A Procedure to Estimate Global Natural Recharge in Karst Aquifers
Abstract
1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Limitations of the Method
2.3. Data Sources and the Application of Geographic Information Systems (GISs)
3. Examples of Application of the Proposed Method for the Assessment of Total Annual Mean Natural Recharge
3.1. Application to the Assessment of Natural Recharge in the Duero River Basin (Spain)
3.2. Application to the Calculation of Natural Recharge in Several European Countries
3.3. Assessment of World Average Natural Recharge in Karst Aquifers
3.4. Recharge at the 2050 Horizon Taking into Account Climate Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIMAM | Ministerio de Medio Ambiente (Ministry of Environment of Spain) |
WHYMAP | Worldwide Hydrogeological Mapping and Assessment Programme |
ESDAC | European Soil Data Centre |
YAP | Yearly Average Precipitation |
References
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.W.; Vasak, S.; Bierkens, M.F. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Zheng, C. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Jasechko, S.; Seybold, H.; Perrone, D.; Fan, Y.; Shamsudduha, M.; Taylor, R.G.; Kirchner, J.W. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 2024, 625, 715–721. [Google Scholar] [PubMed]
- Custodio, E. Recarga Natural A Los Acuíferos, Metodología y Soporte de La Isotopía Del Agua: Aplicación a La Planificación Hidrológica y Conocimiento de Las Aguas Subterráneas en España: Informe RAEMIA; Iniciativa Digital Politécnica Oficina de Publicacions Acadèmiques Digitals de la UPC: Barcelona, Spain, 2019; Available online: https://www.mdx.cat/handle/2117/182282 (accessed on 10 April 2025)ISBN 978-84-9880-814-8.
- Milly, P.C.D.; Eagleson, P.S. Effects of spatial variability on annual average water balance. Water Resour. Res. 1987, 23, 2135–2143. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; Collados-Lara, A.J.; Alcalá, F.J. Assessing impacts of future potential climate change scenarios on aquifer recharge in continental Spain. J. Hydrol. 2018, 567, 803–819. [Google Scholar] [CrossRef]
- Pardo-Igúzquiza, E.; Collados-Lara, A.J.; Pulido-Velazquez, D. Potential future impact of climate change on recharge in the Sierra de las Nieves (southern Spain) high-relief karst aquifer using regional climate models and statistical corrections. Environ. Earth Sci. 2019, 78, 1–12. [Google Scholar] [CrossRef]
- Jourde, H.; Wang, X. Advances, challenges and perspective in modelling the functioning of karst systems: A review. Environ. Earth Sci. 2023, 82, 396. [Google Scholar] [CrossRef]
- Moeck, C.; Grech-Cumbo, N.; Podgorski, J.; Bretzler, A.; Gurdak, J.J.; Berg, M.; Schirmer, M. A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships. Sci. Total Environ. 2020, 717, 137042. [Google Scholar] [CrossRef]
- Sanz Pérez, E. Estimation of basin wide recharge rates using spring flow, precipitation, and temperature data. Ground Water 1997, 35, 1058–1065. [Google Scholar] [CrossRef]
- Manga, M. Using springs to study groundwater flow and active geologic processes. Annu. Rev. Earth Planet. Sci. 2001, 29, 201–228. [Google Scholar] [CrossRef]
- Gerard, B.R. Effects of Environmental Parameters and Precipitation Dynamics on Infiltration and Recharge into the Trinity Aquifer of Central Texas. Master’s Thesis, Texas State University, San Marcos, TX, USA, 2012. Available online: https://digital.library.txstate.edu/bitstream/10877/4405/1/GERARD-THESIS.pdf (accessed on 10 April 2025).
