The Spatiotemporal Evolution of Wetlands Within the Yarlung Zangbo River Basin and Responses to Natural Conditions from 1990 to 2020
Abstract
1. Introduction
2. Study Area and Data
2.1. Research Area
2.2. Data
3. Key Technologies and Methods
3.1. Hydrological Analysis
3.2. Dynamic Analysis of Landscape Transformation
3.3. Geographic Detector
4. Results and Analysis
4.1. Characteristics of Wetland Change in the Yarlung Zangbo River Basin
4.1.1. Spatial and Temporal Changes in Wetland Distribution in the Yarlung Zangbo River Basin
4.1.2. Spatio-Temporal Analysis of Landscape Dry–Wet Conversion Amplitude in the Yarlung Zangbo River Basin
4.2. Research on the Influencing Factors in Wetland Change in the Yarlung Zangbo River Basin
4.2.1. Influencing Analysis of Single Factor
4.2.2. Influence Analysis of Pairwise Factor Interactions
5. Discussion
5.1. The “Warming–Humidification” Trend in the Yarlung Zangbo River Basin
5.2. Temporal and Spatial Changes of Wetlands in the Yarlung Zangbo River Basin
5.3. Factors Influencing the Increase and Reduction in Wetland Areas
5.4. Limitation
6. Conclusions
- (1)
- Since 1990, the Yarlung Zangbo River Basin has undergone a changing process of “humidification–drought–humidification–drought”. Over 30 years, this has led to the development of a wet habitat. The critical period for the transformation of this habitat occurred between 1995 and 2000.
- (2)
- The changes in the wetland water bodies and swamp areas of the Yarlung Zangbo River Basin over the past 30 years have been significant. Initially, the water area increased, followed by a subsequent reduction, with most of the wetland areas converted from snow and ice and grassland. From 1990 to 2000, the swamp area experienced only slight changes; however, it began to increase after 2000, primarily due to the conversion of grassland.
- (3)
- The spatial distribution of the wetlands in the Yarlung Zangbo River Basin has remained relatively stable over the past 30 years. Most of the wetlands are concentrated in the lower river basins of the Yarlung Zangbo River, the Niyang River, and the Yigong–Parlung Zangbo basin. Notably, the location of half of the total wetland area has remained unchanged.
- (4)
- The single-factor driving analysis indicated that vegetation cover played a significant role in the increase in wetlands and the overall change in wetland areas. In contrast, precipitation and evapotranspiration, which contributed to the reduction in wetlands, were ranked higher than vegetation cover. Furthermore, the interaction analysis of pairwise driving factors revealed that vegetation cover is the most influential factor.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, C.L.; Wang, Z.C.; Liu, D.; Zhao, H.Y.; Gong, L.J.; Tian, B.X. Evolution process and driving force analysis of natural wetlands in Xiliao River Basin based on SWAT model. Trans. Chin. Soc. Agric. Eng. 2020, 36, 286–297. [Google Scholar]
- Chen, G.C.; Huang, Z.W.; Lu, X.F.; Peng, M. Characteristics of Wetland and Its Conservation in the Qinghai Plateau. J. Glaciol. Geocryol. 2002, 24, 254–259. [Google Scholar]
- Zhang, X.Z.; Yang, Y.P.; Piao, S.L.; Bao, W.K.; Wang, S.P.; Wang, G.X.; Sun, H.; Luo, T.X.; Zhang, Y.J.; Shi, P.L.; et al. Ecological change on the Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3048–3056. [Google Scholar]
