Monitoring and Evaluation of Water Quality from Chirita Lake, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Reagents Used in the Determinations
2.4. Methods of Analysis and Equipment
2.5. Calculation of Standard Deviations and Pearson Correlation Coefficients
3. Results and Discussion
3.1. Spatial Variations in the Physical–Chemical Indicators of Water Quality
3.2. Correlation Analysis
3.3. Seasonal Correlation of Water Quality Indicators
3.4. Classification of Water in the Chirita Reservoir According to Legal Quality Standards
3.5. Comparisons with Monitoring Systems in Other EU Lakes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EU | European Union |
WFD | Water Framework Directive |
RBMPs | River Basin Management Plans |
BQEs | Biological Quality Elements |
Mva | Mega Volt Ampere |
PCC | Pearson Correlation Coefficient |
Twater | Temperature of water |
EC | Electrical Conductivity |
TB | Turbidity |
TH | Hardness |
SO | Organic Matter |
Cl | Chlorides |
NO3− | Nitrates |
NO2− | Nitrites |
TA | Alkalinity |
NH4+ | Ammonium |
References
- Saeed, O.; Székács, A.; Jordán, G.; Mörtl, M.; Abukhadra, M.R.; El-Sherbeeny, A.M.; Szűcs, P.; Eid, M.H. Assessing Surface Water Quality in Hungary’s Danube Basin Using Geochemical Modeling, Multivariate Analysis, Irrigation Indices, and Monte Carlo Simulation. Sci. Rep. 2024, 14, 18639. [Google Scholar] [CrossRef] [PubMed]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of Water Quality Using Water Quality Index (WQI) Method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584–585, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, S.; Ibrahim, H.; Hussein, H.; Elsherbiny, O.; Elmetwalli, A.H.; Moghanm, F.S.; Ghoneim, A.M.; Danish, S.; Datta, R.; Gad, M. Assessment of Water Quality in Lake Qaroun Using Ground-Based Remote Sensing Data and Artificial Neural Networks. Water 2021, 13, 3094. [Google Scholar] [CrossRef]
- Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Spatial and Temporal Variations in Surface Water Quality of the Dam Reservoirs in the Tigris River Basin, Turkey. Catena 2012, 92, 11–21. [Google Scholar] [CrossRef]
- Fashae, A.; Ayorinde, A.; Olusola, O.; Obateru, O. Landuse and Surface Water Quality in an Emerging Urban City. Appl. Water Sci. 2019, 9, 25. [Google Scholar] [CrossRef]
- Saturday, A.; Lyimo, T.J.; Machiwa, J.; Pamba, S. Spatio-Temporal Variations in Physicochemical Water Quality Parameters of Lake Bunyonyi, Southwestern Uganda. SN Appl. Sci. 2021, 3, 684. [Google Scholar] [CrossRef]
- Nguyen, T.G.; Huynh, T.H.N. Assessment of Surface Water Quality and Monitoring in Southern Vietnam Using Multicriteria Statistical Approaches. Sustain. Environ. Res. 2022, 32, 20. [Google Scholar] [CrossRef]
- Mama, A.C.; Bodo, W.K.A.; Ghepdeu, G.F.Y.; Ajonina, G.N.; Ndam, J.R.N. Understanding Seasonal and Spatial Variation of Water Quality Parameters in Mangrove Estuary of the Nyong River Using Multivariate Analysis (Cameroon Southern Atlantic Coast). Open J. Mar. Sci. 2021, 11, 103–128. [Google Scholar] [CrossRef]
- Varol, M. Use of Water Quality Index and Multivariate Statistical Methods for the Evaluation of Water Quality of a Stream Affected by Multiple Stressors: A Case Study. Environ. Pollut. 2020, 266, 115417. [Google Scholar] [CrossRef]
- Tibebe, D.; Kassa, Y.; Melaku, A.; Lakew, S. Investigation of Spatio-Temporal Variations of Selected Water Quality Parameters and Trophic Status of Lake Tana for Sustainable Management, Ethiopia. Microchem. J. 2019, 148, 374–384. [Google Scholar] [CrossRef]
