The Impact of Anthropogenic Activities on the Catchment’s Water Quality Parameters
Abstract
:1. Introduction
1.1. General Background
1.2. Analysis of the Integrated Water Resources Management Framework in the Context of the European Unions Water Framework Directive
2. River Basin’s Main Pollutant Sources
2.1. Agricultural Activities and Their Impact on Watershed Quality
2.2. Households and Farms
2.3. Minerals Exploatation
2.4. Industrial Activities
2.5. Urban Activities
3. Results and Discussion
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Marx, C.; Tetzlaff, D.; Hinkelmann, R.; Soulsby, C. Effects of 66 years of water management and hydroclimatic change on the urban hydrology and water quality of the Panke catchment, Berlin, Germany. Sci. Total Environ. 2023, 900, 165764. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.N.; do Lago, C.A.F.; Rápalo, L.M.C.; Oliveira, P.T.S.; Giacomoni, M.H.; Mendiondo, E.M. HydroPol2D—Distributed hydrodynamic and water quality model: Challenges and opportunities in poorly-gauged catchments. J. Hydrol. 2023, 625, 129982. [Google Scholar] [CrossRef]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Magalhães, S.F.C.D.; Barboza, C.A.D.M.; Maia, M.B.; Molisani, M.M. Influence of land cover, catchment morphometry and rainfall on water quality and material transport of headwaters and low-order streams of a tropical mountainous watershed. CATENA 2022, 213, 106137. [Google Scholar] [CrossRef]
- Madonia, P.; Cangemi, M.; Bellomo, S.; D’Alessandro, W. Influence of volcanic activity on the quality of water collected in roof water catchment systems at Stromboli Island (Italy). J. Geochem. Explor. 2013, 131, 28–36. [Google Scholar] [CrossRef]
- Szymańska-Walkiewicz, M.; Matela, M.; Obolewski, K. Patterns of effects of land-use structure on lake water quality in coastal lake catchments of the southern Baltic Sea. Ecohydrol. Hydrobiol. 2023, 24, 447–458. [Google Scholar] [CrossRef]
- Ezzati, G.; Kyllmar, K.; Barron, J. Long-term water quality monitoring in agricultural catchments in Sweden: Impact of climatic drivers on diffuse nutrient loads. Sci. Total Environ. 2023, 864, 160978. [Google Scholar] [CrossRef]
- Rivett, M.O.; Ellis, P.A.; Mackay, R. Urban groundwater baseflow influence upon inorganic river-water quality: The River Tame headwaters catchment in the City of Birmingham, UK. J. Hydrol. 2011, 400, 206–222. [Google Scholar] [CrossRef]
- Mills, E.L.; Leach, J.H.; Carlton, J.T.; Secor, C.L. Exotic Species in the Great Lakes: A History of Biotic Crises and Anthropogenic Introductions. J. Great Lakes Res. 1993, 19, 1–54. [Google Scholar] [CrossRef]
- Cucchi, F.; Franceschini, G.; Zini, L.; Aurighi, M. Intrinsic vulnerability assessment of Sette Comuni plateau aquifer (Veneto region, Italy). J. Environ. Manag. 2008, 88, 984–994. [Google Scholar] [CrossRef]
- van der Laan, E.; Nunes, J.P.; Dias, L.F.; Carvalho, S.; Mendonça dos Santos, F. Assessing the climate change adaptability of sustainable land management practices regarding water availability and quality: A case study in the Sorraia catchment, Portugal. Sci. Total Environ. 2023, 897, 165438. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Dobson, B.; Mijic, A. Water quality management at a critical checkpoint by coordinated multi-catchment urban-rural load allocation. J. Environ. Manag. 2023, 340, 117979. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, R.; Liu, X.; Peng, Q.; Wang, L. Agricultural nonpoint source pollutant loads into water bodies in a typical basin in the middle reach of the Yangtze River. Ecotoxicol. Environ. Saf. 2023, 268, 115728. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, J.; Zhao, G.; Liu, L.; Song, H.; Liao, S. Recognition, possible source, and risk assessment of organic pollutants in surface water from the Yongding River Basin by non-target and target screening. Environ. Pollut. 2023, 331, 121895. [Google Scholar] [CrossRef] [PubMed]
- Ciucure, C.T.; Geana, E.-I.; Arseni, M.; Ionete, R.E. Status of different anthropogenic organic pollutants accumulated in sediments from Olt River Basin, Romania: From distribution and sources to risk assessment. Sci. Total Environ. 2023, 886, 163967. [Google Scholar] [CrossRef]
- Tian, Y.; Wen, Z.; Cheng, M.; Xu, M. Evaluating the water quality characteristics and tracing the pollutant sources in the Yellow River Basin, China. Sci. Total Environ. 2022, 846, 157389. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Song, S.; Sun, J. Sources and spatiotemporal distribution characteristics of nitrogen and phosphorus loads in the Haihe River Basin, China. Mar. Pollut. Bull. 2023, 189, 114756. [Google Scholar] [CrossRef]
- Lemma, B.; Tesfaw, B.; Desta, H.; Tessema, B. Studies on the conservation and sustainability challenges of the wetland resources of the Baro-Akobo River Basin in Gambella and Benishangul-Gumuz regions, Ethiopia. Heliyon 2024, 10, e35371. [Google Scholar] [CrossRef] [PubMed]
- Morra, P.; Bagli, S.; Spadoni, G. The analysis of human health risk with a detailed procedure operating in a GIS environment. Environ. Int. 2006, 32, 444–454. [Google Scholar] [CrossRef]
- Phadermrod, B.; Crowder, R.M.; Wills, G.B. Importance-Performance Analysis based SWOT analysis. Int. J. Inf. Manag. 2019, 44, 194–203. [Google Scholar] [CrossRef]
- Gallego-Ayala, J.; Juízo, D. Strategic implementation of integrated water resources management in Mozambique: An A’WOT analysis. Phys. Chem. Earth Parts A/B/C 2011, 36, 1103–1111. [Google Scholar] [CrossRef]