- Tootchi, A.; Jost, A.; Ducharne, A. Multi-source global wetland maps combining surface water imagery and groundwater constraints. Earth Syst. Sci. Data 2019, 11, 189–220. [Google Scholar] [CrossRef]
- Wang, Z.Y. Multi Source Remote Sensing Monitoring of Lake Environmental Factors in Qinghai Tibet Plateau and Its Response to Climate Change. Master’s Thesis, Jinan Shandong Normal University, Jinan, China, 2017. [Google Scholar]
- Zhao, Z.L.; Zhang, Y.L.; Liu, L.S.; Liu, F.G.; Zhang, H.F. Advances in research on wetlands of the Tibetan Plateau. Prog. Geogr. 2014, 33, 1218–1230. [Google Scholar]
- Lang, Q.; Niu, Z.G.; Hong, X.Q.; Yang, X.Y. Remote Sensing Monitoring and Change Analysis of Wetlands in the Tibetan Plateau. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 230–237. [Google Scholar]
- Liu, Z.W.; Li, S.N.; Wei, W.; Song, X.J. Research progress on alpine wetland changes and driving forces in Qinghai-Tibet Plateau during the last three decades. Chin. J. Ecol. 2019, 38, 856–862. [Google Scholar]
- Wang, G.X.; Li, Y.S.; Wang, Y.B.; Chen, L. Typical Alpine Wetland System Changes on the Qinghai- Tibet Plateau in Recent 40 Years. Acta Geogr. Sin. 2007, 62, 481–491. [Google Scholar]
- Du, J.Z.; Wang, G.X.; Yang, Y.; Zhang, T.; Mao, T.X. Temporal and spatial variation of the distributive patterns and driving force analysis in the Yangtze River and Yellow River source regions wetland. Acta Ecol. Sin. 2015, 35, 6173–6182. [Google Scholar]
- Zhao, F.; Liu, H.; Zhang, H.Q.; Zou, W.T. Driving Forces for Wetland Changes in the Typical Region of the Origin of the Three Major Rivers. Wetl. Sci. Manag. 2012, 8, 57–60. [Google Scholar]
- Pirali, Z.A.R.; Aliakba, H.; Saeid, P.; Omid, B.K.; Rasoul, G.; Beyraghdar Kashkooli, O.; Ghorbani, R. Detection and Prediction of Water Body and Aquatic Plants Cover Changes of Choghakhor International Wetland, Using Landsat Imagery and the Cellular Automata–Markov Model. Contemp. Probl. Ecol. 2020, 13, 545–555. [Google Scholar] [CrossRef]
- Gema, P.; Francisco, G.; Javier, A.; Luc, B.; Sandra, B.; Max, C.F.; Luciana, G.; Patrick, G.; Erik, J.; Fernando, O.; et al. The future of temporary wetlands in drylands under global change. Inland Waters 2021, 11, 445–456. [Google Scholar]
- Zhe, Z.; Lauren, E.B.; Zhenhua, L.; Llwellyn, M.A.; Tom, W.B.; Yanping, L. Heterogeneous Changes to Wetlands in the Canadian Prairies under Future Climate. Water Resour. Res. 2021, 57, 7. [Google Scholar]
- Ansa, S.; Chen, S.; Mirza, W.; Muhammad, S. Leveraging Machine Learning and Remote Sensing to Monitor Long-Term Spatial-Temporal Wetland Changes: Towards a National RAMSAR Inventory in Pakistan. Appl. Geogr. 2023, 151, 102868. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Potential Evapotranspiration Dataset for China (1901–2023); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2022. [Google Scholar] [CrossRef]
- Guan, X.B.; Shen, H.F.; Wang, Y.C.; Chu, D.; Li, X.H.; Yue, L.W.; Liu, X.X.; Zhang, L.P. STFLNDVI: A Long-Term 1km NDVI Time Series Since 1982 by Fusing MODIS and AVHRR Products; Zenodo (CERN European Organization for Nuclear Research): Geneva, Switzerland, 2021. [Google Scholar]