- Noori, R.; Berndtsson, R.; Hosseinzadeh, M.; Adamowski, J.F.; Abyaneh, M.R. A Critical Review on the Application of the National Sanitation Foundation Water Quality Index. Environ. Pollut. 2019, 244, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Kikuda, R.; Gomes, R.P.; Gama, A.R.; Silva, J.A.D.P.; Dos Santos, A.P.; Alves, K.R.; Arruda, P.N.; Scalize, P.S.; Vieira, J.D.G.; Carneiro, L.C.; et al. Evaluation of Water Quality of Buritis Lake. Water 2022, 14, 1414. [Google Scholar] [CrossRef]
- Szűcs, P.; Dobróka, M.; Turai, E.; Szarka, L.; Ilyés, C.; Eid, M.H.; Szabó, N.P. Combined Inversion and Statistical Workflow for Advanced Temporal Analysis of the Nile River’s Long Term Water Level Records. J. Hydrol. 2024, 630, 130693. [Google Scholar] [CrossRef]
- Mokarram, M.; Saber, A.; Sheykhi, V. Effects of Heavy Metal Contamination on River Water Quality Due to Release of Industrial Effluents. J. Clean. Prod. 2020, 277, 123380. [Google Scholar] [CrossRef]
- Zait, R.; Fighir, D.; Sluser, B.; Plavan, O.; Teodosiu, C. Priority Pollutants Effects on Aquatic Ecosystems Evaluated through Ecotoxicity, Impact, and Risk Assessments. Water 2022, 14, 3237. [Google Scholar] [CrossRef]
- Qadir, A.; Malik, R.N.; Husain, S.Z. Spatio-Temporal Variations in Water Quality of Nullah Aik-Tributary of the River Chenab, Pakistan. Environ. Monit. Assess. 2008, 140, 43–59. [Google Scholar] [CrossRef]
- Malaj, E.; Von Der Ohe, P.C.; Grote, M.; Kühne, R.; Mondy, C.P.; Usseglio-Polatera, P.; Brack, W.; Schäfer, R.B. Organic Chemicals Jeopardize the Health of Freshwater Ecosystems on the Continental Scale. Proc. Natl. Acad. Sci. USA 2014, 111, 9549–9554. [Google Scholar] [CrossRef]
- Brack, W.; Dulio, V.; Ågerstrand, M.; Allan, I.; Altenburger, R.; Brinkmann, M.; Bunke, D.; Burgess, R.M.; Cousins, I.; Escher, B.I.; et al. Towards the Review of the European Union Water Framework Directive: Recommendations for More Efficient Assessment and Management of Chemical Contamination in European Surface Water Resources. Sci. Total Environ. 2017, 576, 720–737. [Google Scholar] [CrossRef]
- Kachroud, M.; Trolard, F.; Kefi, M.; Jebari, S.; Bourrié, G. Water Quality Indices: Challenges and Application Limits in the Literature. Water 2019, 11, 361. [Google Scholar] [CrossRef]
- Order 161/2006; for the Approval of the Normative Concerning the Classification of Surface Water Quality to Establish the Ecological Status of Water Bodies. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/72574 (accessed on 13 April 2022). (In Romanian).
- European Commision. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal of the European Communities. L 327. European Commision: Brussel, Belgium, 2000. Available online: https://www.eea.europa.eu/policy-documents/directive-2000-60-ec-of (accessed on 23 May 2025).
- Maia, R. The WFD Implementation in the European Member States. Water Resour. Manag. 2017, 31, 3043–3060. [Google Scholar] [CrossRef]
- Martin-Ortega, J. Economic Prescriptions and Policy Applications in the Implementation of the European Water Framework Directive. Environ. Sci. Policy 2012, 24, 83–91. [Google Scholar] [CrossRef]
- Directive 2008/105/EC of the European Parliament and of the Council on Environmental Quality Standards in the Field of Water Policy, Amending and Subsequently Repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and Amending Directive 2000/60/EC of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/eli/dir/2008/105/oj/eng (accessed on 13 April 2022). (In Romanian).
- National Management Plans. Administrația Națională Apele Române. Available online: https://rowater.ro/institution-activity/departments/integrated-european-water-resources-management/management-plans/national-management-plans/?lang=en (accessed on 9 April 2025). (In Romanian).
