Seasonal Water Column Stratification and Manganese and Iron Distribution in a Water Reservoir: The Case of Pinios Dam (Western Greece)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
3. Results
3.1. Physicochemical Parameters
3.2. Manganese and Iron Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DEM | Digital elevation model |
Appendix A
February 2023 | May 2023 | August 2023 | October 2023 | ||||||
---|---|---|---|---|---|---|---|---|---|
Depth | Mn | Fe | Mn | Fe | Mn | Fe | Mn | Fe | |
(m) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | |
ST-1 | 4 | 0.059 | 0.038 | 0.041 | 0.011 | 0.024 | 0.019 | 0.061 | 0.027 |
8 | 0.025 | 0.033 | 0.049 | 0.012 | 0.025 | 0.027 | 0.020 | 0.033 | |
12 | 0.047 | 0.043 | 0.029 | 0.017 | 0.011 | 0.033 | 0.057 | 0.037 | |
16 | 0.053 | 0.054 | 0.055 | 0.020 | 0.015 | 0.028 | 0.059 | 0.056 | |
20 | 0.049 | 0.095 | 0.036 | 0.024 | 0.102 | 0.108 | 0.099 | 0.076 | |
24 | 0.039 | 0.087 | 0.045 | 0.018 | 0.134 | 0.198 | 0.154 | 0.104 | |
28 | 0.043 | 0.075 | 0.051 | 0.046 | – | – | 0.198 | 0.174 | |
32 | 0.016 | 0.094 | 0.018 | 0.054 | – | – | – | – | |
36 | – | – | 0.058 | 0.048 | – | – | – | – | |
ST-2 | 4 | 0.048 | 0.022 | 0.032 | 0.015 | 0.066 | 0.020 | 0.016 | 0.032 |
8 | 0.023 | 0.042 | 0.049 | 0.022 | 0.013 | 0.017 | 0.054 | 0.026 | |
12 | 0.014 | 0.035 | 0.062 | 0.019 | 0.056 | 0.027 | 0.025 | 0.031 | |
16 | 0.049 | 0.087 | 0.033 | 0.023 | 0.015 | 0.176 | 0.011 | 0.015 | |
20 | 0.022 | 0.100 | 0.037 | 0.032 | 0.145 | 0.216 | 0.024 | 0.032 | |
24 | 0.053 | 0.097 | 0.033 | 0.024 | – | – | 0.184 | 0.114 | |
28 | 0.031 | 0.088 | 0.055 | 0.034 | – | – | 0.163 | 0.204 | |
ST-3 | 4 | 0.012 | 0.018 | 0.045 | 0.022 | 0.012 | 0.020 | 0.053 | 0.015 |
8 | 0.018 | 0.020 | 0.022 | 0.018 | 0.048 | 0.034 | 0.034 | 0.019 | |
12 | 0.016 | 0.017 | 0.049 | 0.039 | 0.036 | 0.029 | 0.054 | 0.021 | |
16 | 0.065 | 0.022 | 0.059 | 0.042 | 0.048 | 0.165 | 0.023 | 0.028 | |
20 | 0.038 | 0.034 | 0.016 | 0.044 | 0.129 | 0.203 | 0.145 | 0.032 | |
ST-4 | 4 | 0.057 | 0.019 | 0.054 | 0.049 | 0.032 | 0.014 | 0.014 | 0.017 |
8 | 0.028 | 0.02 | 0.035 | 0.046 | 0.046 | 0.018 | 0.023 | 0.029 | |
12 | 0.013 | 0.017 | 0.051 | 0.050 | 0.026 | 0.012 | – | – | |
MIN | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | |
MAX | 0.06 | 0.10 | 0.06 | 0.05 | 0.15 | 0.22 | 0.20 | 0.20 | |
AVERAGE | 0.04 | 0.05 | 0.04 | 0.03 | 0.05 | 0.07 | 0.07 | 0.05 |
References
- Meybeck, M.; de Marsily, G.; Fustec, E. Man and River Systems: The Functioning of River Systems at the Basin Scale, 1st ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999; 408p. [Google Scholar]
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 11 November 2024).