- Ijlil, S.; Ali, E.; Narjisse, E.; Eirini, S.; Constanza, P.; Mostafa, M.E.; Van Rompaey, A. Building bridges to achieve SDG 6 and integrated water resources management: An assessment of stakeholder integration in the Saiss region, Morocco. Water Int. 2025, 50, 121–142. [Google Scholar] [CrossRef]
- Cacal, J.C.; Taboada, E.B.; Mehboob, M.S. Strategic Implementation of Integrated Water Resource Management in Selected Areas of Palawan: SWOT-AHP Method. Sustainability 2023, 15, 2922. [Google Scholar] [CrossRef]
- Rachid, G.; Alameddine, I.; El-Fadel, M. SWOT risk analysis towards sustainable aquifer management along the Eastern Mediterranean. J. Environ. Manag. 2021, 279, 111760. [Google Scholar] [CrossRef]
- Mukhtarov, F.; Gerlak, A.K. Epistemic forms of integrated water resources management: Towards knowledge versatility. Policy Sci. 2013, 47, 101–120. [Google Scholar] [CrossRef]
- Nagata, K.; Shoji, I.; Arima, T.; Otsuka, T.; Kato, K.; Matsubayashi, M.; Omura, M. Practicality of integrated water resources management (IWRM) in different contexts. Int. J. Water Resour. Dev. 2021, 38, 897–919. [Google Scholar] [CrossRef]
- Ma, Q.; Gourbesville, P. Integrated water resources management: A new strategy for DSS development and implementation. River 2022, 1, 189–206. [Google Scholar] [CrossRef]
- Tsakiris, G. The Status of the European Waters in 2015: A Review. Environ. Process. 2015, 2, 543–557. [Google Scholar] [CrossRef]
- Reese, M. Transformation to Healthy Water Ecology—Institutional Requirements, Deficits and Options in European and German Perspective. Sustainability 2021, 13, 3368. [Google Scholar] [CrossRef]
- Boeuf, B.; Fritsch, O.; Martin-Ortega, J. Undermining European Environmental Policy Goals? The EU Water Framework Directive and the Politics of Exemptions. Water 2016, 8, 388. [Google Scholar] [CrossRef]
- Starke, J.R.; Van Rijswick, H.F.M.W. Exemptions of the EU Water Framework Directive Deterioration Ban: Comparing Implementation Approaches in Lower Saxony and The Netherlands. Sustainability 2021, 13, 930. [Google Scholar] [CrossRef]
- Hovik, S. Integrated Water Quality Governance and Sectoral Responsibility: The EU Water Framework Directive’s Impact on Agricultural Sector Policies in Norway. Water 2019, 11, 2215. [Google Scholar] [CrossRef]
- Filipe, A.F.; Feio, M.J.; Garcia-Raventós, A.; Ramião, J.P.; Pace, G.; Martins, F.M.S.; Magalhães, M.F. The European Water Framework Directive facing current challenges: Recommendations for a more efficient biological assessment of inland surface waters. Inland Waters 2018, 9, 95–103. [Google Scholar] [CrossRef]
- Zębek, E.M. Legal solutions of lake monitoring systems in Poland in compliance with the Water Framework Directive. Rev. Eur. Comp. Law 2022, 49, 173–201. [Google Scholar] [CrossRef]
- Watson, N. IWRM in England: Bridging the gap between top-down and bottom-up implementation. Int. J. Water Resour. Dev. 2014, 30, 445–459. [Google Scholar] [CrossRef]
- Söderasp, J. What about state implementation? New Governance and the case of the European Union Water Framework Directive in Sweden. Eur. Tidskr. 2015, 3, 508–524. [Google Scholar]
- Acheampong, E.N.; Swilling, M.; Urama, K. Developing a framework for supporting the implementation of integrated water resource management (IWRM) with a decoupling strategy. Water Policy 2016, 18, 1317–1333. [Google Scholar] [CrossRef]
- Meran, G.; Siehlow, M.; von Hirschhausen, C. Integrated Water Resource Management: Principles and Applications. In The Economics of Water: Rules and Institutions; Meran, G., Siehlow, M., von Hirschhausen, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 23–121. [Google Scholar] [CrossRef]
- Ben-Daoud, M.; Mahrad, B.E.; Elhassnaoui, I.; Moumen, A.; Sayad, A.; Elbouhadioui, M.; Moroșanu, G.A.; Mezouary, L.E.; Essahlaoui, A.; Eljaafari, S. Integrated water resources management: An indicator framework for water management system assessment in the R’Dom Sub-basin, Morocco. Environ. Chall. 2021, 3, 100062. [Google Scholar] [CrossRef]
- Grigg, N.S. Framework and Function of Integrated Water Resources Management in Support of Sustainable Development. Sustainability 2024, 16, 5441. [Google Scholar] [CrossRef]
- Hileman, J.; Hicks, P.; Jones, R. An alternative framework for analysing and managing conflicts in integrated water resources management (IWRM): Linking theory and practice. Int. J. Water Resour. Dev. 2016, 32, 675–691. [Google Scholar] [CrossRef]
- Lebu, S.; Lee, A.; Salzberg, A.; Bauza, V. Adaptive strategies to enhance water security and resilience in low- and middle-income countries: A critical review. Sci. Total Enviro. 2024, 925, 171520. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Progress on implementation of Integrated Water Resources Management. In Mid-Term Status of SDG Indicator 6.5.1 and Acceleration Needs, with a Special Focus on Climate Change; United Nations Environment Programme: Nairobi, Kenya, 2024; p. 110. [Google Scholar]
- Ministerul Mediului, A.Ș.P. 11 Administrații Bazinale de Apă vor fi Dotate cu Utilaje și Echipamente de Monitorizare și Intervenție în Caz de Inundații și Poluări Accidentale, Prin PNRR. Available online: https://mmediu.ro/comunicare/comunicate-de-presa/11-administratii-bazinale-de-apa-vor-fi-dotate-cu-utilaje-si-echipamente-de-monitorizare-si-interventie-in-caz-de-inundatii-si-poluari-accidentale-prin-pnrr/ (accessed on 7 April 2025).