- National Environmental Protection Agency of Romania Romanian National Environmental Protection Agency. Annual Report on the State of the Environment in Romania for 2017; Environment Ministry: Bucuresti, Romania, 2018. [Google Scholar]
- Arle, J.; Mohaupt, V.; Kirst, I. Monitoring of Surface Waters in Germany under the Water Framework Directive—A Review of Approaches, Methods and Results. Water 2016, 8, 217. [Google Scholar] [CrossRef]
- Behmel, S.; Damour, M.; Ludwig, R.; Rodriguez, M.J. Water Quality Monitoring Strategies—A Review and Future Perspectives. Sci. Total Environ. 2016, 571, 1312–1329. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, J.; Stehle, S.; Bub, S.; Petschick, L.L.; Schulz, R. Water Quality and Ecological Risks in European Surface Waters—Monitoring Improves While Water Quality Decreases. Environ. Int. 2021, 152, 106479. [Google Scholar] [CrossRef]
- Borja, A.; Bricker, S.B.; Dauer, D.M.; Demetriades, N.T.; Ferreira, J.G.; Forbes, A.T.; Hutchings, P.; Jia, X.; Kenchington, R.; Marques, J.C.; et al. Overview of Integrative Tools and Methods in Assessing Ecological Integrity in Estuarine and Coastal Systems Worldwide. Mar. Pollut. Bull. 2008, 56, 1519–1537. [Google Scholar] [CrossRef]
- Ion, A.; Vladescu, L.; Badea, I.A.; Comanescu, L. Monitoring and Evaluation of the Water Quality of Budeasa Reservoir–Arges River, Romania. Environ. Monit. Assess. 2016, 188, 535. [Google Scholar] [CrossRef]
- Sur, I.M.; Moldovan, A.; Micle, V.; Polyak, E.T. Assessment of Surface Water Quality in the Baia Mare Area, Romania. Water 2022, 14, 3118. [Google Scholar] [CrossRef]
- Roșca, O.M.; Dippong, T.; Marian, M.; Mihali, C.; Mihalescu, L.; Hoaghia, M.A.; Jelea, M. Impact of Anthropogenic Activities on Water Quality Parameters of Glacial Lakes from Rodnei Mountains, Romania. Environ. Res. 2020, 182, 109136. [Google Scholar] [CrossRef]
- Giurma, I.; Crăciun, I.; Giurma, C.R. The Analysis of the Impact of Storage Lake on Environment Using the Chemical Characterization of the Water Resources. Case Study Bahlui Basin River. Ovidius Univ. Ann. Ser. Civ. Eng. 2007, 9, 119–124. [Google Scholar]
- Iticescu, C.; Georgescu, L.P.; Murariu, G.; Topa, C.; Timofti, M.; Pintilie, V.; Arseni, M. Lower Danube Water Quality Quantified through WQI and Multivariate Analysis. Water 2019, 11, 1305. [Google Scholar] [CrossRef]
- Teodosiu, C.; Robu, B.; Cojocariu, C.; Barjoveanu, G. Environmental Impact and Risk Quantification Based on Selected Water Quality Indicators. Nat. Hazards 2015, 75, 89–105. [Google Scholar] [CrossRef]
- Peiu, N.; Simionescu, D.; Ostap, C. Lungul drum al apei pentru Iaşi. In Istoricul Alimentării Cu Apă Şi Canalizării Dulcelui Târg; Asachiana: Iasi, Romania, 2023; ISBN 978-606-9047-44-6. [Google Scholar]
- SR ISO 5667-4; 1987-Water Quality-Sampling, Part 4: Guidance on Sampling from Lakes, Natural and Man-Made. ISO: Geneva, Switzerland, 1987.
- SR EN ISO 5667-3; 2018-Water Quality-Sampling, Part 3: Preservation and Handling of Water Samples. ISO: Geneva, Switzerland, 2018.
- EC (1975). Council Directive (75/440/EEC). (1975). Quality Required of Surface Water Intended for the Abstraction of Drinking Water in the Member States. Official Journal of the European Communities. L 194. European Commision: Brussel, Belgium, 2000. Available online: https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vi8rm2unjkyb (accessed on 23 May 2025).