- Sanz-Pérez, E.; Menéndez-Pidal, I. Cálculo de la recarga natural en grandes áreas, en función de la litología y la precipitación. Tecnol. Y Cienc. Del agua 2013, 4, 195–202. [Google Scholar]
- Allocca, V.; Manna, F.; De Vita, P. Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy). Hydrol. Earth Syst. Sci. 2014, 18, 803–817. [Google Scholar] [CrossRef]
- Goldscheider, N.; Chen, Z.; Auler, A.S.; Bakalowicz, M.; Broda, S.; Drew, D.; Veni, G. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 2020, 28, 1661–1677. [Google Scholar] [CrossRef]
- Gunn, J. Karst groundwater in UNESCO protected areas: A global overview. Hydrogeol. J. 2021, 29, 297–314. [Google Scholar] [CrossRef]
- de Sena, Í.S.; de Azevedo Ruchkys, Ú.; Travassos, L.E.P. Geotourism Potential in Karst Geosystems: An example from the Lund Warming Ramsar Site, Minas Gerais, Brazil. Catena 2022, 208, 105717. [Google Scholar] [CrossRef]
- Stevanović, Z. Karst waters in potable water supply: A global scale overview. Environ. Earth Sci. 2019, 78, 662. [Google Scholar] [CrossRef]
- Hartmann, A.; Gleeson, T.; Rosolem, R.; Pianosi, F.; Wada, Y.; Wagener, T. A large-scale simulation model to assess karstic groundwater recharge over Europe and the Mediterranean. Geosci. Model Dev. 2015, 8, 1729–1746. [Google Scholar] [CrossRef]
- Hartmann, A.; Liu, Y.; Olarinoye, T.; Berthelin, R.; Marx, V. Integrating field work and large-scale modeling to improve assessment of karst water resources. Hydrogeol. J. 2021, 29, 315–329. [Google Scholar] [CrossRef]
- Stevanović, Z. Global Distribution and Use of Water from Karst Aquifers; The Geological Society, Special Publications: London, UK, 2018; Volume 466, pp. 217–236. [Google Scholar] [CrossRef]
- Sanz Pérez, E. Distribution Functions of Spring Discharge According to Their Lithologies and the Influence of Lower Limit to Flows in Spain. Ground Water 2001, 2, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Sanz Perez, E. Springs in Spain: Classification according to their flows and lithologies and their hydraulic contributions. Ground Water 1996, 34, 1033–1041. [Google Scholar] [CrossRef]
- Ministerio de Medio Ambiente (MIMAM). Secretaria de Estado de Aguas y Costas. Libro Blanco Del Agua en España [The White Book of Water in Spain]; Dirección General de Obras Hidráulicas y Calidad de las Aguas: Madrid, Spain, 2000. [Google Scholar]
- Gleeson, T.; Smith, L.; Moosdorf, N.; Hartmann, J.; Dürr, H.H.; Manning, A.H.; van Beek, L.P.H.; Jellinek, A.M. Mapping permeability over the surface of the Earth. Geophys. Res. Lett. 2011, 38, L02401. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.; Van Beek, L.P. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Kuang, X.; Liu, J.; Scanlon, B.R.; Jiao, J.J.; Jasechko, S.; Lancia, M.; Biskaborn, B.K.; Wada, Y.; Li, H.; Zeng, Z.; et al. The changing nature of groundwater in the global water cycle. Science 2024, 383, eadf0630. [Google Scholar] [CrossRef]
- Eurostat. Water in Europe, Part 1. Renewable Water Resource; Office for Official Publications or the European Communities: Luxembourg, 1998; Available online: https://www.eea.europa.eu/publications/binaryeenviasses01pdf/at_download/file (accessed on 9 June 2025).
- Tóth, G.; Montanarella, L.; Stolbovoy, V.; Máté, F.; Bódis, K.; Jones, A.; Van Liedekerke, M. Soils of the European Union. Italy: EUR, 23439; Institute for Environment and Sustainability Land Management and Natural Hazards Unit. Action SOIL: Ispra, Italy, 2008; Available online: https://esdac.jrc.ec.europa.eu/ESDB_Archive/eusoils_docs/other/EUR23439.pdf (accessed on 9 June 2025).
- JOINT RESEARCH CENTRE; European Soil Data Centre (ESDAC). European Soil Database. Available online: https://esdac.jrc.ec.europa.eu/content/european-soil-database-v20-vector-and-attribute-data (accessed on 9 June 2025).
