Performance of Combined Olive Mills Wastewater Treatment System: Electrocoagulation-Assisted Adsorption as a Post Polishing Sustainable Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Collection
2.2. Chemicals
2.3. Analytical Measurement
2.3.1. Quality Parameter Analysis
2.3.2. COD and BOD Testing
2.3.3. Total Nitrogen Measurement
2.3.4. Total Phenols Analysis
2.4. The Integrated ECA System
2.4.1. Electrocoagulation Process
2.4.2. Adsorption Process
Preparation of Biochar
Biochar Properties
Adsorption Kinetic
2.5. Material Design and Procedure
3. Result and Discussions
3.1. OMW Characterization
3.2. Biochar Characterization
3.3. Experimental Results and Statistical Analysis
Analysis of Variances
3.4. The Effect of the Variables
3.4.1. Variables Effect on CODtotal Removal Efficiency
3.4.2. Variables Effect on CODsoluble Removal Efficiency
3.4.3. Variables Effect on TPh Removal Efficiency
3.4.4. Variables Effect on TKN Removal Efficiency
3.4.5. Impact of Variables on Turbidity Removal Efficiency
3.4.6. Impact of Variables on ENC Removal Efficiency
3.4.7. Optimization of Operating Parameters and Energy Cost Assessment
Operating Parameters for Fe Electrodes
3.5. Performance of the Adsorption Method
Effect of Particle Size
4. Combined Treatment Process
5. Conclusions
6. Recommendations and Future Research
- The literature presents many studies dealing with EC combined treatment processes. However, most of these studies are still at the lab-scale. Intensive research should consider pilot or industrial scale processes to optimize them and apply at larger scales in real wastewater industrial treatment systems;
- The choice of electrode material has a crucial role in the overall performance of EC process. Al and Fe are the most commonly used electrodes material. Al electrodes are generally more efficient in pollutant removal; however, their higher cost and their generated sludge requires specialized management. For this reason, the use of other cheap and efficient materials needs further extensive research;
- The main drawback of EC treatment system is the use of electricity in the redox reaction causing a substantial increase in the cost and cause an increased environmental pollution from fossil fuels emissions. Accordingly, the employment of cheap renewable energy sources such as solar, wind, or tidal energy to power EC combined systems is of first priority;
- Most of the published research on EC treatment systems is still at the lab-scale. More research is needed to assess the performance of continuous EC combined systems in treating different industrial wastewater, such as heavy metals and organic contaminants;
- The literature survey indicates that mathematical modeling of batch and continuous EC combined processes is still limited. Accordingly, more research is needed to develop models that describe the experimental results of EC combined systems to facilitate their scale-up;
- Electrode passivation is a significant problem that reduces the electrodes’ performance, due to the accumulated sludge on the electrode surface. Optimization of the parameters affecting electrode passivation such as electrode shape, arrangement, applied voltage, current density, and others needs more studies;
- The use of other combined EC treatment systems such as the integration of advanced oxidation or membrane technologies is necessary to enhance the EC treatment process further and expand its scope.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ECA | Combined electrocoagulation and adsorption (ECA) |