- Cohl, M.; Lazar, L.; Balasanian, I. Evaluation of the quality of natural waters used as sources for drinking water. Environ. Eng. Manag. J. 2014, 13, 2301–2310. [Google Scholar]
- Uddin, M.N.; Alam, M.S.; Mobin, M.N.; Miah, M.A. An Assessment of the River Water Quality Parameters: A Case of Jamuna River. J. Environ. Sci. Nat. Resour. 2014, 7, 249–256. [Google Scholar] [CrossRef]
- Tong, N.X.; Hoa, N.K.; Tram, N.T.T.; Khang, L.T.P. Water Quality Index, Heavy Metals, and Endocrine Disruptors in the Saigon River Basin: Pollution Assessment and Correlation Analysis. Environ. Qual. Manag. 2025, 34, e70063. [Google Scholar] [CrossRef]
- Khatoon, N. Correlation Study for the Assessment of Water Quality and Its Parameters of Ganga River, Kanpur, Uttar Pradesh, India. IOSR J. Appl. Chem. 2013, 5, 80–90. [Google Scholar] [CrossRef]
- Liu, Z.; Joo, J.C.; Kang, E.B.; Kim, J.H.; Oh, S.E.; Choi, S.H. Assessment of Water Quality and Algae Growth for the Ganwol Reservoir Using Multivariate Statistical Analysis. Int. J. River Basin Manag. 2020, 18, 217–230. [Google Scholar] [CrossRef]
- Tajmunnaher, T.; Chowdhury, M.A.I. Chowdhury Correlation Study for Assessment of Water Quality and Its Parameters of Kushiyara River. Int. J. New Technol. Res. (IJNTR) 2017, 3, 263179. [Google Scholar]
- Lozba-Ştirbuleac, R.S.; Giurma-Handley, C.R.; Giurma, I. Water quality characterization of the prut river. Environ. Eng. Manag. J. 2011, 10, 411–419. [Google Scholar] [CrossRef]
- Grobbelaar, J.U. Nutrients versus Physical Factors in Determining the Primary Productivity of Waters with High Inorganic Turbidity. Hydrobiologia 1992, 238, 177–182. [Google Scholar] [CrossRef]
- Yousif, M.; Burdett, H.; Wellen, C.; Mandal, S.; Arabian, G.; Smith, D.; Sorichetti, R.J. An Innovative Approach to Correct Data from In-Situ Turbidity Sensors for Surface Water Monitoring. Environ. Model. Softw. 2022, 155, 105461. [Google Scholar] [CrossRef]
- Zhu, S.; Di Nunno, F.; Ptak, M.; Sojka, M.; Granata, F. A Novel Optimized Model Based on NARX Networks for Predicting Thermal Anomalies in Polish Lakes during Heatwaves, with Special Reference to the 2018 Heatwave. Sci. Total Environ. 2023, 905, 167121. [Google Scholar] [CrossRef] [PubMed]
- Heddam, S.; Ptak, M.; Zhu, S. Modelling of Daily Lake Surface Water Temperature from Air Temperature: Extremely Randomized Trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN. J. Hydrol. 2020, 588, 125130. [Google Scholar] [CrossRef]
- Jungkeit-Milla, K.; Pérez-Cabello, F.; de Vera-García, A.V.; Galofré, M.; Valero-Garcés, B. Lake Surface Water Temperature in High Altitude Lakes in the Pyrenees: Combining Satellite with Monitoring Data to Assess Recent Trends. Sci. Total Environ. 2024, 933, 173181. [Google Scholar] [CrossRef] [PubMed]
- Akoto, O.; Adopler, A.; Tepkor, H.E.; Opoku, F. A Comprehensive Evaluation of Surface Water Quality and Potential Health Risk Assessments of Sisa River, Kumasi. Groundw. Sustain. Dev. 2021, 15, 100654. [Google Scholar] [CrossRef]
- Oliveira, T.R.; Cunha, J.P.V.S. Global Output Feedback Sliding Mode Control of Nonlinear Systems with Multiple Time Delays. IFAC Proc. Vol. 2014, 47, 4619–4624. [Google Scholar] [CrossRef]
- Qiao, Y.; Feng, J.; Liu, X.; Wang, W.; Zhang, P.; Zhu, L. Surface Water PH Variations and Trends in China from 2004 to 2014. Environ. Monit. Assess. 2016, 188, 443. [Google Scholar] [CrossRef]
- Sun, X.; Rosado, D.; Hörmann, G.; Zhang, Z.; Loose, L.; Nambi, I.; Fohrer, N. Assessment of Seasonal and Spatial Water Quality Variation in a Cascading Lake System in Chennai, India. Sci. Total Environ. 2023, 858, 159924. [Google Scholar] [CrossRef]
- Al Mamun, M.A.; Howladar, M.F.; Sohail, M.A. Assessment of Surface Water Quality Using Fuzzy Analytic Hierarchy Process (FAHP): A Case Study of Piyain River’s Sand and Gravel Quarry Mining Area in Jaflong, Sylhet. Groundw. Sustain. Dev. 2019, 9, 100208. [Google Scholar] [CrossRef]
- Ravikumar, P.; Venkatesharaju, K.; Somashekar, R.K. Major Ion Chemistry and Hydrochemical Studies of Groundwater of Bangalore South Taluk, India. Environ. Monit. Assess. 2010, 163, 643–653. [Google Scholar] [CrossRef]
- ORDIN nr. 1.146 Din 10 Decembrie 2002—Normativului Privind Obiectivele de Referinţa Pentru Clasificarea Calităţii Apelor de Suprafaţa. Uniunea Europeana: Brussel, Belgium, 2002. Available online: https://lege5.ro/gratuit/gm2toobt/ordinul-nr-1146-2002-pentru-aprobarea-normativului-privind-obiectivele-de-referinta-pentru-clasificarea-calitatii-apelor-de-suprafata (accessed on 23 May 2025).
