Subsurface Systems
5.3. Limitations and Perspectives on Groundwater-Induced Land Subsidence
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateos, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P.; et al. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.L.; Xu, Y.S. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can. Geotech. J. 2011, 48, 1378–1392. [Google Scholar] [CrossRef]
- Erban, L.E.; Gorelick, S.M.; Zebker, H.A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 2014, 9, 084010. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.L.; Jin, M.Q.; Jing, Y.; Liu, Y.; Liu, Y.F.; Sun, W.; Wei, J.Q.; Chen, Y. Monitoring Land Subsidence in Wuhan City (China) using the SBAS-InSAR Method with Radarsat-2 Imagery Data. Sensors 2019, 19, 743. [Google Scholar] [CrossRef]
- Figueroa-Miranda, S.; Tuxpan-Vargas, J.; Ramos-Leal, J.A.; Hernández-Madrigal, V.M.; Villaseñor-Reyes, C.I. Land subsidence by groundwater over-exploitation from aquifers in tectonic valleys of Central Mexico: A review. Eng. Geol. 2018, 246, 91–106. [Google Scholar] [CrossRef]
- Fiaschi, S.; Tessitore, S.; Bonì, R.; Di Martire, D.; Achilli, V.; Borgstrom, S.; Ibrahim, A.; Floris, M.; Meisina, C.; Ramondini, M.; et al. From ERS-1/2 to Sentinel-1: Two decades of subsidence monitored through A-DInSAR techniques in the Ravenna area (Italy). GISci. Remote Sens. 2017, 54, 305–328. [Google Scholar] [CrossRef]
- Li, H.J.; Zhu, L.; Dai, Z.X.; Gong, H.L.; Guo, T.; Guo, G.X.; Wang, J.B.; Teatini, P. Spatiotemporal modeling of land subsidence using a geographically weighted deep learning method based on PS-InSAR. Sci. Total Environ. 2021, 799, 149244. [Google Scholar] [CrossRef]
- Wang, S.L.; Wang, G.Y.; Huang, M.; Song, J.; Yang, X.Y.; Zhang, T.Y.; Ji, W.Y.; Zhang, S.; Wu, W.L.; Wei, C.W.; et al. Spatio-Temporal Characteristics of Land Subsidence and Driving Factors Analysis in Shenzhen. Water 2024, 16, 1200. [Google Scholar] [CrossRef]
- Cao, Q.Y.; Zhang, Y.F.; Yang, L.; Chen, J.M.; Hou, C.H. Unveiling the driving factors of urban land subsidence in Beijing, China. Sci. Total Environ. 2024, 916, 170134. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Gao, Z.; Xiao, R.; Luo, H.; Jia, D.; Zhang, Z. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring. Acta Geod. Cartogr. Sin. 2022, 51, 1338–1355. [Google Scholar]
- Li, Z.; Xu, W.; Hu, J.; Feng, G.; Yang, Z.; Li, J.; Zhang, H.; Chen, Q.; Zhu, J.; Wang, Q.; et al. Partial geoscience parameters inversion from InSAR observation. Acta Geod. Cartogr. Sin. 2022, 51, 1458–1475. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Perski, Z.; Wojciechowski, T.; Borkowski, A. Persistent Scatterer Sar Interferometry Applications on Landslides in Carpathians (Southern Poland). Acta Geodyn. Geomater. 2010, 7, 363. [Google Scholar]
- Samsonov, S.; Tiampo, K. Polarization Phase Difference Analysis for Selection of Persistent Scatterers in SAR Interferometry. IEEE Geosci. Remote Sens. Lett. 2011, 8, 331–335. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Z.; Hu, J. Research Progress and Methods of InSAR for Deformation Monitoring. Acta Geod. Cartogr. Sin. 2017, 46, 1717–1733. [Google Scholar]
- Zhang, P.; Guo, Z.H.; Guo, S.F.; Xia, J. Land Subsidence Monitoring Method in Regions of Variable Radar Reflection Characteristics by Integrating PS-InSAR and SBAS-InSAR Techniques. Remote Sens. 2022, 14, 3265. [Google Scholar] [CrossRef]
- Guo, H.L.; Yuan, Y.H.; Wang, J.Y.; Cui, J.; Zhang, D.J.; Zhang, R.R.; Cao, Q.Z.R.; Li, J.; Dai, W.H.; Bao, H.M.; et al. Large-Scale Land Subsidence Monitoring and Prediction Based on SBAS-InSAR Technology with Time-Series Sentinel-1A Satellite Data. Remote Sens. 2023, 15, 2843. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Z.X.; Chen, Z.W.; Wang, S.Y.; Cui, H.; Zheng, Y.Z. Predictable Condition Analysis and Prediction Method of SBAS-InSAR Coal Mining Subsidence. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5232914. [Google Scholar] [CrossRef]