OMW | Olive mill wastewater |
RSM | Response Surface Methodology |
OS | Olive stone |
EC | Electrocoagulation |
CD | Current Density |
D | Distance between electrodes |
N | Number of electrodes |
T | Time |
TPh | Total phenols |
TKN | Total Kjeldahl nitrogen |
CODsoluble | Soluble chemical oxygen demand |
CODtotal | Total chemical oxygen demand |
COD | Chemical oxygen demand |
AOPs | Advanced oxidation processes |
Fe | Iron |
CCD | Central Composite Design |
TN | Total nitrogen |
TR | Turbidity |
ENC | Energy consumption |
TS | Total solid |
TSS | Total suspended solid |
TDS | Total dissolved solid |
K2SO4 | Potassium sulfate |
CuSO4 | Copper sulfate |
NaOH | Sodium hydroxide |
KOH | Potassium hydroxide |
C6H3Cl4N | 2-Chloro-6-(trichloromethyl) pyridine |
KHP | Potassium hydrogen phthalate |
NaCl | Sodium chloride |
KNO3 | Potassium nitrate |
HCl | Hydrochloric acid |
C2H6O | Ethanol |
H2SO4 | Sulfuric acid |
Na2CO3 | Sodium carbonate |
GA | Gallic acid |
ANOVA | An analysis of variance |
a0 | Constant coefficient |
ai | Linear coefficient |
aii | Quadratic coefficient |
aij | Interactive coefficient |
X | Uncoded value |
β | Error value |
I | Applied current |
t | Time |
V | Voltage |
ELC(theoretical) | Theoretical electrode consumption |
Z | Chemical equivalence of the electrode |
MW | Molecular weight of the electrode metal |
F | Faraday’s constant |
ELC(actual) | Actual electrode consumption |
mi | Initial weight of electrodes |
mf | Final weight of electrodes after treatment |
3D | Three-dimensional |
OPC | Total operating cost |
CHC | Consumption of the neutralizing chemical |
C0 | Initial concentrations |
Ce | Final concentrations |
* | Multiplication sign |
References
- Vaz, T.; Quina, M.M.J.; Martins, R.C.; Gomes, J. Olive Mill Wastewater Treatment Strategies to Obtain Quality Water for Irrigation: A Review. Sci. Total Environ. 2024, 931, 172676. [Google Scholar] [CrossRef] [PubMed]
- Bain, R.; Johnston, R.; Mitis, F.; Chatterley, C.; Slaymaker, T. Establishing Sustainable Development Goal Baselines for Household Drinking Water, Sanitation and Hygiene Services. Water 2018, 10, 1711. [Google Scholar] [CrossRef]
- Alazaiza, M.Y.D.; Alzghoul, T.M.; Ramu, M.B.; Amr, S.S.A.; Abushammala, M.F.M.; Nassani, D.E. Global Perspectives on Industrial Wastewater Management: A Bibliometric Analysis of Research Output. J. Hazard. Mater. Adv. 2025, 17, 100567. [Google Scholar] [CrossRef]
- Fedorov, K.; Dinesh, K.; Sun, X.; Darvishi Cheshmeh Soltani, R.; Wang, Z.; Sonawane, S.; Boczkaj, G. Synergistic Effects of Hybrid Advanced Oxidation Processes (AOPs) Based on Hydrodynamic Cavitation Phenomenon—A Review. Chem. Eng. J. 2022, 432, 134191. [Google Scholar] [CrossRef]
- Espadas-Aldana, G.; Vialle, C.; Belaud, J.-P.; Vaca-Garcia, C.; Sablayrolles, C. Analysis and Trends for Life Cycle Assessment of Olive Oil Production. Sustain. Prod. Consum. 2019, 19, 216–230. [Google Scholar] [CrossRef]
- Benaddi, R.; Osmane, A.; Zidan, K.; El Harfi, K.; Ouazzani, N. A Review on Processes for Olive Mill Waste Water Treatment. Ecol. Eng. Environ. Technol. 2023, 24, 196–207. [Google Scholar] [CrossRef]
- Haddad, K.; Jeguirim, M.; Jellali, S.; Thevenin, N.; Ruidavets, L.; Limousy, L. Biochar Production from Cypress Sawdust and Olive Mill Wastewater: Agronomic Approach. Sci. Total Environ. 2021, 752, 141713. [Google Scholar] [CrossRef]