- Zhang, Y.H.; Su, L.Y.; Yu, W.H.; Zhang, H.Y. Characteristics of landscape dynamic changes in Zhalong Wetland. Acta Geogr. Sin. 2015, 70, 131–142. [Google Scholar]
- Wang, J.F.; Li, X.-H.; Christakos, G.; Liao, Y.-L.; Zhang, T.; Gu, X.; Zheng, X.-Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. GeoDetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Liu, L.; Niu, Q.K.; Heng, J.X.; Li, H.; Xu, Z.X. Characteristics of dry and wet conversion and dynamic vegetation response in Yarlung Zangbo River basin. Trans. Chin. Soc. Agric. Eng. 2020, 36, 175–184+338. [Google Scholar]
- Liu, L.; Niu, Q.K.; Heng, J.X.; Li, H.; Xu, Z.X. Transition Characteristics of the Dry-Wet Regime and Vegetation Dynamic Responses over the Yarlung Zangbo River Basin, Southeast Qinghai-Tibet Plateau. Remote Sens. 2019, 11, 1254. [Google Scholar] [CrossRef]
- Li, P.J.; Zuo, D.P.; Xu, Z.X.; Gao, X.X. Land use/cover and landscape patterns based on terrain in the Yarlung Tsangpo River basin, China. Mt. Res. 2022, 40, 136–150. [Google Scholar]
- Zhang, R.H.; Su, F.G.; Jiang, Z.H.; Gao, X.J.; Guo, D.L.; Ni, J.; You, Q.L.; Lan, C.; Zhou, P.T. An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century. Chin. Sci. Bull. 2015, 60, 3036–3047. [Google Scholar]
- Shen, Y.P.; Wang, G.Y.; Wang, G.X.; Pu, J.C.; Wang, X. Impacts of climate change on glacial water resources and hydrological cycles in the Yangtze River source region, the Qinghai-Tibetan Plateau, China: A Progress Report. Sci. Cold Arid Reg. 2009, 1, 3–23. [Google Scholar]
- Li, L.; Li, J.; Yao, X.J.; Luo, J.; Huang, Y.H.; Feng, Y.Y. Changes of the three holy lakes in recent years and quantitative analysis of the influencing factors. Quat. Int. 2014, 349, 339–345. [Google Scholar] [CrossRef]
- Ge, R.X.; Ma, C. Analysis on Land Use Change and Driving Factors of Lake Wetland in arid Plateau—A Case Study on the Inflow Area of Bojianghaizi Wetland. Res. Soil Water Conserv. 2022, 29, 376–385. [Google Scholar]
- Niu, Z.G.; Jing, Y.H.; Zhang, D.Q.; Zhang, B. An overview and the outlook for wetland ecosystems in the Qinghai-Tibetan Plateau under Climate Changes. Clim. Change Res. 2024, 20, 509–518. [Google Scholar]
- Wang, S.S.; Zhou, K.F.; Zou, Q.T.; Wang, J.J.; Wang, W. Land use/land cover change responses to ecological water conveyance in the lower reaches of Tarim River, China. J. Arid Land 2021, 13, 1274–1286. [Google Scholar] [CrossRef]
- Fu, Y.; Xiao, J.S.; Xiao, R.X.; Sa, W.J.; Li, X.L. LUCC analysis and simulation prediction of Xining City based on RS and GIS. Trans. Chin. Soc. Agric. Eng. 2009, 25, 211–218+2. [Google Scholar]
- Wang, H.; Peng, P.; Kong, X.; Zhang, T.; Yi, G. Vegetation dynamic analysis based on multisource remote sensing data in the east margin of the Qinghai-Tibet Plateau, China. PeerJ 2019, 7, e8223. [Google Scholar] [CrossRef]
- Lyu, X.X.; Gou, A.Y.; Chen, Z.M.; Zhang, T.X.; Tan, J.B.; Ran, J.H. Landscape pattern change of marsh in the Nanmoqie Wetland National Nature Reserve of Sichuan Province. Chin. J. Ecol. 2024, 43, 1747–1755. [Google Scholar]