- Dinsa, H.T.; Nurhusein, M.M. Integrated water resources management stumbling blocks: Prioritization for better implementation under Ethiopian context. Heliyon 2023, 9, e18785. [Google Scholar] [CrossRef]
- Tanure, S.; Nabinger, C.; Becker, J.L. Bioeconomic model of decision support system for farm management. Part I: Systemic conceptual modeling. Agric. Syst. 2013, 115, 104–116. [Google Scholar] [CrossRef]
- Xavier, F.A.D.S.; de Oliveira, T.S.; Andrade, F.V.; de Sá Mendonça, E. Phosphorus fractionation in a sandy soil under organic agriculture in Northeastern Brazil. Geoderma 2009, 151, 417–423. [Google Scholar] [CrossRef]
- Masha, M.; Belayneh, M.; Bojago, E.; Tadiwos, S.; Dessalegn, A. Impacts of land-use and topography on soil physicochemical properties in the Wamancho watershed, Southern Ethiopia. J. Agric. Food Res. 2023, 14, 100854. [Google Scholar] [CrossRef]
- Uniyal, B.; Kosatica, E.; Koellner, T. Spatial and temporal variability of climate change impacts on ecosystem services in small agricultural catchments using the Soil and Water Assessment Tool (SWAT). Sci. Total Environ. 2023, 875, 162520. [Google Scholar] [CrossRef]
- Scott, A.; Cassidy, R.; Arnscheidt, J.; Jordan, P. Soil phosphorus, hydrological risk and water quality carrying capacities in agricultural catchments. CATENA 2024, 240, 107964. [Google Scholar] [CrossRef]
- Zarrinabadi, E.; Lobb, D.A.; Enanga, E.; Badiou, P.; Creed, I.F. Agricultural activities lead to sediment infilling of wetlandscapes in the Canadian Prairies: Assessment of soil erosion and sedimentation fluxes. Geoderma 2023, 436, 116525. [Google Scholar] [CrossRef]
- Skalský, R.; Barančíková, G.; Makovníková, J.; Koco, Š.; Halas, J.; Kobza, J. Regional topsoil organic carbon content in the agricultural soils of Slovakia and its drivers, as revealed by the most recent national soil monitoring data. Environ. Chall. 2024, 14, 100816. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, D.-Q.; Yang, C.; Wu, W.; Liu, H.-B. The spatial variability of temporal changes in soil pH affected by topography and fertilization. CATENA 2022, 218, 106586. [Google Scholar] [CrossRef]
- Wen, D.; Yang, L.; Ni, K.; Xu, X.; Yu, L.; Elrys, A.S.; Meng, L.; Zhou, J.; Zhu, T.; Müller, C. Topography-driven differences in soil N transformation constrain N availability in karst ecosystems. Sci. Total Environ. 2024, 908, 168363. [Google Scholar] [CrossRef]
- Xu, Y.; Bi, R.; Li, Y. Effects of anthropogenic and natural environmental factors on the spatial distribution of trace elements in agricultural soils. Ecotoxicol. Environ. Saf. 2023, 249, 114436. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Li, Z.; Zhang, J.; Guo, H. Principles of terrestrial water distribution patterns and the role of soil hydraulic properties. CATENA 2024, 239, 107934. [Google Scholar] [CrossRef]
- Rahmani, J.; Danesh-Yazdi, M. Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin. Agric. Water Manag. 2022, 270, 107749. [Google Scholar] [CrossRef]
- Argaw, M.; Yohannes, H. Impact of land use/land cover changes on surface water and soil-sediment export in the urbanized Akaki River catchment, Awash Basin, Ethiopia. J. Hydrol. Reg. Stud. 2024, 52, 101677. [Google Scholar] [CrossRef]
- Han, X.; Liu, J.; Shen, X.; Liu, H.; Li, X.; Zhang, J.; Wu, P.; Liu, Y. High relief yield strong topography-soil water-vegetation relationships in headwater catchments of southeastern China. Geoderma 2022, 428, 116214. [Google Scholar] [CrossRef]
- Zhang, X.; She, D.; Hou, X.; Zheng, X. Precipitation, topography, and soil conservation measures determine the spatiotemporal pattern of sediment yield at the regional scale. CATENA 2024, 240, 107990. [Google Scholar] [CrossRef]
- Yuan, S.; Xu, Q.; Zhao, K.; Zhou, Q.; Wang, X.; Zhang, X.; Chen, W.; Ji, X. Dynamic analyses of soil erosion and improved potential combining topography and socio-economic factors on the Loess Plateau. Ecol. Indic. 2024, 160, 111814. [Google Scholar] [CrossRef]
- Masha, M.; Bojago, E.; Belayneh, M. Assessing the impacts of soil and water conservation practices on soil physicochemical properties in contrasting slope landscapes of Southern Ethiopia. J. Agric. Food Res. 2023, 14, 100876. [Google Scholar] [CrossRef]
- Manirakiza, B.; Zhang, S.; Addo, F.G.; Yu, M.; Alklaf, S.A. Interactions between water quality and microbes in epiphytic biofilm and superficial sediment of lake in trophic agriculture area. Sci. Total Environ. 2024, 912, 169321. [Google Scholar] [CrossRef]
- Liu, H.; Meng, C.; Wang, Y.; Li, Y.; Li, Y.; Wu, J. From landscape perspective to determine joint effect of land use, soil, and topography on seasonal stream water quality in subtropical agricultural catchments. Sci. Total Environ. 2021, 783, 147047. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Li, Y.; Jia, Q.; Shen, X.; Xia, X. Spatiotemporal variations in the soil quality of agricultural land and its drivers in China from 1980 to 2018. Sci. Total Environ. 2023, 892, 164649. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.; Guo, X. Impact of soil structure and texture on occurrence of microplastics in agricultural soils of karst areas. Sci. Total Environ. 2023, 902, 166189. [Google Scholar] [CrossRef]