- Ford, D. Effects of glaciations and permafrost upon the development of karst in Canada. Earth Surf. Process Landf. 1987, 12, 507–521. [Google Scholar] [CrossRef]
- Riba Arderiu, O. Mapa litológico de España E. 1:400.000; Instituto Nacional de Edafología y Servicio Geológico de Obras Públicas (IGME): Madrid-Zaragoza, Spain, 1969. [Google Scholar]
- European Soil Data Centre. CEC—Eurostat/GISCO (1995): European Soil Database, Version 2.0, Scale 1:1,000,000 CEC-DGXI/CORINE and JRC-IRSA at ISPRA; European Soil Data Centre: Ispra, Italy, 1995. [Google Scholar]
- WorldClim. Global Climate and Weather Data. Available online: https://worldclim.org/data/index.html (accessed on 21 November 2024).
- Natural Earth, Glaciated Areas. Available online: https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-glaciated-areas/ (accessed on 21 November 2024).
- FAO Soils Portal, FAO/UNESCO Soil Map of the World. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ (accessed on 21 November 2024).
- Sanz de Ojeda, A.; Alhama, I.; Sanz, E. Aquifer sensitivity to earthquakes: The 1755 Lisbon earthquake. J. Geophys. Res. Solid Earth 2019, 124, 8844–8866. [Google Scholar] [CrossRef]
- Estrela, T.; Cabezas, F.; Estrada, F. La evaluación de los recursos hídricos en el Libro Blanco del Agua en España. Rev. De Ing. Del Agua 1999, 6, 125–138. [Google Scholar] [CrossRef]
- New, M.; Hulme, M.; Jones, P. Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Clim. 2000, 13, 2217–2238. [Google Scholar] [CrossRef]
- Ministerio del Medio Ambiente (MIMAM). Las Aguas Continentales en la Unión Europea; CEDEX-Centro de Estudios y Experimentación de Obras Públicas: Madrid, Spain, 2004; ISBN 8483202689. [Google Scholar]
- Lobo Ferreira, J.P.; Oliveira, M.; Ciabatti, P. Desenvolvimento de Um Inventario Das Aguas Subterráneas de Portugal; LNEC, Dep. Hidráulica: Lisboa, Portugal, 1995; Volume I, Available online: https://repositorio.lnec.pt/handle/123456789/5212 (accessed on 9 May 2025).
- Oliveira, M.; Moinante, J.; Lobo Ferreira, J.P. Determinaçao da Recarga Deaguas Subterrâneas a Partir Da Analise de Hidrogramas de Escoamento, Seminario Sobre Aguas Subterraneas; APRH—Assoc. Portg. Rec. Hid.: Lisboa, Portugal, 1997; Available online: https://repositorio.lnec.pt/handle/123456789/5264 (accessed on 9 May 2025).
- Carmona, A. Water frameworks and water resources in Portugal. A contribution to the workshop. In Overview on Inland Water in the Mediterranean EU Countries; CEDEX: Madrid, Spain, 1999; Available online: https://hispagua.cedex.es/sites/default/files/aguas_continentales_union_europea.pdf (accessed on 9 May 2025).
- European Environment Agency (EEA). EEA Annual Report 2001. 2002. Available online: https://www.eea.europa.eu/en/analysis/publications/corporate_document_2001_1 (accessed on 15 November 2024).
- Water Research Institute (IRSA). Italy: N.R.C. Long-Range Study on Water Supply and Demand in Europe, Level A: Studies at Country Level—Italy; Water Research Institute: Rome, Italy, 1997. [Google Scholar]
- BGR; UNESCO. Worldwide Hydrogeological Mapping and Assessment Programme (WHYMAP). World Karst Aquifer Map. Available online: https://www.whymap.org/whymap/EN/Maps_Data/Wokam/wokam_node_en.html (accessed on 21 November 2024).