- Liu, Y.; Wang, J.; Dong, J.; Wang, S.Q.; Hui, Y. Variations of Vegetation Phenology Extracted from Remote Sensing Data over the Tibetan Plateau Hinterland during 2000–2014. J. Meteorol. Res. 2020, 34, 786–797. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.H.; Chen, L.; Li, D.L.; Jiang, Y.C. The Disparity in Normalized Difference Vegetarian Index Response to Climate Warming and Humidification in the Tibetan Plateau before and after 1998. Remote Sens. 2024, 16, 2121. [Google Scholar] [CrossRef]
- Aldughairi, A.A. Climate change assessment in middle and northern Saudi Arabia: Alarming trends. Dysona Appl. Sci. 2024, 6, 60–69. [Google Scholar] [CrossRef]
- Boldyrev, S.L.; Levykh, A.Y.; Zamyatin, D.O. Wetlands Dynamics Analysis: A Case Study of Keoladeo National Park (India), the Wintering Grounds of West Siberian White Crane Population. Samar. Naučnyj Vestn. 2023, 12, 27–35. [Google Scholar] [CrossRef]
- Xue, P.F.; Li, W.L.; Zhu, G.F.; Zhou, H.K.; Liu, C.L.; Yan, H.P. Changes in the pattern of an alpine wetland landscape in Maqu County in the first meander of the Yellow River Chinese. J. Plant Ecol. 2021, 45, 467–475. [Google Scholar] [CrossRef]
- Wang, Y.C.; Liu, D.L.; Liang, E.H.; Ni, J.R. Structural Characteristics of Endorheic Rivers in the Tarim Basin. Remote Sens. 2022, 14, 4502. [Google Scholar] [CrossRef]
- Li, S.S.; Duan, S.Y.; Hu, J.L.; Yan, J.P. Identifying the spatio-temporal pattern of vegetation change and influencing factors on the Loess Plateau between 2000 and 2022. Acta Geogr. Sin. 2024, 79, 1768–1786. [Google Scholar]
- Liu, H.J.; Wu, D.Q.; Meng, L.H.; Ustin, S.; Cui, Y.; Yang, H.X.; Zhang, X.L. Remote sensing recognition method of different fertilization methods in NDVI time series. Trans. Chin. Soc. Agric. Eng. 2019, 35, 162–168. [Google Scholar]
Data Name | Source | Resolution | Purpose |
---|---|---|---|
Digital Elevation Model (DEM) | Geospatial Data Cloud Platform of the Chinese Academy of Sciences (http://www.gscloud.cn (accessed on 1 November 2021)) | 90 m | The topographic basic data are used for surface analysis and hydrological analysis based on ARCGIS to determine the study area and sub-basin differentiation. |
Land Use Data | Research achievements of Professor Huang Xin’s team at Wuhan University [16] | 30 m | Used for wetland extraction, land use analysis and landscape conversion calculation within the basin, and needs to be reclassified into specific land use types. |
Meteorological Data (Temperature/Precipitation) | Resource and Environment Science Data Center of the Chinese Academy of Sciences | 500 m | Generate raster distribution maps through spatial interpolation, calculate the changes every 5 years and analyze the explanatory power for wetland changes. |
Meteorological Data (Evapotranspiration) | China 1 km Monthly Potential Evapotranspiration Data (1990–2020) of the National Tibetan Plateau Science Data Center [17] | 1 km | Extract effective data and accumulate them into annual total evapotranspiration raster data to analyze the explanatory power for wetland changes. |
Normalized Difference Vegetation Index (NDVI) | Global long-term data of MODIS and AVHRR products fused by Shen Huafeng’s team at Wuhan University [18] | 1 km | Fuse growing season data for the analysis of influencing factors in wetland changes |
Water System Data | Spatio-Temporal Three Poles Environmental Big Data Platform, Water System Dataset of Resource and Environment Science Data Center of the Chinese Academy of Sciences | - | Determine the study area and sub-basin differentiation through the ArcGIS hydrological analysis module based on DEM |