- Zakaria, N.; Anornu, G.; Adomako, D.; Owusu-Nimo, F.; Gibrilla, A. Evolution of Groundwater Hydrogeochemistry and Assessment of Groundwater Quality in the Anayari Catchment. Groundw. Sustain. Dev. 2021, 12, 100489. [Google Scholar] [CrossRef]
- Kothari, V.; Vij, S.; Sharma, S.K.; Gupta, N. Correlation of Various Water Quality Parameters and Water Quality Index of Districts of Uttarakhand. Environ. Sustain. Indic. 2021, 9, 100093. [Google Scholar] [CrossRef]
- Poste, A.E.; Grung, M.; Wright, R.F. Amines and Amine-Related Compounds in Surface Waters: A Review of Sources, Concentrations and Aquatic Toxicity. Sci. Total Environ. 2014, 481, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Pärn, J.; Pinay, G.; Mander, Ü. Indicators of Nutrients Transport from Agricultural Catchments under Temperate Climate: A Review. Ecol. Indic. 2012, 22, 4–15. [Google Scholar] [CrossRef]
- Bostanmaneshrad, F.; Partani, S.; Noori, R.; Nachtnebel, H.P.; Berndtsson, R.; Adamowski, J.F. Relationship between Water Quality and Macro-Scale Parameters (Land Use, Erosion, Geology, and Population Density) in the Siminehrood River Basin. Sci. Total Environ. 2018, 639, 1588–1600. [Google Scholar] [CrossRef]
- Chapman, D.V. Water Quality Assessments—A Guide to Use of Biota, Sediments and Water in Environmental Monitoring-Second Edition; E & FN Spon: London, UK, 1992. [Google Scholar]
- Castañé, P.M.; Sánchez-Caro, A.; Salibián, A. Water Quality of the Luján River, a Lowland Watercourse near the Metropolitan Area of Buenos Aires (Argentina). Environ. Monit. Assess. 2015, 187, 645. [Google Scholar] [CrossRef]
- Makokha, V.A.; Qi, Y.; Shen, Y.; Wang, J. Concentrations, Distribution, and Ecological Risk Assessment of Heavy Metals in the East Dongting and Honghu Lake, China. Expo. Health 2016, 8, 31–41. [Google Scholar] [CrossRef]
- Evans, J.D. Straightforward. In Statistics for the Behavioral Sciences; Thomson Brooks/Cole Publishing Co.: Pacific Grove, CA, USA, 1996. [Google Scholar]
- Ouyang, Y.; Nkedi-Kizza, P.; Wu, Q.T.; Shinde, D.; Huang, C.H. Assessment of Seasonal Variations in Surface Water Quality. Water Res. 2006, 40, 3800–3810. [Google Scholar] [CrossRef]
- GD NTPA-014 (2002). Standard on the Methods of Measurement and Frequency of Sampling and Analysis of Surface Water Samples Intended for Drinking Water Production. Available online: https://sintact.ro/legislatie/monitorul-oficial/normativ-ntpa-014-2002-privind-metodele-de-masurare-si-frecventa-16831120/art-7 (accessed on 23 May 2025).
- NTPA-013 (2002). Water Quality Technical Norms. Monitorul Oficial al Romaniei, Partea I, (No. 130), Bucuresti. Available online: https://lege5.ro/gratuit/gqydinrw/norma-de-calitate-pe-care-trebuie-sa-le-indeplineasca-apele-de-suprafata-utilizate-pentru-potabilizare-ntpa-013-din-07022002 (accessed on 27 April 2025).