- Jyia, H.; Mohssine, A.; Belouafa, S.; EL Harfaoui, S.; Zmirli, Z.; Sallek, B.; Khalid, D.; Chaair, H. Modeling and Optimization of Olive Mill Wastewater Dephenolization by a Process Combining Coagulation and Advanced Oxidation Using an Activated Lime Coagulant and Hydrogen Peroxide. Environ. Nanotechnol., Monit. Manag. 2024, 21, 100929. [Google Scholar] [CrossRef]
- Gebreyohannes, A.Y.; Mazzei, R.; Giorno, L. Trends and Current Practices of Olive Mill Wastewater Treatment: Application of Integrated Membrane Process and Its Future Perspective. Sep. Purif. Technol. 2016, 162, 45–60. [Google Scholar] [CrossRef]
- Jamrah, A.; Al-Zghoul, T.M.; Darwish, M.M. A Comprehensive Review of Combined Processes for Olive Mill Wastewater Treatments. Case Stud. Chem. Environ. Eng. 2023, 8, 100493. [Google Scholar] [CrossRef]
- Bouhia, Y.; Hafidi, M.; Ouhdouch, Y.; Lyamlouli, K. Olive Mill Waste Sludge: From Permanent Pollution to a Highly Beneficial Organic Biofertilizer: A Critical Review and Future Perspectives. Ecotoxicol. Environ. Saf. 2023, 259, 114997. [Google Scholar] [CrossRef] [PubMed]
- Al-Bsoul, A.; Al-Shannag, M.; Tawalbeh, M.; Al-Taani, A.A.; Lafi, W.K.; Al-Othman, A.; Alsheyab, M. Optimal Conditions for Olive Mill Wastewater Treatment Using Ultrasound and Advanced Oxidation Processes. Sci. Total Environ. 2020, 700, 134576. [Google Scholar] [CrossRef] [PubMed]
- Ochando-Pulido, J.M.; Pimentel-Moral, S.; Verardo, V.; Martinez-Ferez, A. A Focus on Advanced Physico-Chemical Processes for Olive Mill Wastewater Treatment. Sep. Purif. Technol. 2017, 179, 161–174. [Google Scholar] [CrossRef]
- Mousset, E.; Hatton, T.A. Advanced Hybrid Electro-Separation/Electro-Conversion Systems for Wastewater Treatment, Reuse and Recovery: Compromise between Symmetric and Asymmetric Constraints. Curr. Opin. Electrochem. 2022, 35, 101105. [Google Scholar] [CrossRef]
- Lissaneddine, A.; Pons, M.-N.; Aziz, F.; Ouazzani, N.; Mandi, L.; Mousset, E. Electro-Sorption/-Desorption with Bio-Sourced Granular Activated Carbon Electrode for Phenols Recovery and Combination with Advanced Electro-Oxidation for Residual Olive Mill Wastewater Treatment. J. Water Process Eng. 2025, 69, 106663. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.M.; Stoller, M.; Di Palma, L.; Martínez-Ferez, A. On the Optimization of a Flocculation Process as Fouling Inhibiting Pretreatment on an Ultrafiltration Membrane during Olive Mill Effluents Treatment. Desalination 2016, 393, 151–158. [Google Scholar] [CrossRef]
- Al Bawab, A.F.; Abu-Dalo, M.A.; Kanaan, H.; Al-Rawashdeh, N.; Odeh, F. Removal of Phenolic Compounds from Olive Mill Wastewater (OMW) by Tailoring the Surface of Activated Carbon under Acidic and Basic Conditions. Water Sci. Technol. 2025, 91, 567–580. [Google Scholar] [CrossRef]
- Zagklis, D.P.; Papageorgiou, C.S.; Paraskeva, C.A. Technoeconomic Analysis of the Recovery of Phenols from Olive Mill Wastewater through Membrane Filtration and Resin Adsorption/Desorption. Sustainability 2021, 13, 2376. [Google Scholar] [CrossRef]
- Agabo-García, C.; Repetto, G.; Albqmi, M.; Hodaifa, G. Evaluation of the Olive Mill Wastewater Treatment Based on Advanced Oxidation Processes (AOPs), Flocculation, and Filtration. J. Environ. Chem. Eng. 2023, 11, 109789. [Google Scholar] [CrossRef]
- Tayeh, Y.A.; Alazaiza, M.Y.D.; Alzghoul, T.M.; Bashir, M.J. A Comprehensive Review of RO Membrane Fouling: Mechanisms, Categories, Cleaning Methods and Pretreatment Technologies. J. Hazard. Mater. Adv. 2025, 18, 100684. [Google Scholar] [CrossRef]