Conversion Coefficient | Water | Swamp | Snow and Ice | Grassland | Cropland | Other Terrestrial Types |
---|---|---|---|---|---|---|
Water | 0 | 1 | 2 | 3 | 4 | 5 |
Swamp | −1 | 0 | 1 | 2 | 3 | 4 |
Snow and ice | −2 | −1 | 0 | 1 | 2 | 3 |
Grassland | −3 | −2 | −1 | 0 | 1 | 2 |
Cropland | −4 | −3 | −2 | −1 | 0 | 1 |
Other terrestrial types | −5 | −4 | −3 | −2 | −1 | 0 |
Land Use Type | Period | Cropland | Forest | Shrub | Grassland | Water | Snow and Ice | Barren Land | Impervious Surface | Swamp | Summary |
---|---|---|---|---|---|---|---|---|---|---|---|
water | 1990–1995 | −0.109 | −26.635 | −0.015 | −10.511 | 0.000 | 46.202 | 27.627 | 0.047 | 0.016 | 36.622 |
1995–2000 | 1.646 | −34.861 | 0.000 | 178.655 | 0.000 | 70.380 | 47.465 | 0.986 | 0.525 | 264.796 | |
2000–2005 | 0.635 | −4.980 | 0.005 | 284.385 | 0.000 | 78.041 | 65.864 | −0.503 | 0.117 | 423.563 | |
2005–2010 | 0.292 | −9.514 | 0.000 | −45.945 | 0.000 | 76.652 | −62.800 | −0.392 | 0.078 | −41.630 | |
2010–2015 | 0.194 | −11.585 | −0.004 | −240.575 | 0.000 | 35.256 | −25.339 | 0.212 | 0.043 | −241.797 | |
2015–2020 | 0.168 | −1.643 | −0.021 | −53.353 | 0.000 | 21.754 | −73.004 | −0.302 | 0.009 | −106.390 | |
Summary | 2.827 | −89.217 | −0.035 | 112.656 | 0.000 | 328.284 | −20.187 | 0.047 | 0.788 | 335.163 | |
swamp | 1990–1995 | −0.084 | 0.000 | 0.000 | 3.452 | −0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 3.353 |
1995–2000 | −0.094 | −0.002 | 0.000 | −2.786 | −0.525 | 0.000 | −0.002 | 0.000 | 0.000 | −3.407 | |
2000–2005 | −0.307 | −0.021 | 0.000 | 1.547 | −0.117 | 0.000 | 0.000 | 0.000 | 0.000 | 1.103 | |
2005–2010 | 0.030 | −0.001 | 0.000 | 1.152 | −0.078 | 0.000 | 0.000 | 0.000 | 0.000 | 1.103 | |
2010–2015 | −0.101 | 0.000 | 0.000 | 3.195 | −0.043 | 0.000 | 0.000 | 0.000 | 0.000 | 3.051 | |
2015–2020 | 0.032 | 0.000 | 0.000 | 6.111 | −0.009 | 0.000 | 0.000 | 0.000 | 0.000 | 6.134 | |
Summary | −0.523 | −0.023 | 0.000 | 12.672 | −0.788 | 0.000 | −0.002 | 0.000 | 0.000 | 11.336 |
Periods | 1990–1995 | 1995–2000 | 2000–2005 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dependent Variables | Increased Area of Wetlands | Reduced Area of Wetlands | Total Area of Wetland Change | Increased Area of Wetlands | Reduced Area of Wetlands | Total Area of Wetland Change | Increased Area of Wetlands | Reduced Area of Wetlands | Total Area of Wetland Change | |||||||||
Independent Variables | q | p | q | p | q | p | q | p | q | p | q | p | q | p | q | p | q | p |
TC | 0.07 | 0.00 | 0.01 | 0.76 | 0.03 | 0.03 | 0.15 | 0.00 | 0.00 | 0.86 | 0.10 | 0.00 | 0.13 | 0.00 | 0.03 | 0.09 | 0.12 | 0.00 |
PC | 0.05 | 0.01 | 0.01 | 0.35 | 0.02 | 0.13 | 0.03 | 0.05 | 0.03 | 0.03 | 0.03 | 0.04 | 0.05 | 0.00 | 0.01 | 0.37 | 0.04 | 0.01 |
VCC | 0.10 | 0.00 | 0.01 | 0.54 | 0.07 | 0.00 | 0.05 | 0.01 | 0.01 | 0.54 | 0.04 | 0.01 | 0.09 | 0.00 | 0.01 | 0.45 | 0.07 | 0.00 |
EC | 0.02 | 0.16 | 0.04 | 0.02 | 0.02 | 0.28 | 0.06 | 0.00 | 0.01 | 0.58 | 0.05 | 0.01 | 0.02 | 0.18 | 0.01 | 0.62 | 0.02 | 0.12 |
Periods | 2005–2010 | 2010–2015 | 2015–2020 | |||||||||||||||