- Cao, J.; Li, C.; Gao, X.; Cai, Y.; Song, X.; Siddique, K.H.; Zhao, X. Agricultural soil plastic as a hidden carbon source stimulates microbial activity and increases carbon dioxide emissions. Resour. Conserv. Recycl. 2023, 198, 107151. [Google Scholar] [CrossRef]
- Alasvand, G.B.; JalilzadehYengejeh, R.; Sabzalipour, S.; Mohammadi Rouzbahani, M. Mitigating pesticide pollution: A comprehensive study on the biological treatment of clodinafop-propargyl and organic load in agricultural wastewater using a moving bed biofilm reactor (MBBR). J. Indian Chem. Soc. 2024, 101, 101422. [Google Scholar] [CrossRef]
- Ferreira-Filipe, D.A.; Paço, A.; Natal-da-Luz, T.; Sousa, J.P.; Saraiva, J.A.; Duarte, A.C.; Rocha-Santos, T.; Patrício Silva, A.L. Are mulch biofilms used in agriculture an environmentally friendly solution?—An insight into their biodegradability and ecotoxicity using key organisms in soil ecosystems. Sci. Total Environ. 2022, 828, 154269. [Google Scholar] [CrossRef]
- Marella, T.K.; Saxena, A.; Tiwari, A.; Datta, A.; Dixit, S. Treating agricultural non-point source pollutants using periphyton biofilms and biomass volarization. J. Environ. Manag. 2022, 301, 113869. [Google Scholar] [CrossRef]
- Muoi, L.V.; Srilert, C.; Tri, V.P.D.; Van, T.P. Spatial and temporal variabilities of surface water and sediment pollution at the main tidal-influenced river in Ca Mau Peninsular, Vietnamese Mekong Delta. J. Hydrol. Reg. Stud. 2022, 41, 101082. [Google Scholar] [CrossRef]
- Jayasiri, M.M.J.G.C.N.; Yadav, S.; Dayawansa, N.D.K.; Propper, C.R.; Kumar, V.; Singleton, G.R. Spatio-temporal analysis of water quality for pesticides and other agricultural pollutants in Deduru Oya river basin of Sri Lanka. J. Clean. Prod. 2022, 330, 129897. [Google Scholar] [CrossRef]
- Madonsela, B.S.; Malakane, K.C.; Maphanga, T.; Phungela, T.T.; Gqomfa, B.; Grangxabe, X.S.; Chidi, B.S.; Ntuli, S.S.; Nyawo, T.G. Spatial and Temporal Water Quality Monitoring in the Crocodile River of Mpumalanga, South Africa. Water 2024, 16, 2457. [Google Scholar] [CrossRef]
- Yue, F.-J.; Waldron, S.; Li, S.-L.; Wang, Z.-J.; Zeng, J.; Xu, S.; Zhang, Z.-C.; Oliver, D.M. Land use interacts with changes in catchment hydrology to generate chronic nitrate pollution in karst waters and strong seasonality in excess nitrate export. Sci. Total Environ. 2019, 696, 134062. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, H.; Ma, C.; Gao, X.; Yang, C.; Sun, W.; Wang, Y. A novel framework reveals anthropogenic stressors of phosphorus polluted river-lake connection water system in Poyang lake basin of China. J. Environ. Manag. 2024, 370, 122794. [Google Scholar] [CrossRef] [PubMed]
- Das, A. Surface water potential zones delineation and spatiotemporal variation characteristics of water pollution and the cause of pollution formation in Brahmani River Basin, Odisha. HydroResearch 2025, 8, 99–112. [Google Scholar] [CrossRef]
- Cerón-Vivas, A.; Peñuela Mesa, G.A. Environmental risk assessment of pharmaceutical pollutants in the Oro River Sub-basin (Colombia). Environ. Res. 2024, 252, 118951. [Google Scholar] [CrossRef]
- Chebii, F.; K’Oreje, K.; Okoth, M.; Lutta, S.; Masime, P.; Demeestere, K. Occurrence and environmental risks of contaminants of emerging concern across the River Athi Basin, Kenya, in dry and wet seasons. Sci. Total Environ. 2024, 914, 169696. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.D. Pesticides in wastewater treatment plant effluents in the Yeongsan River Basin, Korea: Occurrence and environmental risk assessment. Sci. Total Environ. 2024, 946, 174388. [Google Scholar] [CrossRef]
- Jaikawna, H.; Pagdee, A. Water purification—An essential service from forest ecosystems, and farming practices in the Pong River Basin, Northeast Thailand. Trees For. People 2024, 16, 100599. [Google Scholar] [CrossRef]
- Gandla, V.; Chiluka, M.; Gupta, H.; Sinha, S.N.; Chakraborty, P. Sediment-water partitioning and risk assessment of organochlorine pesticides along the urban, peri-urban and rural transects of Krishna River Basin, Peninsular India. Sci. Total Environ. 2023, 874, 162360. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.R.M.T.; Rabbi, A.H.M.F.; Anik, A.H.; Khan, R.; Masud, M.A.A.; Nedjoud, G.; Idris, A.M.; Rahman, M.N.; Senapathi, V. Source distribution, ecological risks, and controlling factors of heavy metals in river sediments: Receptor model-based study in a transboundary river basin. Int. J. Sediment Res. 2024, 40, 45–61. [Google Scholar] [CrossRef]