- Al-Shaweesh, M.A.; Awad, A.; Al-Kabariti, D.; Al-Hwaiti, M.S.; Al-Kashman, O.A.; Khafaga, A.F.; Abd El-Hack, M.E.; Adday, F.A. Dephenolization and Discoloration of Olive Mill Wastewater Using Coagulation, Filtration, and Hydrogen Peroxide Oxidation. Int. J. Environ. Sci. Technol. 2023, 20, 8763–8770. [Google Scholar] [CrossRef]
- Rifi, S.K.; Fels, L.E.; Driouich, A.; Hafidi, M.; Ettaloui, Z.; Souabi, S. Sequencing Batch Reactor Efficiency to Reduce Pollutant in Olive Oil Mill Wastewater Mixed with Urban Wastewater. Int. J. Environ. Sci. Technol. 2022, 19, 11361–11374. [Google Scholar] [CrossRef]
- Manthos, G.; Zagklis, D.; Papavasileiou, V.; Gkountou, N.A.; Saita, Z.; Zafiri, C.; Kornaros, M. High-Rate Upflow Anaerobic Sludge Blanket Bioreactor for the Treatment of Olive Mill Effluents: Laboratory and Pilot Scale Systems Investigation. Renew. Energy 2023, 217, 119215. [Google Scholar] [CrossRef]
- Bouigua, H.; Bakali, R.; Jaber, H.; El Kabous, K.; Choukri, S.; Elyachioui, M.; Ouhssine, M. A Remarkable Step in the Aerobic Biological Treatment of Olive Mill Wastewater (OMW): A Combination of Selected Microbial Strains That Enhance Their Decolorization and Depollution. E3S Web Conf. 2024, 527, 02007. [Google Scholar] [CrossRef]
- Jamrah, A.; Al-Zghoul, T.; Baarimah, A.O.; Al-Karablieh, E. A Bibliometric Analysis of Olive Mill Wastewater Treatment Methods from 1988 to 2023. Case Stud. Chem. Environ. Eng. 2024, 9, 100736. [Google Scholar] [CrossRef]
- Al-Zghoul, T.M.; Al-Qodah, Z.; Al-Jamrah, A. Performance, Modeling, and Cost Analysis of Chemical Coagulation-Assisted Solar Powered Electrocoagulation Treatment System for Pharmaceutical Wastewater. Water 2023, 15, 980. [Google Scholar] [CrossRef]
- Turco, A.; Malitesta, C. Removal of Phenolic Compounds from Olive Mill Wastewater by a Polydimethylsiloxane/OxMWCNTs Porous Nanocomposite. Water 2020, 12, 3471. [Google Scholar] [CrossRef]
- Yazici Guvenc, S.; Tunc, S. Alternative Treatment of Olive Mill Wastewater by Combined Sulfate Radical-based Advanced Electrocoagulation Processes. Water Environ. Res. 2023, 95, e10951. [Google Scholar] [CrossRef]
- Khandegar, V.; Acharya, S.; Jain, A.K. Data on Treatment of Sewage Wastewater by Electrocoagulation Using Punched Aluminum Electrode and Characterization of Generated Sludge. Data Br. 2018, 18, 1229–1238. [Google Scholar] [CrossRef]
- Tahreen, A.; Jami, M.S.; Ali, F. Role of Electrocoagulation in Wastewater Treatment: A Developmental Review. J. Water Process Eng. 2020, 37, 101440. [Google Scholar] [CrossRef]
- Pizutti, J.T.; de Cassia dos Santos, R.; Hemkemeier, M.; Piccin, J.S. Electrocoagulation Coupled Adsorption for Anaerobic Wastewater Post-Treatment and Reuse Purposes. Desalin. Water Treat. 2019, 160, 144–152. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Serna-Galvis, E.A.; Bussemaker, M.; Torres-Palma, R.A.; Lee, J. A Review on Pharmaceuticals Removal from Waters by Single and Combined Biological, Membrane Filtration and Ultrasound Systems. Ultrason. Sonochem. 2021, 76, 105656. [Google Scholar] [CrossRef] [PubMed]
- Faraj, H.; Jamrah, A.; Al-Omari, S.; Al-Zghoul, T.M. Optimization of an Electrocoagulation-Assisted Adsorption Treatment System for Dairy Wastewater. Case Stud. Chem. Environ. Eng. 2024, 9, 100574. [Google Scholar] [CrossRef]
- Zhou, H.; Wei, C.; Zhang, F.; Liao, J.; Hu, Y.; Wu, H. Energy-Saving Optimization of Coking Wastewater Treated by Aerobic Bio-Treatment Integrating Two-Stage Activated Carbon Adsorption. J. Clean. Prod. 2018, 175, 467–476. [Google Scholar] [CrossRef]