Dependent Variables | Increased Area of Wetlands | Reduced Area of Wetlands | Total Area of Wetland Change | Increased Area of Wetlands | Reduced Area of Wetlands | Total Area of Wetland Change | Increased Area of Wetlands | Reduced Area of Wetlands | Total Area of Wetland Change | |||||||||
Independent Variables | q | p | q | p | q | p | q | p | q | p | q | p | q | p | q | p | q | p |
TC | 0.08 | 0.00 | 0.01 | 0.42 | 0.08 | 0.00 | 0.05 | 0.00 | 0.05 | 0.00 | 0.03 | 0.04 | 0.05 | 0.01 | 0.03 | 0.04 | 0.03 | 0.10 |
PC | 0.06 | 0.00 | 0.04 | 0.01 | 0.07 | 0.00 | 0.05 | 0.00 | 0.01 | 0.68 | 0.03 | 0.03 | 0.04 | 0.03 | 0.02 | 0.13 | 0.03 | 0.10 |
VCC | 0.06 | 0.00 | 0.00 | 0.86 | 0.05 | 0.00 | 0.10 | 0.00 | 0.02 | 0.16 | 0.10 | 0.00 | 0.06 | 0.00 | 0.02 | 0.22 | 0.06 | 0.00 |
EC | 0.01 | 0.67 | 0.02 | 0.27 | 0.01 | 0.52 | 0.05 | 0.00 | 0.02 | 0.11 | 0.04 | 0.02 | 0.04 | 0.02 | 0.01 | 0.61 | 0.04 | 0.01 |
Periods | 1990–1995 | 1995–2000 | ||||
---|---|---|---|---|---|---|
Increased Area of Wetlands | Reduced Area of Wetlands | Total Area of Wetland Change | Increased Area of Wetlands | Reduced Area of Wetlands | Total Area of Wetland Change | |
Strongest interaction | VCC ∩ EC | VCC ∩ EC | VCC ∩ EC | TC∩ VCC | PC ∩ EC | TC∩ VCC |
q | 0.187 | 0.102 | 0.148 | 0.299 | 0.087 | 0.219 |
Second interaction | PC ∩ EC | PC ∩ EC | PC ∩VCC | TC∩ EC | TC∩ EC | TC∩ EC |
q | 0.173 | 0.086 | 0.121 | 0.272 | 0.075 | 0.190 |
Periods | 2000–2005 | 2005–2010 | ||||
Increased Area of Wetlands | Reduced Area of Wetlands | Total Area of Wetland Change | Increased Area of Wetlands | Reduced Area of Wetlands | Total Area of Wetland Change | |
Strongest interaction | TC ∩ VCC | VCC ∩ EC | TC ∩ VCC | TC ∩ VCC | PC ∩ EC | PC ∩ VCC |
q | 0.262 | 0.060 | 0.228 | 0.186 | 0.139 | 0.206 |
Second interaction | TC ∩ EC | PC ∩ VCC | TC ∩ EC | PC ∩ VCC | TC ∩ PC | TC ∩ VCC |
q | 0.212 | 0.059 | 0.188 | 0.178 | 0.124 | 0.181 |
Periods | 2010−2015 | 2015−2020 | ||||
Increased Area of Wetlands | Reduced Area of Wetlands | Total Area of Wetland Change | Increased Area of Wetlands | Reduced Area of Wetlands | Total Area of Wetland Change | |
Strongest interaction | TC ∩ VCC | TC ∩ VCC | TC ∩ VCC | TC ∩ EC | TC ∩ VCC | TC ∩ EC |
q | 0.170 | 0.466 | 0.213 | 0.247 | 0.094 | 0.203 |
Second interaction | PC ∩ VCC | TC ∩ EC | PC ∩ VCC | PC ∩ EC | TC ∩ PC | PC ∩ EC |
q | 0.167 | 0.166 | 0.163 | 0.220 | 0.091 | 0.190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Fan, F.; He, Z. The Spatiotemporal Evolution of Wetlands Within the Yarlung Zangbo River Basin and Responses to Natural Conditions from 1990 to 2020. Water 2025, 17, 1761. https://doi.org/10.3390/w17121761
Xiao Y, Fan F, He Z. The Spatiotemporal Evolution of Wetlands Within the Yarlung Zangbo River Basin and Responses to Natural Conditions from 1990 to 2020. Water. 2025; 17(12):1761. https://doi.org/10.3390/w17121761
Chicago/Turabian StyleXiao, Yan, Fenglei Fan, and Zhenfang He. 2025. "The Spatiotemporal Evolution of Wetlands Within the Yarlung Zangbo River Basin and Responses to Natural Conditions from 1990 to 2020" Water 17, no. 12: 1761. https://doi.org/10.3390/w17121761
APA StyleXiao, Y., Fan, F., & He, Z. (2025). The Spatiotemporal Evolution of Wetlands Within the Yarlung Zangbo River Basin and Responses to Natural Conditions from 1990 to 2020. Water, 17(12), 1761. https://doi.org/10.3390/w17121761