- Chai, L.; Wei, L.; Cai, P.; Liu, J.; Kang, J.; Zhang, Z. Risk assessment of land subsidence based on GIS in the Yongqiao area, Suzhou City, China. Sci. Rep. 2024, 14, 11377. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.M.; Chen, Z.X.; Zhang, T.; Wu, Q.J.; Zhou, C.K.; Shu, Y.; Wu, J.D.; Chen, L.J. Spatial and temporal evolution characteristics of land subsidence in Fuyang: Time series InSAR monitoring and analysis of impacting factors. Earth Sci. Inform. 2025, 18, 271. [Google Scholar] [CrossRef]
- Quan, L.A.; Jin, S.G.; Zhang, J.X.; Chen, J.Y.; He, J.J. Subsidence Characteristics in North Anhui Coal Mining Areas Using Space-Air-Ground Collaborative Observations. Sensors 2024, 24, 3869. [Google Scholar] [CrossRef]
- Zhang, N. Bozhou Extent of Groundwater Exploitation and Evaluation of the Effect of Limiting Mining Forecast. Master’s Thesis, Hefei University of Technology, Hefei, China, 2014. [Google Scholar]
- Xu, J. Environmental Hydrogeochemical Characteristies of Groundwater in Loose Bed of the Huaibei Plain. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2024. [Google Scholar]
- Xu, T. Geological Calamity Assessment and Engineering Countermeasureon Bozhou City Economic and Technological Development Zone. Master’s Thesis, Hefei University of Technology, Hefei, China, 2009. [Google Scholar]
- Chang, X. The Research of Scheme in Preventing Flood of Bozhou City. Master’s Thesis, Hefei University of Technology, Hefei, China, 2005. [Google Scholar]
- Rafiei, F.; Gharechelou, S.; Golian, S.; Johnson, B.A. Aquifer and Land Subsidence Interaction Assessment Using Sentinel-1 Data and DInSAR Technique. ISPRS Int. J. Geo-Inf. 2022, 11, 495. [Google Scholar] [CrossRef]
- Fernández-Torres, E.A.; Cabral-Cano, E.; Solano-Rojas, D.; Salazar-Tlaczani, L.; Gárcia-Venegas, J.; Marquez-Azúa, B.; Graham, S.; Villarnobo-Gonzalez, K.M. Country-scale assessment of urban areas, population, and households exposed to land subsidence using Sentinel-1 InSAR, and GPS time series. Nat. Hazards 2024, 120, 1577–1601. [Google Scholar] [CrossRef]
- Liu, H.H.; Zhang, Z.; Liu, S.Y.; Xie, F.M.; Ding, J.; Li, G.L.; Su, H.R. Quantifying Spatiotemporal Changes in Supraglacial Debris Cover in Eastern Pamir from 1994 to 2024 Based on the Google Earth Engine. Remote Sens. 2025, 17, 144. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, G.F.; Zhao, H.H.; Wang, J.Z.; Qiao, B.J. Estimation of Lake Storage Based on the Surrounding Topography around the Lake from the SRTM DEM. Water 2023, 15, 1015. [Google Scholar] [CrossRef]
- Ouyang, Y.; Feng, T.; Feng, H.; Wang, X.H.; Zhang, H.Y.; Zhou, X.X. Deformation Monitoring and Potential Risk Detection of In-Construction Dams Utilizing SBAS-InSAR Technology-A Case Study on the Datengxia Water Conservancy Hub. Water 2024, 16, 1025. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Z.W.; Feng, G.C.; Wang, Q.J.; Hu, J. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Tizzani, P.; Berardino, P.; Casu, F.; Euillades, P.; Manzo, M.; Ricciardi, G.P.; Zeni, G.; Lanari, R. Surface deformation of Long Valley Caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sens. Environ. 2007, 108, 277–289. [Google Scholar] [CrossRef]
- Dong, S.C.; Samsonov, S.; Yin, H.W.; Ye, S.J.; Cao, Y.R. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ. Earth Sci. 2014, 72, 677–691. [Google Scholar] [CrossRef]
- Yu, H.H.; Li, B.Q.; Xiao, Y.; Sun, J.Y.; Chen, C.; Jin, G.Y.; Liu, H.Y. Surface Subsidence over a Coastal City Using SBAS-InSAR with Sentinel-1A Data: A Case of Nansha District, China. Remote Sens. 2024, 16, 55. [Google Scholar] [CrossRef]