- Al-Balushi, K.; Revanuru, S.; Sajjala, S.R. Sreedhar Reddy Preparation of Activated Carbon from Date Seeds and Evaluation of Its Applications. In Proceedings of the International Conference on Civil, Disaster Management and Environmental Sciences (CDMES-17), Bali, Indonesia, 2–3 February 2017; pp. 2–3. [Google Scholar]
- Görmez, F.; Görmez, Ö.; Yabalak, E.; Gözmen, B. Application of the Central Composite Design to Mineralization of Olive Mill Wastewater by the Electro/FeII/Persulfate Oxidation Method. SN Appl. Sci. 2020, 2, 178. [Google Scholar] [CrossRef]
- Kalderis, D.; Kayan, B.; Akay, S.; Kulaksız, E.; Gözmen, B. Adsorption of 2,4-Dichlorophenol on Paper Sludge/Wheat Husk Biochar: Process Optimization and Comparison with Biochars Prepared from Wood Chips, Sewage Sludge and Hog Fuel/Demolition Waste. J. Environ. Chem. Eng. 2017, 5, 2222–2231. [Google Scholar] [CrossRef]
- Yabalak, E.; Görmez, Ö.; Gizir, A.M. Subcritical Water Oxidation of Propham by H 2 O 2 Using Response Surface Methodology (RSM). J. Environ. Sci. Health Part B 2018, 53, 334–339. [Google Scholar] [CrossRef]
- Baird, R.; Rice, E.; Eaton, A. Standard Methods for the Examination of Water and Wastewaters; Rice, E.W., Ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Washington, DC, USA; Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Halalsheh, M.; Koppes, J.; Denelzen, J.; Zeeman, G.; Fayyad, M.; Lettinga, G. Effect of SRT and Temperature on Biological Conversions and the Related Scum-Forming Potential. Water Res. 2005, 39, 2475–2482. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1926. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Castañeda-Díaz, J.; Pavón-Silva, T.; Gutiérrez-Segura, E.; Colín-Cruz, A. Electrocoagulation-Adsorption to Remove Anionic and Cationic Dyes from Aqueous Solution by PV-Energy. J. Chem. 2017, 2017, 5184590. [Google Scholar] [CrossRef]
- Ezechi, E.H.; Isa, M.H.; Kutty, S.R.M. Removal of Boron from Produced Water by Electrocoagulation. In Proceedings of the 10th WSEAS International Conference on Environment, Ecosystems and Development, Montreux, Switzerland, 29–31 December 2012; pp. 29–31. [Google Scholar]
- Hmid, A.; Mondelli, D.; Fiore, S.; Fanizzi, F.P.; Al Chami, Z.; Dumontet, S. Production and Characterization of Biochar from Three-Phase Olive Mill Waste through Slow Pyrolysis. Biomass Bioenergy 2014, 71, 330–339. [Google Scholar] [CrossRef]
- ASTM D1762-84(2021); Standard Test Method for Chemical Analysis of Wood. ASTM International: West Conshohocken, PA, USA, 2007.
- Peng, X.; Ye, L.L.; Wang, C.H.; Zhou, H.; Sun, B. Temperature- and Duration-Dependent Rice Straw-Derived Biochar: Characteristics and Its Effects on Soil Properties of an Ultisol in Southern China. Soil Tillage Res. 2011, 112, 159–166. [Google Scholar] [CrossRef]
- Abrane, R.; Hazourli, S.; Eulmi, A. Comparative Study between Electrocoagulation and Adsorption on the Opuntia Ficus Indica Powder for Industrial Dairy Wastewater Treatment. Desalin. Water Treat. 2021, 228, 153–164. [Google Scholar] [CrossRef]
- Amani-Ghadim, A.R.; Aber, S.; Olad, A.; Ashassi-Sorkhabi, H. Optimization of Electrocoagulation Process for Removal of an Azo Dye Using Response Surface Methodology and Investigation on the Occurrence of Destructive Side Reactions. Chem. Eng. Process. Process Intensif. 2013, 64, 68–78. [Google Scholar] [CrossRef]