- Simukoko, C.K.; Mwakalapa, E.B.; Muzandu, K.; Mutoloki, S.; Evensen, Ø.; Ræder, E.M.; Müller, M.B.; Polder, A.; Lyche, J.L. Persistent organic pollutants (POPs) and per- and polyfluoroalkyl substances (PFASs) in liver from wild and farmed tilapia (Oreochromis niloticus) from Lake Kariba, Zambia: Levels and geographic trends and considerations in relation to environmental quality standards (EQSs). Environ. Res. 2023, 232, 116226. [Google Scholar] [CrossRef]
- Karunanidhi, D.; Aravinthasamy, P.; Roy, P.; Subramani, T.; Chandra Jayasena, H. Nitrate contamination in groundwater and its evaluation of non-carcinogenic health hazards from Arjunanadi River basin, south India. Groundw. Sustain. Dev. 2024, 25, 101153. [Google Scholar] [CrossRef]
- Rehitha, T.V.; Madhu, N.V.; Vipindas, P.V.; Vineetha, G.; Ullas, N.; Muraleedharan, K.R.; Nair, M. Influence of oil and gas exploration activities on the macrobenthic community structure of the Krishna-Godavari basin (Ravva coast), Western Bay of Bengal. Cont. Shelf Res. 2021, 224, 104463. [Google Scholar] [CrossRef]
- Ayiwouo, M.N.; Yamgouot, F.N.; Ngueyep Mambou, L.L.; Kingni, S.T.; Ngounouno, I. Impact of gold mining on the water quality of the lom river, Gankombol, Cameroon. Heliyon 2022, 8, e12452. [Google Scholar] [CrossRef] [PubMed]
- Runeckles, H.; Hackney, C.R.; Le, H.; Ha, H.T.T.; Bui, L.; Thu Nga, D.; Large, A. “Local people want to keep their sand”: Variations in community perceptions and everyday resistance to sand mining across the Red River, Vietnam. Extr. Ind. Soc. 2023, 15, 101336. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, J.; Zhang, M.; Zhu, L.; Zhu, Y.; Wang, J.; Zhao, W. Sandy riverbed shoal under anthropogenic activities: The sandy reach of the Yangtze River, China. J. Hydrol. 2021, 603, 126861. [Google Scholar] [CrossRef]
- Dube, T.; Dube, T.; Dalu, T.; Gxokwe, S.; Marambanyika, T. Assessment of land use and land cover, water nutrient and metal concentration related to illegal mining activities in an Austral semi–arid river system: A remote sensing and multivariate analysis approach. Sci. Total Environ. 2024, 907, 167919. [Google Scholar] [CrossRef]
- Salomão, G.N.; Dall’Agnol, R.; Sahoo, P.K.; Almeida, G.S.D.; Amarante, R.T.; Zeferino, L.B.; Lopes, J.P.N.; Souza Filho, P.W.M.E.; Costa, N.Y.M.D.; Guimarães, J.T.F.; et al. Changes in the surface water quality of a tropical watershed in the southeastern amazon due to the environmental impacts of artisanal mining. Environ. Pollut. 2023, 329, 121595. [Google Scholar] [CrossRef]
- Nunoo, S.; Manu, J.; Owusu-Akyaw, F.K.B.; Nyame, F.K. Impact of artisanal small-scale (gold and diamond) mining activities on the Offin, Oda and Pra rivers in Southern Ghana, West Africa: A scientific response to public concern. Heliyon 2022, 8, e12323. [Google Scholar] [CrossRef]
- Chen, W.; Liu, P.; Luo, Y.; Li, B.; Peng, J.; Jin, X. Behavior of Sb and As in the hydrogeochemistry of adjacent karst underground river systems and the responses of such systems to mining activities. Sci. Total Environ. 2023, 857, 159411. [Google Scholar] [CrossRef]
- Ghirardi, N.; Bresciani, M.; Pinardi, M.; Nizzoli, D.; Viaroli, P. Pit lakes from gravel and sand quarrying in the Po River basin: An opportunity for riverscape rehabilitation and ecosystem services improvement. Ecol. Eng. 2023, 196, 107103. [Google Scholar] [CrossRef]
- Nunn, B.; Lord, R.; Davidson, C.M. A circular economy approach to drinking water treatment residue management in a catchment impacted by historic metal mines. J. Environ. Manag. 2023, 345, 118809. [Google Scholar] [CrossRef] [PubMed]
- Millán-Becerro, R.; León, R.; Romero-Matos, J.; Moreno, R.; Pérez-López, R. Towards circular and sustainable restoration of a deeply polluted river basin: The Odiel River catchment (SW Spain). Sci. Total Environ. 2023, 907, 168078. [Google Scholar] [CrossRef]
- Wang, T.; Jiao, Y.; He, M.; Ouyang, W.; Lin, C.; Liu, X.; Xie, H. Deep insight into the Sb(III) and Sb(V) removal mechanism by Fe–Cu-chitosan material. Environ. Pollut. 2022, 303, 119160. [Google Scholar] [CrossRef]
- Saran, L.M.; Pissarra, T.C.T.; Silveira, G.A.; Constancio, M.T.L.; de Melo, W.J.; Alves, L.M.C. Land use impact on potentially toxic metals concentration on surface water and resistant microorganisms in watersheds. Ecotoxicol. Environ. Saf. 2018, 166, 366–374. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, N.; Li, Y.; Ren, B.; Ding, X.; Bian, H.; Yao, X. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar] [CrossRef]
- Koehler, D.A. Managing for Enhancement of Riparian and Wetland Areas of the Western United States: An Annotated Bibliography; US Department of Agriculture: Washington, DC, USA; Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2000. Available online: https://www.fs.usda.gov/rm/pubs/rmrs_gtr054.pdf (accessed on 11 June 2025).