- Rizk, R.; Alameraw, M.; Rawash, M.A.; Juzsakova, T.; Domokos, E.; Hedfi, A.; Almalki, M.; Boufahja, F.; Gabriel, P.; Shafik, H.M.; et al. Does Lake Balaton Affected by Pollution? Assessment through Surface Water Quality Monitoring by Using Different Assessment Methods. Saudi J. Biol. Sci. 2021, 28, 5250–5260. [Google Scholar] [CrossRef]
- Falah, A.; Yemendzhiev Assen, H.; Peeva, G.; Koleva, R.; Yemendzhiev, H.; Nenov, V. Monitoring and Water Quality Assessment of Burgas Lake (Vaya Lake) in the Black Sea Region of Republic of Bulgaria. Int. J. Life Sci. Res. 2019, 7, 130–140. [Google Scholar]
- Frondini, F.; Dragoni, W.; Morgantini, N.; Donnini, M.; Cardellini, C.; Caliro, S.; Melillo, M.; Chiodini, G. An Endorheic Lake in a Changing Climate: Geochemical Investigations at Lake Trasimeno (Italy). Water 2019, 11, 1319. [Google Scholar] [CrossRef]
- Marković, G.; Kostić, A.; Pantelić, N.; Maletić, R.; Štrbački, J.; Cakić, J.; Kaluđerović, L.; Dojčinović, B.P.; Giuffrè, A.M.; Popović-Djordjević, J.B. Spatial Distribution of Major and Trace Elements in Artificial Lakes in Serbia: Health Risk Indices and Suitability of Water for Drinking and Irrigation Purposes. Environ. Monit. Assess. 2023, 195, 1237. [Google Scholar] [CrossRef]
Location | 47°09′11″ N 27°39′41″ E |
Area | 78 ha |
Year of commissioning | 10 August 1964 |
Dam length | ~300 m |
Dam height | ~15 m |
Total volume | 5 × 106 m3 |
Maximum depth | 15 m |
Medium volume recorded | 3,877,500 m3 |
Minimum volume recorded | 101,200 m3 |
Characteristics | Indicator Parameter | Unit of Measurement | Method of Analysis | Equipment/ Reagents | Standard Methods |
---|---|---|---|---|---|
General | Temperature (Twater) | °C | Thermometer | ||
pH | pH units | Equipment pH/EC | Multiparameter HACH | SR ISO 10523:2012 | |
Electrical conductivity (EC) | µs/cm−1 at 20 °C | Equipment pH/EC | SR EN 27888:1997 | ||
Turbidity (TB) | NFU | The nephelometric method | Turbidimeter | SR EN ISO 7027-1:2016 | |
Hardness (TH) | mg/L | Titrimetric EDTA | EDTA, ammonia buffer solution, and Eriochrome Indicator Black-T | SR ISO 6059:2008 | |
Organic matter (OM) | mg/L | Titrimetric | Sulfuric acid (H2SO4), potassium permanganate (KMnO4) 0.01 N, and oxalic acid (H2C2O5) 0.01 N | SR EN ISO 8467:2001 | |
Majority anions | Chlorides (Cl−) | mg/L | Titrimetric | Silver nitrate (AgNO3), potassium chromate (K2CrO4) 10% | SR ISO 9297:2001 |
Nitrates (NO3−) | mg/L | UV–VIS spectrophotometer | Hydrochloric acid (HCl) 1N | SR EN 26777/C91:2006 | |
Nitrites (NO2−) | mg/L | UV–VIS spectrophotometer | Color reagent | SR ISO 7890-3:2000 | |
Alkalinity (TA) | mg/L | Titrimetric | Hydrochloric acid 0.1 N and methyl orange 1% | SR ISO 6963:1976 | |
Secondary cations | Ammonium (NH4+) | mg/L | UV–VIS spectrophotometer | Color reagent, sodium dichloroisocyanurate | SR ISO 7150-1:2001 |