- Lindgren, A. Biomes of the Last Glacial Maximum Permafrost Region; Dataset Version 1; Bolin Centre Database: Stockholm, Sweden, 2018. [Google Scholar] [CrossRef]
- Margat, J.; Van der Gun, J. Groundwater Around the World: A Geographic Synopsis; CRC Press: London, UK, 2013. [Google Scholar]
- Yoshikawa, S.; Yamada, H.; Hanasaki, N.; Kanae, S. Evaluation for sustainable agriculture water use from River, Reservoirs and Groundwater in the 20th century. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 5–9 December 2011; Volume 2011, p. GC13A-0968. [Google Scholar]
- Döll, P.; Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 2008, 12, 863–885. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; John Wiley & Sons: New York, NY, USA, 2007. [Google Scholar]
Precipitation (L/m2) | Lithological Areas (km2) | |||||||
---|---|---|---|---|---|---|---|---|
Intervals | Class Marks | Alluvials | Conglomerates | Sandstones | Limestones | Marls | Others | Total |
350–449 | 400 | 6311 | 1126 | 80 | 1122 | 7327 | 852 | 16,818 |
450–549 | 500 | 5296 | 1803 | 193 | 3580 | 7184 | 3500 | 21,556 |
550–649 | 600 | 2403 | 2209 | 237 | 1387 | 2992 | 3169 | 12,397 |
650–749 | 700 | 1020 | 1431 | 223 | 893 | 1072 | 3336 | 7975 |
750–849 | 800 | 793 | 523 | 190 | 164 | 269 | 6352 | 8291 |
850–949 | 900 | 1035 | 1047 | 165 | 329 | 1094 | 1857 | 5527 |
950–1049 | 1000 | 141 | 262 | 152 | 180 | 513 | 2858 | 4106 |
1050–1149 | 1100 | - | - | 19 | 106 | - | 980 | 1105 |
1150–1249 | 1200 | - | - | - | - | - | - | - |
1250–1349 | 1300 | - | - | 16 | 56 | 481 | 553 | |
1350–1449 | 1400 | 10 | - | - | 88 | - | 534 | 632 |
All | 17,009 | 8401 | 1275 | 7905 | 2,0451 | 23,919 | 78,960 | |
% | 21.5 | 10.6 | 1.6 | 10 | 25.9 | 30.4 | 100 | |
Spain % | 16.1 | 6.3 | 3.9 | 15 | 24.8 | 33.9 | 100 | |
Precipitation | 532.02 | 631.08 | 722.35 | 583.93 | 527.17 | 768.81 | 621.3 | |
Hydraulic contribution (hm3) | 751 | 296.9 | 67.2 | 1583.2 | 355.8 | 257.4 | 3311.5 |
Country | Lithology | Recharge | |||
---|---|---|---|---|---|
Peninsular | Alluvials | 80,104 | 687 | 0.083 | 4567.6 |
Spain | Conglomerates | 31,141 | 687 | 0.056 | 1198.1 |
Sandstones | 19,213 | 687 | 0.073 | 963.6 | |
Limestones | 74,582 | 687 | 0.343 | 17,574.6 | |
Marts | 123,464 | 687 | 0.033 | 2799.1 | |
Others | 168,973 | 687 | 0.014 | 1625.2 | |
Total | 497,477 | 687 | - | 28,728.2 | |
Portugal | Alluvials | 12,485 | 882 | 0.083 | 913.9 |
Conglomerates | 0 | 882 | 0.056 | 0 | |
Sandstones | 13,516 | 882 | 0.073 | 870.24 | |
Limestones | 5500 | 882 | 0.343 | 1663.8 | |
Marls | 1678 | 882 | 0.033 | 48.83 | |
Others | 56,720 | 882 | 0.014 | 700.37 | |
Total | 89,898 | 882 | - | 4197.14 | |
Ireland | Alluvials | 3384 | 1150 | 0.083 | 323 |
Conglomerates | 0 | 1150 | 0.056 | 0 | |
Sandstones | 11,758 | 1150 | 0.073 | 987.1 | |
Limestones | 24,446 | 1150 | 0.343 | 9642.7 | |
Marls | 0 | 1150 | 0.033 | 0 | |
Others | 29,989 | 1150 | 0.014 | 482.8 | |
Total | 69,577 | 1150 | - | 11,435.6 | |
Italy | Alluvials | 80,722 | 982 | 0.083 | 6579.3 |
Conglomerates | 0 | 982 | 0.056 | 0 | |
Sandstones | 31,812 | 982 | 0.073 | 2280.4 | |