- Young, R.E.; Gann, G.D.; Walder, B.; Liu, J.; Cui, W.; Newton, V.; Nelson, C.R.; Tashe, N.; Jasper, D.; Silveira, F.A. International principles and standards for the ecological restoration and recovery of mine sites. Restor. Ecol. 2022, 30, e13771. [Google Scholar] [CrossRef]
- Hernández-Pérez, C.; Martínez-López, S.; Martínez-Sánchez, M.J.; Martínez-Martínez, L.B.; García-Lorenzo, M.L.; Perez Sirvent, C. In Situ Use of Mining Substrates for Wetland Construction: Results of a Pilot Experiment. Plants 2024, 13, 1161. [Google Scholar] [CrossRef] [PubMed]
- Moghimi Dehkordi, M.; Pournuroz Nodeh, Z.; Soleimani Dehkordi, K.; Salmanvandi, H.; Rasouli Khorjestan, R.; Ghaffarzadeh, M. Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results Eng. 2024, 23, 102729. [Google Scholar] [CrossRef]
- Srivastava, R.R.; Rajak, D.K.; Ilyas, S.; Kim, H.; Pathak, P. Challenges, Regulations, and Case Studies on Sustainable Management of Industrial Waste. Minerals 2023, 13, 51. [Google Scholar] [CrossRef]
- Fadel, M.; Farah, E.; Fakhri, N.; Ledoux, F.; Courcot, D.; Afif, C. A Comprehensive Review of PM-Related Studies in Industrial Proximity: Insights from the East Mediterranean Middle East Region. Sustainability 2024, 16, 8739. [Google Scholar] [CrossRef]
- Ferreira, S.C.G.; de Lima, A.M.M.; Corrêa, J.A.M. Indicators of hydrological sustainability, governance and water resource regulation in the Moju river basin (PA)—Eastern Amazonia. J. Environ. Manag. 2020, 263, 110354. [Google Scholar] [CrossRef] [PubMed]
- Wegner, N.; Mercante, E.; de Souza Mendes, I.; Ganascini, D.; Metri Correa, M.; Furlan Maggi, M.; Antonio Vilas Boas, M.; Costa Wrublack, S.; Antonio Cruz Siqueira, J. Hydro energy potential considering environmental variables and water availability in Paraná Hydrographic Basin 3. J. Hydrol. 2020, 580, 124183. [Google Scholar] [CrossRef]
- Lima, G.F.C.; de Carvalho Filho, C.A.; Ferreira, V.G.; Lima, J.D.S.D.; Marques, E.D.; Minardi, P.S.P.; Dalmázio, I.; Moreira, R.M. Establishing a water baseline for the unconventional gas industry: A multiple environmental isotopes assessment (18O, 2H, 3H, 13C, and 14C) of surface and groundwater in the São Francisco Basin, Brazil. Appl. Geochem. 2023, 159, 105818. [Google Scholar] [CrossRef]
- Cardozo, T.R.; Rosa, D.P.; Feiden, I.R.; Rocha, J.A.V.; de Oliveira, N.C.D.A.; da Silva Pereira, T.; Pastoriza, T.F.; da Motta Marques, D.; de Lemos, C.T.; Terra, N.R.; et al. Genotoxicity and toxicity assessment in urban hydrographic basins. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2006, 603, 83–96. [Google Scholar] [CrossRef]
- Krodkiewska, M.; Spyra, A.; Cieplok, A. Assessment of pollution, and ecological status in rivers located in the Vistula and Oder river basins impacted by the mining industry in Central Europe (Poland). Ecol. Indic. 2022, 144, 109505. [Google Scholar] [CrossRef]
- Teixeira, P.; Tacão, M.; Henriques, I. Occurrence and distribution of Carbapenem-resistant Enterobacterales and carbapenemase genes along a highly polluted hydrographic basin. Environ. Pollut. 2022, 300, 118958. [Google Scholar] [CrossRef]
- Khare, Y.P.; Martinez, C.J.; Toor, G.S. Water quality and land use changes in the Alafia and Hillsborough River watersheds, Florida, USA 1. JAWRA J. Am. Water Resour. Assoc. 2012, 48, 1276–1293. [Google Scholar] [CrossRef]
- Goodarzi, M.R.; Niknam, A.R.R.; Rahmati, S.H.; Attar, N.F. Assessing land use changes’ effect on river water quality in the Dez Basin using land change modeler. Environ. Monit. Assess. 2023, 195, 774. [Google Scholar] [CrossRef]
- Gan, M.; Zhang, Y.; Shi, P.; Cui, L.; Zhang, C.; Guo, J. Occurrence, potential sources, and ecological risk assessment of microplastics in the inland river basins in Northern China. Mar. Pollut. Bull. 2024, 205, 116656. [Google Scholar] [CrossRef]
- He, B.; Liu, A.; Duodu, G.O.; Wijesiri, B.; Ayoko, G.A.; Goonetilleke, A. Distribution and variation of metals in urban river sediments in response to microplastics presence, catchment characteristics and sediment properties. Sci. Total Environ. 2023, 856, 159139. [Google Scholar] [CrossRef]
- Beqaj, B. Assessing the environmental impact of roadway’s construction on adjacent water resources: A case study of the southern part of Albania. Zesz. Naukowe. Transp. Politech. Śląska 2022, 114, 5–13. [Google Scholar] [CrossRef]
- López, E.; Patiño, R.; Vázquez-Sauceda, M.L.; Pérez-Castañeda, R.; Arellano-Méndez, L.U.; Ventura, R.; Heyer, L. Water quality and ecological risk assessment of intermittent streamflow through mining and urban areas of San Marcos River sub-basin, Mexico. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100369. [Google Scholar] [CrossRef]
- Suchorab, P.; Kowalski, D.; Iwanek, M.; Kowalska, B.; Hołota, E. Quantitative and qualitative analysis of surface runoff from the exemplary rest area (RA). Proc. J. Phys. Conf. Ser. 2023, 2676, 012005. [Google Scholar] [CrossRef]
- Guo, W.; Yu, Z.; He, N.; Chen, W.; Sun, C.; Lan, J.; Li, Y.; Wang, B.; Wang, H. Quantitative assessment of runoff change and its drivers in a multi-scale framework. J. Water Clim. Change 2024, 15, 4138–4156. [Google Scholar] [CrossRef]
- Yuan, Z.; Pang, Y.; Gao, J.; Liu, X.; Sheng, H.; Zhuang, Y. Improving quantification of rainfall runoff pollutant loads with consideration of path curb and field ridge. Resour. Environ. Sustain. 2021, 6, 100042. [Google Scholar] [CrossRef]