- Hamid, M.A.A.; Aziz, H.A.; Yusoff, M.S.; Rezan, S.A. Optimization and Analysis of Zeolite Augmented Electrocoagulation Process in the Reduction of High-Strength Ammonia in Saline Landfill Leachate. Water 2020, 12, 247. [Google Scholar] [CrossRef]
- Ankoliya, D.; Mudgal, A.; Sinha, M.K.; Patel, V.; Patel, J. Application of Electrocoagulation Process for the Treatment of Dairy Wastewater: A Mini Review. Mater. Today Proc. 2023, 77, 117–124. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Brillas, E. Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: A General Review. Appl. Catal. B Environ. 2009, 87, 105–145. [Google Scholar] [CrossRef]
- Ayoub, S.; Al-Absi, K.; Al-Shdiefat, S.; Al-Majali, D.; Hijazean, D. Effect of Olive Mill Wastewater Land-Spreading on Soil Properties, Olive Tree Performance and Oil Quality. Sci. Hortic. (Amsterdam) 2014, 175, 160–166. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Bsoul, A.; Assirey, E.; Al-Shannag, M. Combined Ultrasonic Irradiation and Aerobic Biodegradation Treatment for Olive Mills Wastewaters. Environ. Eng. Manag. J. 2014, 13, 2109–2118. [Google Scholar]
- Khani, M.R.; Mahdizadeh, H.; Kannan, K.; Kalankesh, L.R.; Kamarehei, B.; Baneshi, M.M.; Shahamat, Y.D. Olive Mill Wastewater (OMW) Treatment by Hybrid Processes of Electrocoagulation/Catalytic Ozonation and Biodegradation. Environ. Eng. Manag. J. 2020, 19, 1401–1410. [Google Scholar]
- El Shahawy, A.; Ahmed, I.A.; Nasr, M.; Ragab, A.H.; Al-Mhyawi, S.R.; Elamin, K.M.A. Organic Pollutants Removal from Olive Mill Wastewater Using Electrocoagulation Process via Central Composite Design (CCD). Water 2021, 13, 3522. [Google Scholar] [CrossRef]
- Elayeb, R.; Njehi, M.; Majdoub, H.; Trigui, M.; Achour, S. Optimization of the Electrocoagulation Process by Central Composite Design for Olive Mill Wastewater Decolorization and Removal of Polyphenols. Int. Res. J. Adv. Eng. Sci. 2021, 6, 182–200. [Google Scholar]
- Fakhfakh, F.; Raissi, S.; Kriaa, K.; Maatki, C.; Kolsi, L.; Hadrich, B. Modeling and Optimization of a Green Process for Olive Mill Wastewater Treatment. Water 2024, 16, 327. [Google Scholar] [CrossRef]
- De Carluccio, M.; Barboza, P.; Attarian, P.; Ahangarnokolaei, M.A.; Rizzo, L. Olive Mill Wastewater Co-Treatment: Effect of (Electro)Fenton Processes and Dilution Ratio on Moving Bed Biofilm Reactor Performance. J. Clean. Prod. 2024, 447, 141526. [Google Scholar] [CrossRef]
- Abdelhadi, S.O.; Dosoretz, C.G.; Rytwo, G.; Gerchman, Y.; Azaizeh, H. Production of Biochar from Olive Mill Solid Waste for Heavy Metal Removal. Bioresour. Technol. 2017, 244, 759–767. [Google Scholar] [CrossRef]
- Abid, N.; Masmoudi, M.A.; Megdiche, M.; Barakat, A.; Ellouze, M.; Chamkha, M.; Ksibi, M.; Sayadi, S. Biochar from Olive Mill Solid Waste as an Eco-Friendly Adsorbent for the Removal of Polyphenols from Olive Mill Wastewater. Chem. Eng. Res. Des. 2022, 181, 384–398. [Google Scholar] [CrossRef]
- Tran, H.N.; Chao, H.-P.; You, S.-J. Activated Carbons from Golden Shower upon Different Chemical Activation Methods: Synthesis and Characterizations. Adsorpt. Sci. Technol. 2018, 36, 95–113. [Google Scholar] [CrossRef]
- Hafidi, M.; Amir, S.; Revel, J.-C. Structural Characterization of Olive Mill Waster-Water after Aerobic Digestion Using Elemental Analysis, FTIR and 13C NMR. Process Biochem. 2005, 40, 2615–2622. [Google Scholar] [CrossRef]