- Castellazzi, P.; Garfias, J.; Martel, R.; Brouard, C.; Rivera, A. InSAR to support sustainable urbanization over compacting aquifers: The case of Toluca Valley, Mexico. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 33–44. [Google Scholar] [CrossRef]
- Zhu, L.J.; Meng, J.J.; Zhu, L.K. Applying GeoDetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 12. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. GeoDetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Liu, J.; Shanguan, D.H.; Liu, S.Y.; Ding, Y.J. Evaluation and Hydrological Simulation of CMADS and CFSR Reanalysis Datasets in the Qinghai-Tibet Plateau. Water 2018, 10, 513. [Google Scholar] [CrossRef]
- Gong, H.L.; Pan, Y.; Zheng, L.Q.; Li, X.J.; Zhu, L.; Zhang, C.; Huang, Z.Y.; Li, Z.P.; Wang, H.G.; Zhou, C.F. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeol. J. 2018, 26, 1417–1427. [Google Scholar] [CrossRef]
- Bull, W.B. Geologic Factors Affecting Compaction of Deposits in a Land-Subsidence Area. GSA Bull. 1973, 84, 3783–3802. [Google Scholar] [CrossRef]
- Smith, R.G.; Majumdar, S. Groundwater Storage Loss Associated With Land Subsidence in Western United States Mapped Using Machine Learning. Water Resour. Res. 2020, 56, e2019WR026621. [Google Scholar] [CrossRef]
- Li, Y.; Gong, H.; Zhu, L.; Li, X. Measuring Spatiotemporal Features of Land Subsidence, Groundwater Drawdown, and Compressible Layer Thickness in Beijing Plain, China. Water 2017, 9, 64. [Google Scholar] [CrossRef]
- Faunt, C.C.; Traum, J.A.; Boyce, S.E.; Seymour, W.A.; Jachens, E.R.; Brandt, J.T.; Sneed, M.; Bond, S.; Marcelli, M.F. Groundwater Sustainability and Land Subsidence in California’s Central Valley. Water 2024, 16, 1189. [Google Scholar] [CrossRef]
- Zhu, L.; Gong, H.L.; Li, X.J.; Wang, R.; Chen, B.B.; Dai, Z.X.; Teatini, P. Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Eng. Geol. 2015, 193, 243–255. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Z.; Cheng, G.; Li, W.; Li, T.; Jiao, J.J. Groundwater-derived land subsidence in the North China Plain. Environ. Earth Sci. 2015, 74, 1415–1427. [Google Scholar] [CrossRef]
- Wu, J.C.; Shi, X.Q.; Xue, Y.Q.; Zhang, Y.; Wei, Z.X.; Yu, J. The development and control of the land subsidence in the Yangtze Delta, China. Environ. Geol. 2008, 55, 1725–1735. [Google Scholar] [CrossRef]
- Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D.F.; Farr, T.G. Sustained Groundwater Loss in California’s Central Valley Exacerbated by Intense Drought Periods. Water Resour. Res. 2018, 54, 4449–4460. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Orbit Altitude (km) | 700 |
Revisit Period (days) | 12 |
Incidence Angle (°) | 29–46 |
Resolution (m) | 5 × 20 |
Swath Width (km) | 250 |
Polarization Mode | VV |
Orbit Numbers | 142, 101/142, 106 |
Point ID | Measured Deformation (mm) | SBAS-InSAR Derived Deformation (mm) | Difference (mm) |
---|---|---|---|
BJ01 | 3 | 3.83 | 0.83 |
BJ02 | −1 | −0.54 | −0.46 |
BXJ08 | −4 | −3.78 | −0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Liu, H.; Wei, L.; Zhang, Z. Analysis of the Driving Factors for Land Subsidence in the Northern Anhui Plain: A Case Study of Bozhou City. Water 2025, 17, 1854. https://doi.org/10.3390/w17131854
He Q, Liu H, Wei L, Zhang Z. Analysis of the Driving Factors for Land Subsidence in the Northern Anhui Plain: A Case Study of Bozhou City. Water. 2025; 17(13):1854. https://doi.org/10.3390/w17131854
Chicago/Turabian StyleHe, Qing, Hehe Liu, Lu Wei, and Zhen Zhang. 2025. "Analysis of the Driving Factors for Land Subsidence in the Northern Anhui Plain: A Case Study of Bozhou City" Water 17, no. 13: 1854. https://doi.org/10.3390/w17131854
APA StyleHe, Q., Liu, H., Wei, L., & Zhang, Z. (2025). Analysis of the Driving Factors for Land Subsidence in the Northern Anhui Plain: A Case Study of Bozhou City. Water, 17(13), 1854. https://doi.org/10.3390/w17131854