- Park, M.-H.; Swamikannu, X.; Stenstrom, M.K. Accuracy and precision of the volume–concentration method for urban stormwater modeling. Water Res. 2009, 43, 2773–2786. [Google Scholar] [CrossRef] [PubMed]
- Simpson, I.M.; Winston, R.J.; Dorsey, J.D. Calibration of WinSLAMM to stormwater volume and pollutant mass flux data in Ohio, USA: Informing pollutant loads in untreated stormwater from various urban land uses. J. Hydrol. 2025, 660, 133383. [Google Scholar] [CrossRef]
- von Haefen, R.H.; Van Houtven, G.; Naumenko, A.; Obenour, D.R.; Miller, J.W.; Kenney, M.A.; Gerst, M.D.; Waters, H. Estimating the benefits of stream water quality improvements in urbanizing watersheds: An ecological production function approach. Proc. Natl. Acad. Sci. USA 2023, 120, e2120252120. [Google Scholar] [CrossRef]
- Schueler, T.R.; Fraley-McNeal, L.; Cappiella, K. Is impervious cover still important? Review of recent research. J. Hydrol. Eng. 2009, 14, 309–315. [Google Scholar] [CrossRef]
- Chadwick, M.A.; Dobberfuhl, D.R.; Benke, A.C.; Huryn, A.D.; Suberkropp, K.; Thiele, J.E. Urbanization affects stream ecosystem function by altering hydrology, chemistry, and biotic richness. Ecol. Appl. 2006, 16, 1796–1807. [Google Scholar] [CrossRef]
- Tudesque, L.; Gevrey, M.; Grenouillet, G.; Lek, S. Long-term changes in water physicochemistry in the Adour–Garonne hydrographic network during the last three decades. Water Res. 2008, 42, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-S.; Jang, J.-K.; Jang, Y.-S.; Kim, M.-E. Quantification of nonpoint source pollutants discharged from the combined sewer system in the Nakdong River basin, Korea, using SWMM. Desalination Water Treat. 2017, 70, 86–94. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Syeed, M.M.M.; Hossain, M.S.; Karim, M.R.; Uddin, M.F.; Hasan, M.; Khan, R.H. Surface water quality profiling using the water quality index, pollution index and statistical methods: A critical review. Environ. Sustain. Indic. 2023, 18, 100247. [Google Scholar] [CrossRef]
- Gao, J.; Li, J.; Tong, T.; Chao, J.; Dong, Z.; Zhan, J. Water quality evaluation, pollution sources apportionment, and environment management strategies in plain reservoirs: A case study of Tianhe Lake, China. Ecol. Indic. 2025, 175, 113491. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Li, F.; Liu, S.; You, Y.; Liu, C. Enhanced Assessment of Water Quality and Pollutant Source Apportionment Using APCS-MLR and PMF Models in the Upper Reaches of the Tarim River. Water 2024, 16, 3061. [Google Scholar] [CrossRef]
- Dill, J.; Dagios, R.N.; Barros, V.G. Public policies on water resource management and its impacts on the context of climatic changes and alterations in land use and land cover in small and protected rainforest river basins. Environ. Sci. Policy 2022, 137, 191–204. [Google Scholar] [CrossRef]
- Zhou, Z.; Cartwright, I.; Morgenstern, U.; Fifield, L.K. Integrating major ion geochemistry, stable isotopes (18O, 2H) and radioactive isotopes (222Rn, 14C, 36Cl, 3H) to understand the interaction between catchment waters and an intermittent river. Sci. Total Environ. 2023, 908, 167998. [Google Scholar] [CrossRef]
- Rankinen, K.; Futter, M.; Bhattacharjee, J.; Cano Bernal, J.E.; Lannergård, E.E.; Ojanen, M.; Ronkanen, A.-K.; Marttila, H.; Hellsten, S. Influence of forest management changes and reuse of peat production areas on water quality in a northern river. CATENA 2023, 226, 107045. [Google Scholar] [CrossRef]
- Ya’Nan, Z.; Binyao, W.; Weiwei, Z.; Li, F.; Qisheng, H.; Xin, Z.; Tianjun, W.; Na’Na, Y. Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions. Comput. Electron. Agric. 2024, 219, 108835. [Google Scholar] [CrossRef]
- Pujar, P.M.; Kenchannavar, H.H.; Kulkarni, R.M.; Kulkarni, U.P. Real-time water quality monitoring through Internet of Things and ANOVA-based analysis: A case study on river Krishna. Appl. Water Sci. 2019, 10, 22. [Google Scholar] [CrossRef]
- Forhad, H.M.; Uddin, M.R.; Chakrovorty, R.S.; Ruhul, A.M.; Faruk, H.M.; Kamruzzaman, S.; Sharmin, N.; Jamal, A.H.M.S.I.M.; Haque, M.M.-U.; Morshed, A.M. IoT based real-time water quality monitoring system in water treatment plants (WTPs). Heliyon 2024, 10, e40746. [Google Scholar] [CrossRef] [PubMed]
- Demetillo, A.T.; Japitana, M.V.; Taboada, E.B. A system for monitoring water quality in a large aquatic area using wireless sensor network technology. Sustain. Environ. Res. 2019, 29, 12. [Google Scholar] [CrossRef]
- Okpara, E.C.; Sehularo, B.E.; Wojuola, O.B. On-line water quality inspection system: The role of the wireless sensory network. Environ. Res. Commun. 2022, 4, 102001. [Google Scholar] [CrossRef]
- Geetha, T.S.; Gandhimathi, G.; Chellaswamy, C.; Thiruvalar Selvan, P. Comprehensive river water quality monitoring using convolutional neural networks and gated recurrent units: A case study along the Vaigai River. J. Environ. Manag. 2024, 365, 121567. [Google Scholar] [CrossRef]
- Singh, Y.; Walingo, T. Smart Water Quality Monitoring with IoT Wireless Sensor Networks. Sensors 2024, 24, 2871. [Google Scholar] [CrossRef]
- Afedor, D.; Amankwah, E.; Takase, M. Application of DPSIR model to ascertain driving forces and their impacts on the Volta basin. Heliyon 2024, 10, e38734. [Google Scholar] [CrossRef]
- Qin, Z.; Xu, Q.; Zhang, C.; Zuo, L.; Chen, L.; Fang, R. Social network shapes farmers’ non-point source pollution governance behavior—A case study in the Lijiang River Basin, China. Agric. Water Manag. 2024, 306, 109162. [Google Scholar] [CrossRef]