- World Commission on Dams. Dams and Development: A New Framework for Decision-Making, 1st ed.; Earthscan Publications—The Report of the World Commission on Dams; Routledge: London, UK, 2000. [Google Scholar] [CrossRef]
- Mi, C.; Shatwell, T.; Ma, J.; Wentzky, V.C.; Boehrer, B.; Xu, Y.; Rinke, K. The Formation of a Metalimnetic Oxygen Minimum Exemplifies How Ecosystem Dynamics Shape Biogeochemical Processes: A Modelling Study. Water Res. 2020, 175, 115701. [Google Scholar] [CrossRef] [PubMed]
- Jane, S.F.; Mincer, J.L.; Lau, M.P.; Lewis, A.S.L.; Stetler, J.T.; Rose, K.C. Longer Duration of Seasonal Stratification Contributes to Widespread Increases in Lake Hypoxia and Anoxia. Glob. Change Biol. 2023, 29, 1009–1023. [Google Scholar] [CrossRef] [PubMed]
- Munger, Z.W.; Shahady, T.D.; Schreiber, M.E. Effects of Reservoir Stratification and Watershed Hydrology on Manganese and Iron in a Dam-Regulated River. Hydrol. Process. 2017, 31, 1622–1635. [Google Scholar] [CrossRef]
- Iyare, P.U. The Effects of Manganese Exposure from Drinking Water on School-Age Children: A Systematic Review. NeuroToxicology 2019, 73, 1–7. [Google Scholar] [CrossRef]
- Obeng, S.K.; Kulhánek, M.; Balík, J.; Černý, J.; Sedlář, O. Manganese: From Soil to Human Health—A Comprehensive Overview of Its Biological and Environmental Significance. Nutrients 2024, 16, 3455. [Google Scholar] [CrossRef]
- Gantzer, P.A.; Bryant, L.D.; Little, J.C. Controlling Soluble Iron and Manganese in a Water-Supply Reservoir Using Hypolimnetic Oxygenation. Water Res. 2009, 43, 1285–1294. [Google Scholar] [CrossRef]
- Jin, J.; Wells, S.A.; Liu, D.; Yang, G.; Zhu, S.; Ma, J.; Yang, Z. Effects of water level fluctuation on thermal stratification in a typical tributary bay of Three Gorges Reservoir, China. PeerJ 2019, 7, e6925. [Google Scholar] [CrossRef]
- Chang, F.; Hou, P.; Wen, X.; Duan, L.; Zhang, Y.; Zhang, H. Seasonal Stratification Characteristics of Vertical Profiles and Water Quality of Lake Lugu in Southwest China. Water 2022, 14, 2554. [Google Scholar] [CrossRef]
- Boehrer, B.; Schultze, M. Stratification of lakes. Rev. Geophys. 2008, 46, 1–27. [Google Scholar] [CrossRef]
- Zhai, S.Y.; Huang, P.; Marshall, J.C.; Lobegeiger, J.; Cramp, R.L.; Parisi, M.A.; Hipsey, M.R. Modelling prolonged stratification and hypoxia in dryland river waterholes during drought conditions. Inland Waters 2023, 13, 272–292. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Cheng, Y.; Wang, Y.; Zhu, Y.; Li, R.; Acharya, K.; Ibrahim, M. Thermal stratification and mixing processes response to meteorological factors in a monomictic reservoir. J. Environ. Manag. 2024, 354, 120205. [Google Scholar] [CrossRef] [PubMed]
- Duka, M.A.; Shintani, T.; Yokoyama, K. Thermal stratification responses of a monomictic reservoir under different seasons and operation schemes. Sci. Total Environ. 2021, 767, 144423. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Deng, Y.; Yang, Y.; Chen, M.; Wang, X.; Tuo, Y. Future projections of thermal regimes and mixing characteristics in a monomictic reservoir under climate change. Sci. Total Environ. 2024, 906, 167527. [Google Scholar] [CrossRef] [PubMed]