TB | Twater | pH | NO2− | NO3− | TH | NH4+ | TA | EC | OM | Cl− | |
---|---|---|---|---|---|---|---|---|---|---|---|
TB | 1 | ||||||||||
Twater | 0.616647 | 1 | |||||||||
pH | 0.051027 | −0.18388 | 1 | ||||||||
NO2− | 0.166308 | 0.011781 | 0.032443 | 1 | |||||||
NO3− | −0.38077 | −0.64827 | 0.220711 | 0.193132 | 1 | ||||||
TH | −0.53907 | −0.51229 | 0.058078 | 0.119254 | 0.749928 | 1 | |||||
NH4+ | −0.05709 | 0.206755 | −0.30183 | −0.01317 | −0.19565 | −0.05412 | 1 | ||||
TA | −0.3919 | −0.27906 | −0.08332 | −0.0996 | 0.417845 | 0.687539 | 0.188033 | 1 | |||
EC | −0.51031 | −0.39991 | 0.022131 | 0.138483 | 0.680413 | 0.934466 | −0.05779 | 0.685295 | 1 | ||
OM | 0.515487 | 0.710031 | −0.0549 | 0.05931 | −0.49036 | −0.4802 | 0.007914 | −0.17215 | −0.37811 | 1 | |
Cl− | −0.03238 | 0.057421 | 0.119531 | −0.04897 | 0.150731 | 0.355858 | −0.1701 | 0.024029 | 0.342651 | −0.196 | 1 |
Season | TB | Twater | pH | NO2− | NO3− | TH | NH4+ | TA | EC | OM | Cl− |
Spring | |||||||||||
TB | 1 | ||||||||||
Twater | 0.1949 | 1 | |||||||||
pH | 0.1779 | −0.3873 | 1 | ||||||||
NO2− | 0.1934 | 0.1827 | 0.3044 | 1 | |||||||
NO3− | 0.2963 | −0.3627 | 0.3181 | −0.234 | 1 | ||||||
TH | −0.2829 | −0.029 | −0.2678 | −0.5394 | 0.5211 | 1 | |||||
NH4+ | −0.6134 | 0.3132 | −0.1117 | 0.3081 | −0.4783 | −0.116 | 1 | ||||
TA | −0.6247 | −0.2732 | −0.1388 | −0.4175 | 0.1819 | 0.538 | 0.26709 | 1 | |||
EC | −0.4497 | 0.0006 | −0.3211 | −0.4774 | 0.3466 | 0.961 | 0.0092 | 0.5956 | 1 | ||
OM | 0.4118 | 0.3029 | 0.2219 | 0.6446 | −0.1936 | −0.488 | 0.0064 | −0.8433 | −0.462 | 1 | |
Cl− | −0.2711 | 0.2148 | −0.2723 | −0.4017 | 0.3314 | 0.75 | 0.12581 | 0.7067 | 0.732 | −0.57 | 1 |
Season | TB | Twater | pH | NO2− | NO3− | TH | NH4+ | TA | EC | OM | Cl− |
Summer | |||||||||||
TB | 1 | ||||||||||
Twater | 0.3397 | 1 | |||||||||
pH | 0.7674 | 0.1308 | 1 | ||||||||
NO2− | 0.4036 | −0.5412 | 0.3410 | 1 | |||||||
NO3− | −0.318 | −0.1978 | −0.0158 | −0.1905 | 1 | ||||||
TH | −0.568 | −0.2726 | −0.2653 | −0.2868 | 0.4028 | 1 | |||||
NH4+ | −0.333 | −0.3980 | −0.2230 | 0.3718 | 0.0258 | 0.4184 | 1 | ||||
TA | −0.078 | 0.1045 | −0.1255 | −0.3712 | 0.0406 | 0.4648 | −0.3671 | 1 | |||
EC | −0.579 | −0.0961 | −0.2769 | −0.3828 | 0.4924 | 0.8262 | 0.3390 | 0.44152 | 1 | ||
OM | 0.147 | 0.5027 | 0.3120 | −0.4171 | −0.1804 | 0.0093 | −0.5012 | 0.35469 | 0.1254 | 1 | |
Cl− | −0.047 | 0.0177 | −0.1425 | −0.0795 | 0.0652 | 0.4656 | 0.3527 | 0.10751 | 0.0372 | −0.3436 | 1 |
Season | TB | Twater | pH | NO2− | NO3− | TH | NH4+ | TA | EC | OM | Cl− |
Autumn | |||||||||||
TB | 1 | ||||||||||
Twater | 0.5954 | 1 | |||||||||
pH | −0.0231 | −0.1148 | 1 | ||||||||
NO2− | 0.5358 | 0.1215 | 0.0113 | 1 | |||||||
NO3− | −0.2225 | −0.7277 | −0.2458 | −0.2338 | 1 | ||||||