Method | Target Pollutant/Process | Reference |
---|---|---|
Moving Bed Biofilm Reactor (MBBR) | clodinafop-propargyl (CF) reduce and biological material degrade | [68] |
Corn-straw (Zea mays L.) biochar electrode | Nitrate removal | [53] |
P. brevicompactum, Eisenia andrei | Degradation of commercial agricultural mulch biofilm; transformation of functional groups (dependent on biofilm vitality and replication | [69] |
Periphyton biofilms | Removal of non-point source (NPS) contaminants | [70] |
Nutrient | Value | Reference |
---|---|---|
N-NO2 | 0.01–0.09 mg/L | [71] |
N-NO3 | 0.12–1.99 mg/L | |
N-NH4+ | 0.01–0.44 mg/L | |
TN | 0.84–5.32 mg/L | |
P-PO43− | 0.02–0.20 mg/L | |
TP | 0.14–2.97 mg/L | |
Ammoniacal N | 1–7.4 mg/L | [72] |
Nitrate | 0.12–3.00 mg/L | |
Nitrite | 0.05–0.86 mg/L | |
Phosphate | 0.05–0.09 mg/L | |
Pretilachlor | 0.01–0.19 mg/L | |
Oxyfluorfen | 0.01–0.64 mg/L | |
Thiamethoxam | 0.01–0.39 mg/L | |
Chlorantraniliprole | 0.001–35.10 mg/L | |
Fenobucarb | 0.01–17.20 mg/L | |
Fipronil | 0.02–0.03 mg/L | |
Diazinon | 0.01–0.22 mg/L | |
Etofenprox | 0.01–0.03 mg/L | |
Tebuconazole | 0.015–0.06 mg/L | |
Captan | 0.016–711.22 mg/L | |
PO43− | 3.0 mg/L | [73] |
SO42− | 110 mg/L | |
NO2− + NO3− | 1.76 mg/L | |
NO3−–N | 0.72–6.3 mg/L | [74] |
Operation | Result | Reference |
---|---|---|
Use of drinking water treatment residues to grow Phalaris arundinacea on Pb- and Zn-contaminated soil | Promising results in laboratory-scale experiments; limited effectiveness under field conditions | [94] |
Application of calcite-based residual material | Complete removal of Al and Fe; approximately 90% Cu removal; no significant effect on Co and Ni | [95] |
Fe–Cu–chitosan nanocomposite | Highest antimony (Sb) binding observed at a 2:1 Fe:Cu ratio | [96] |
Bioremediation with metal-tolerant bacterial strains | Effective against Cd, Pb, Cu, Cr, Ni, and Zn contamination | [97] |
Operation | Result | Reference |
---|---|---|
surface runoff from an exemplary rest area | TSS concentration exceeded the maximum acceptable level during all rainfall events based on a hydrodynamic method | [117] |
seasonal behavior of water runoff | climate change in summer, with absolute changes of 5021.9 and 2473.19 m3/s human activities in winter, with absolute changes of 263.04 and 296.84 m3/s | [118] |
height of the path curb (1–2 cm; 2–3 cm) the surrounding height of the field ridge | 17.5%, respectively 91.1% decrease in the runoff generation increased efficiency for total phosphorus load than the loads of compared to total nitrogen, chemical oxygen demand, and ammonia nitrogen | [119] |
Pollution | Frequency | Intensity | Potential Hazard/Effect | |
---|---|---|---|---|
Source | Type | |||
Agriculture | Diffuse | High | High | fertilizers (nitrates, phosphates); pesticides/eutrophication, toxicity |
Farms | Diffuse & localized | Medium to high | Medium High | ammoniacal nitrogen, organic matter, microbiological |
Households without sewage | Point (uncontrolled) | High in rural areas | Medium | microbiological contamination, nitrates, phosphates |
Industrial activities | Point | Medium | High | heavy metals, toxic compounds, high COD |
Mining | Point and historical | Low to medium | High locally | heavy metals, low pH/persistent effects |
Urbanization and stormwater | Diffuse (urban runoff) | High | Medium | hydrocarbons, metals, sediments, detergents |
Sector | Pollution Intensity | Frequency of Emission | Spatial Impact | Regulatory Control | Ease of Mitigation | Total | Rank |
---|---|---|---|---|---|---|---|
Agricultural Activities | 5 | 4 | 5 | 2 | 2 | 18 | 1 |
Urban Activities | 4 | 4 | 4 | 3 | 3 | 18 | 1 |
Industrial Activities | 5 | 3 | 4 | 3 | 2 | 17 | 3 |
Households & Farms | 3 | 4 | 3 | 2 | 4 | 16 | 4 |
Mineral Exploitation | 4 | 2 | 3 | 2 | 2 | 13 | 5 |
Technology | Application | Benefit |
---|---|---|
IoT-Based Water Sensors | Real-time water quality monitoring | Enables rapid response to pollution events |
AI and ML Algorithms | Predictive modeling of runoff and flow | Enhances proactive intervention strategies |
Constructed Wetlands | Passive nutrient and sediment treatment | Low-cost, ecosystem-based solution |
Precision Agriculture | Optimized fertilizer/pesticide application | Reduces non-point source pollution |
Phytoremediation Techniques | Contaminant removal via native flora | Biologically sustainable remediation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilaș, S.; Burescu, F.-L.; Chereji, B.-D.; Munteanu, F.-D. The Impact of Anthropogenic Activities on the Catchment’s Water Quality Parameters. Water 2025, 17, 1791. https://doi.org/10.3390/w17121791
Gavrilaș S, Burescu F-L, Chereji B-D, Munteanu F-D. The Impact of Anthropogenic Activities on the Catchment’s Water Quality Parameters. Water. 2025; 17(12):1791. https://doi.org/10.3390/w17121791
Chicago/Turabian StyleGavrilaș, Simona, Florina-Luciana Burescu, Bianca-Denisa Chereji, and Florentina-Daniela Munteanu. 2025. "The Impact of Anthropogenic Activities on the Catchment’s Water Quality Parameters" Water 17, no. 12: 1791. https://doi.org/10.3390/w17121791
APA StyleGavrilaș, S., Burescu, F.-L., Chereji, B.-D., & Munteanu, F.-D. (2025). The Impact of Anthropogenic Activities on the Catchment’s Water Quality Parameters. Water, 17(12), 1791. https://doi.org/10.3390/w17121791