Limestones | 71,911 | 982 | 0.343 | 24,421.5 | |
Marls | 59,212 | 982 | 0.033 | 1918.8 | |
Others | 41,204 | 982 | 0.014 | 566.48 | |
Volcanics | 17,694 | 982 | 0.2 * | 3539 | |
Total | 302,557 | 982 | - | 39,305.5 |
Recharge of Peninsular Spain | |||
---|---|---|---|
Lithologies | km2 | % | |
Alluvials, sands, gravels | 8.29 | 4562 | 15.9 |
Conglomerates | 5.63 | 1204 | 4.2 |
Sandstones | 7.29 | 962 | 3.4 |
Limestones, dolomites | 34.31 | 17,580 | 61.4 |
Marls, silts, clays | 3.32 | 2816 | 9.8 |
Others | 1.32 | 1532 | 5.3 |
Total | 28,656 | 100 |
Mean Recharge (hm3/yr) | ||||
---|---|---|---|---|
Area (km2) | Average Precipitation (mm/yr) | Previous Works * | Estimates of This Work | |
Spain (Peninsular) | 497,477 | 687 | 28,908 1 | 28,728.2 |
Portugal | 89,898 | 882 | 4000 2 | 4197.14 |
Ireland | 69,577 | 1150 | 10,800 3 | 11,435.6 |
Italy | 302,557 | 982 | 43,000 4 | 39,305.5 |
Continent | Total Karst (km2) | Glaciers and Permafrost in Karst (km2) | Net Karst (km2) | Net Karst Percentage (%) | Average Yearly Precipitation (mm/yr) | Recharge Rate (%) | Natural Recharge (hm3) | Natural Recharge (mm) |
---|---|---|---|---|---|---|---|---|
Africa | 4,053,400 | 0 | 4,053,400 | 13.5 | 496.71 | 34.31 | 690,785.3 | 170,421 |
Asia | 8,340,000 | 818,000 | 7,522,000 | 18.6 | 694.17 | 34.31 | 1,791,512.7 | 238,170 |
Oceania | 501,300 | 600 | 500,700 | 6.2 | 1266.78 | 34.31 | 217,620.4 | 434,632 |
Europe | 2,166,000 | 67,000 | 2,099,000 | 21.8 | 671.87 | 34.31 | 483,858.5 | 230,519 |
North America | 4,431,000 | 742,000 | 3,689,000 | 19.6 | 726.14 | 34.31 | 919,072.4 | 249,139 |
South America | 767,900 | 123,000 | 644,900 | 4.3 | 1257.38 | 34.31 | 278,214.4 | 431,407 |
Global | 20,259,600 | 1,750,600 | 18,509,000 | 4,381,063.7 |
Continent | Estimated Precipitation in 2050 (mm/Yr) | Recharge Rate (%) | Estimated Natural Recharge in 2050 (hm3) |
---|---|---|---|
Africa | 407.54 | 34.31 | 566,779.72 |
Asia | 595.83 | 34.31 | 1,537,717.14 |
Oceania | 820.38 | 34.31 | 140,932.48 |
Europe | 830.77 | 34.31 | 598,292.92 |
North America | 559.50 | 34.31 | 708,161.32 |
South America | 1657.05 | 34.31 | 366,647.32 |
Global | 3,918,530.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz Pérez, E.; Mosquera-Feijóo, J.C.; Sanz de Ojeda, J.; Menéndez-Pidal, I. A Procedure to Estimate Global Natural Recharge in Karst Aquifers. Water 2025, 17, 1779. https://doi.org/10.3390/w17121779
Sanz Pérez E, Mosquera-Feijóo JC, Sanz de Ojeda J, Menéndez-Pidal I. A Procedure to Estimate Global Natural Recharge in Karst Aquifers. Water. 2025; 17(12):1779. https://doi.org/10.3390/w17121779
Chicago/Turabian StyleSanz Pérez, Eugenio, Juan Carlos Mosquera-Feijóo, Joaquín Sanz de Ojeda, and Ignacio Menéndez-Pidal. 2025. "A Procedure to Estimate Global Natural Recharge in Karst Aquifers" Water 17, no. 12: 1779. https://doi.org/10.3390/w17121779
APA StyleSanz Pérez, E., Mosquera-Feijóo, J. C., Sanz de Ojeda, J., & Menéndez-Pidal, I. (2025). A Procedure to Estimate Global Natural Recharge in Karst Aquifers. Water, 17(12), 1779. https://doi.org/10.3390/w17121779