- Finger, D.; Schmid, M.; Wüest, A. Effects of Upstream Hydropower Operation on Riverine Particle Transport and Turbidity in Downstream Lakes. Water Resour. Res. 2006, 42, 1–20. [Google Scholar] [CrossRef]
- Avramidis, P.; Bekiari, V.; Christodoulou, D.; Papatheodorou, G. Sedimentology and Water Column Stratification in a Permanent Anoxic Mediterranean Lagoon Environment, Aetoliko Lagoon, Western Greece. Environ. Earth Sci. 2014, 73, 5687–5701. [Google Scholar] [CrossRef]
- Jane, S.F.; Hansen, G.J.A.; Kraemer, B.M.; Leavitt, P.R.; Mincer, J.L.; North, R.L.; Pilla, R.M.; Stetler, J.T.; Williamson, C.E.; Woolway, R.I.; et al. Widespread Deoxygenation of Temperate Lakes. Nature 2021, 594, 66–70. [Google Scholar] [CrossRef]
- Li, H.; Lan, J.; Qin, B.; Luo, L.; Jin, J.; Zhu, G.; Wu, Z. Effects of the Long-Term Climate Change and Selective Discharge Schemes on the Thermal Stratification of a Large Deep Reservoir, Xin’anjiang Reservoir, China. Water 2022, 14, 3279. [Google Scholar] [CrossRef]
- Yigzaw, W.; Li, H.-Y.; Fang, X.; Leung, L.R.; Voisin, N.; Hejazi, M.I.; Demissie, Y. A multilayer reservoir thermal stratification module for earth system models. J. Adv. Model. Earth Syst. 2019, 11, 3265–3283. [Google Scholar] [CrossRef]
- Michalopoulou, M.; Depountis, N.; Zagana, E.; Avramidis, P. Investigation of the Origin of Elevated Amounts of Iron and Manganese in a Dam Reservoir. Geosciences 2024, 14, 336. [Google Scholar] [CrossRef]
- Depountis, N.; Michalopoulou, M.; Kavoura, K.; Nikolakopoulos, K.; Sabatakakis, N. Estimating Soil Erosion Rate Changes in Areas Affected by Wildfires. ISPRS Int. J. Geo-Inf. 2020, 9, 562. [Google Scholar] [CrossRef]
- Michalopoulou, M.; Depountis, N.; Nikolakopoulos, K.; Boumpoulis, V. The Significance of Digital Elevation Models in the Calculation of LS Factor and Soil Erosion. Land 2022, 11, 1592. [Google Scholar] [CrossRef]
- Depountis, N.; Vidali, M.; Kavoura, K.; Sabatakakis, N. Soil erosion prediction at the water reservoir’s basin of Pineios dam, Western Greece, using the Revised Universal Soil Loss Equation (RUSLE) and GIS. WSEAS Trans. Environ. Dev. 2018, 14, 457–463. [Google Scholar]
- LCW 532 Manganese; DOC312.53.94116, 03/2020, Edition 1. HACH LANGE GMBH: Düsseldorf, Germany, 2020.
- LCK 321 Iron; DOC312.53.94014, 07/2019, Edition 1. HACH LANGE GMBH: Düsseldorf, Germany, 2019.
- LaBrie, R.; Hupfer, M.; Lau, M.P. Anaerobic Duration Predicts Biogeochemical Consequences of Oxygen Depletion in Lakes. Limnol Ocean. Lett. 2023, 8, 666–674. [Google Scholar] [CrossRef]
- Wetzel, R.G. Oxygen. In Limnology, 3rd ed.; Kostarakis eds: Larissa, Greece, 2006; pp. 167–185. [Google Scholar]
- North, R.P.; North, R.L.; Livingstone, D.M.; Köster, O.; Kipfer, R. Long-Term Changes in Hypoxia and Soluble Reactive Phosphorus in the Hypolimnion of a Large Temperate Lake: Consequences of a Climate Regime Shift. Glob. Change Biol. 2014, 20, 811–823. [Google Scholar] [CrossRef]
- Munger, Z.W.; Carey, C.C.; Gerling, A.B.; Doubek, J.P.; Hamre, K.D.; McClure, R.P.; Schreiber, M.E. Oxygenation and Hydrologic Controls on Iron and Manganese Mass Budgets in a Drinking-Water Reservoir. Lake Reserv. Manag. 2019, 35, 277–291. [Google Scholar] [CrossRef]