TH | −0.5744 | −0.6207 | −0.3086 | −0.2397 | 0.4995 | 1 | |||||
NH4+ | −0.0563 | −0.0761 | −0.6657 | −0.0341 | 0.1975 | 0.3390 | 1 | ||||
TA | −0.3602 | −0.0230 | −0.7156 | −0.2942 | 0.0551 | 0.5700 | 0.5826 | 1 | |||
EC | −0.5682 | −0.5384 | −0.2611 | −0.2709 | 0.5988 | 0.8161 | −0.0078 | 0.3839 | 1 | ||
OM | 0.3927 | 0.7004 | 0.1366 | 0.2523 | −0.7200 | −0.5662 | −0.3185 | −0.1166 | −0.4955 | 1 | |
Cl− | 0.2995 | 0.3113 | 0.6618 | 0.0712 | −0.3651 | −0.6118 | −0.5794 | −0.8418 | −0.4764 | 0.3056 | 1 |
Season | TB | Twater | pH | NO2− | NO3− | TH | NH4+ | TA | EC | OM | Cl− |
Winter | |||||||||||
TB | 1 | ||||||||||
Twater | 0.5339 | 1 | |||||||||
pH | −0.1630 | 0.1985 | 1 | ||||||||
NO2− | 0.1837 | 0.0347 | −0.0272 | 1 | |||||||
NO3− | −0.0455 | −0.4100 | 0.0011 | 0.4632 | 1 | ||||||
TH | −0.0901 | −0.4254 | −0.0631 | 0.5842 | 0.8003 | 1 | |||||
NH4+ | 0.0826 | −0.1183 | −0.2221 | −0.2576 | 0.1719 | −0.0264 | 1 | ||||
TA | −0.3016 | −0.4935 | 0.0056 | 0.0606 | 0.5195 | 0.7252 | 0.2356 | 1 | |||
EC | 0.0625 | −0.2490 | −0.0547 | 0.6415 | 0.7538 | 0.9296 | 0.0821 | 0.6952 | 1 | ||
OM | 0.3029 | 0.0252 | −0.3445 | 0.2199 | 0.1231 | −0.0696 | 0.6001 | −0.3759 | −0.0080 | 1 | |
Cl− | −0.1586 | 0.0054 | 0.0260 | 0.0398 | 0.1171 | 0.2157 | −0.2010 | 0.4140 | 0.1378 | −0.5372 | 1 |
Parameters | UM | Characteristics of Surface Water Used to Produce Drinking Water | Water Classification of Chirita Lake | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | ||||||||||
I * | G * | I * | G * | I * | G * | 2020 | 2021 | 2022 | 2023 | 2024 | ||
pH | pH units | 6.5–8.5 | 5.5–9.5 | 5.5–9 | A1 | A1 | A1 | A1 | A1 | |||
Twater | °C | 25 | 22 | 25 | 22 | 25 | 22 | A1 | A1 | A1 | A1 | A1 |
EC | µs/cm−1 at 20 °C | 1000 | 1000 | 1000 | A1 | A1 | A1 | A1 | A1 | |||
NO3− | mg NO3−/L | 50 | 25 | 50 | 50 | A1 | A1 | A1 | A1 | A1 | ||
Cl− | mg Cl−/L | 200 | 200 | 200 | A1 | A1 | A1 | A1 | A1 | |||
NH4+ | mg NH4+/L | 0.05 | 1.5 | 1 | 4 | 2 | A1 | A1 | A1 | A1 | A1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abalasei, M.E.; Toma, D.; Teodosiu, C. Monitoring and Evaluation of Water Quality from Chirita Lake, Romania. Water 2025, 17, 1844. https://doi.org/10.3390/w17131844
Abalasei ME, Toma D, Teodosiu C. Monitoring and Evaluation of Water Quality from Chirita Lake, Romania. Water. 2025; 17(13):1844. https://doi.org/10.3390/w17131844
Chicago/Turabian StyleAbalasei, Madalina Elena, Daniel Toma, and Carmen Teodosiu. 2025. "Monitoring and Evaluation of Water Quality from Chirita Lake, Romania" Water 17, no. 13: 1844. https://doi.org/10.3390/w17131844
APA StyleAbalasei, M. E., Toma, D., & Teodosiu, C. (2025). Monitoring and Evaluation of Water Quality from Chirita Lake, Romania. Water, 17(13), 1844. https://doi.org/10.3390/w17131844