- Krueger, K.M.; Vavrus, C.E.; Lofton, M.E.; McClure, R.P.; Gantzer, P.; Carey, C.C.; Schreiber, M.E. Iron and Manganese Fluxes across the Sediment-Water Interface in a Drinking Water Reservoir. Water Res. 2020, 182, 116003. [Google Scholar] [CrossRef]
- Spoor, W.A. Distribution of Fingerling Brook Trout, Salvelinus Fontinalis (Mitchill), in Dissolved Oxygen Concentration Gradients. J. Fish Biol. 1990, 36, 363–373. [Google Scholar] [CrossRef]
- Vaquer-Sunyer, R.; Duarte, C.M. Thresholds of Hypoxia for Marine Biodiversity. Proc. Natl. Acad. Sci. USA 2008, 105, 15452–15457. [Google Scholar] [CrossRef]
- Beutel, M.W.; Horne, A.J. A Review of the Effects of Hypolimnetic Oxygenation on Lake and Reservoir Water Quality. Lake Reserv. Manag. 1999, 15, 285–297. [Google Scholar] [CrossRef]
- Winton, R.S.; Calamita, E.; Wehrli, B. Reviews and Syntheses: Dams, Water Quality and Tropical Reservoir Stratification. Biogeosciences 2019, 16, 1657–1671. [Google Scholar] [CrossRef]
- Godwin, C.M.; Zehnpfennig, J.R.; Learman, D.R. Biotic and Abiotic Mechanisms of Manganese (II) Oxidation in Lake Erie. Front. Environ. Sci. 2020, 8, 57. [Google Scholar] [CrossRef]
- Miranda, L.S.; Wijesiri, B.; Ayoko, G.A.; Egodawatta, P.; Goonetilleke, A. Water-Sediment Interactions and Mobility of Heavy Metals in Aquatic Environments. Water Res. 2021, 202, 117386. [Google Scholar] [CrossRef] [PubMed]
- Engstrom, D.R. Long-Term Changes in Iron and Phosphorus Sedimentation in Vadnais Lake, Minnesota, Resulting from Ferric Chloride Addition and Hypolimnetic Aeration. Lake Reserv. Manag. 2005, 21, 95–105. [Google Scholar] [CrossRef]
- Singleton, V.L.; Little, J.C. Designing Hypolimnetic Aeration and Oxygenation Systems—A Review. Environ. Sci. Technol. 2006, 40, 7512–7520. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramfos, A.; Sarris, I.; Lämmle, L.; Christodoulopoulos, D.; Alexandridis, M.; Michalopoulou, M.; Depountis, N.; Faulwetter, S.; Avrantinis, N.; Tsiotsis, E.; et al. Seasonal Water Column Stratification and Manganese and Iron Distribution in a Water Reservoir: The Case of Pinios Dam (Western Greece). Water 2025, 17, 1723. https://doi.org/10.3390/w17121723
Ramfos A, Sarris I, Lämmle L, Christodoulopoulos D, Alexandridis M, Michalopoulou M, Depountis N, Faulwetter S, Avrantinis N, Tsiotsis E, et al. Seasonal Water Column Stratification and Manganese and Iron Distribution in a Water Reservoir: The Case of Pinios Dam (Western Greece). Water. 2025; 17(12):1723. https://doi.org/10.3390/w17121723
Chicago/Turabian StyleRamfos, Alexis, Ioannis Sarris, Luca Lämmle, Dionisis Christodoulopoulos, Marinos Alexandridis, Maria Michalopoulou, Nikolaos Depountis, Sarah Faulwetter, Nikolaos Avrantinis, Evangelos Tsiotsis, and et al. 2025. "Seasonal Water Column Stratification and Manganese and Iron Distribution in a Water Reservoir: The Case of Pinios Dam (Western Greece)" Water 17, no. 12: 1723. https://doi.org/10.3390/w17121723
APA StyleRamfos, A., Sarris, I., Lämmle, L., Christodoulopoulos, D., Alexandridis, M., Michalopoulou, M., Depountis, N., Faulwetter, S., Avrantinis, N., Tsiotsis, E., Papazisimou, S., & Avramidis, P. (2025). Seasonal Water Column Stratification and Manganese and Iron Distribution in a Water Reservoir: The Case of Pinios Dam (Western Greece). Water, 17(12), 1723. https://doi.org/10.3390/w17121723