- Elhajjouji, H.; Fakharedine, N.; Aitbaddi, G.; Winterton, P.; Bailly, J.; Revel, J.; Hafidi, M. Treatment of Olive Mill Waste-Water by Aerobic Biodegradation: An Analytical Study Using Gel Permeation Chromatography, Ultraviolet–Visible and Fourier Transform Infrared Spectroscopy. Bioresour. Technol. 2007, 98, 3513–3520. [Google Scholar] [CrossRef]
- Yang, T.; Lua, A.C. Characteristics of Activated Carbons Prepared from Pistachio-Nut Shells by Physical Activation. J. Colloid Interface Sci. 2003, 267, 408–417. [Google Scholar] [CrossRef]
- Varank, G.; Sabuncu, M.E. Application of Central Composite Design Approach for Dairy Wastewater Treatment by Electrocoagulation Using Iron and Aluminum Electrodes: Modeling and Optimization. Desalin. Water Treat. 2015, 56, 33–54. [Google Scholar] [CrossRef]
- Holt, P.K.; Barton, G.W.; Mitchell, C.A. The Future for Electrocoagulation as a Localised Water Treatment Technology. Chemosphere 2005, 59, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Erraib, F.; El Ass, K. Optimization of Electrocoagulation Operating Parameters for COD Removal from Olive Mill Wastewater: Application of Box-Behnken Design. Mediterr. J. Chem. 2019, 9, 212–221. [Google Scholar] [CrossRef]
- Holt, P.K.; Barton, G.W.; Wark, M.; Mitchell, C.A. A Quantitative Comparison between Chemical Dosing and Electrocoagulation. Colloids Surf. A Physicochem. Eng. Asp. 2002, 211, 233–248. [Google Scholar] [CrossRef]
- Adhoum, N.; Monser, L. Decolourization and Removal of Phenolic Compounds from Olive Mill Wastewater by Electrocoagulation. Chem. Eng. Process. Process Intensif. 2004, 43, 1281–1287. [Google Scholar] [CrossRef]
- Letterman, A.R.D. A Handbook of Community Water Supplies, 5th ed.; American Water Works Association: New York, NY, USA, 1999. [Google Scholar]
- Ghernaout, D.; Naceur, M.W.; Ghernaout, B. A Review of Electrocoagulation as a Promising Coagulation Process for Improved Organic and Inorganic Matters Removal by Electrophoresis and Electroflotation. Desalin. Water Treat. 2011, 28, 287–320. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Yue, P.L. Separation of Pollutants from Restaurant Wastewater by Electrocoagulation. Sep. Purif. Technol. 2000, 19, 65–76. [Google Scholar] [CrossRef]
- Ahmad, A.; Priyadarshini, M.; Ghangrekar, M.M.; Surampalli, R.Y. Optimization of Electro-Charge Loading in Electrocoagulation Using Response Surface Methodology for the Abatement of Salicylic Acid from Wastewater. J. Environ. Eng. 2023, 149, 04023048. [Google Scholar] [CrossRef]
- Janpoor, F.; Torabian, A.; Khatibikamal, V. Treatment of Laundry Waste-water by Electrocoagulation. J. Chem. Technol. Biotechnol. 2011, 86, 1113–1120. [Google Scholar] [CrossRef]
- Nasrullah, M.; Siddique, M.N.I.; Zularisam, A.W. Effect of High Current Density in Electrocoagulation Process for Sewage Treatment. Asian J. Chem. 2014, 26, 4281–4285. [Google Scholar] [CrossRef]
- Titchou, F.E.; Zazou, H.; Afanga, H.; El Gaayda, J.; Akbour, R.A.; Hamdani, M. Removal of Persistent Organic Pollutants (POPs) from Water and Wastewater by Adsorption and Electrocoagulation Process. Groundw. Sustain. Dev. 2021, 13, 100575. [Google Scholar] [CrossRef]
- Duan, J.; Gregory, J. Coagulation by Hydrolysing Metal Salts. Adv. Colloid Interface Sci. 2003, 100, 475–502. [Google Scholar] [CrossRef]
- Assas, N.; Ayed, L.; Marouani, L.; Hamdi, M. Decolorization of Fresh and Stored-Black Olive Mill Wastewaters by Geotrichum Candidum. Process Biochem. 2002, 38, 361–365. [Google Scholar] [CrossRef]
- Safaa, K.R.; Anouzla, A.; Abrouki, Y.; Loukili, H.; Kastali, M.; Souabi, S. Management of Olive Oil Mill Wastewater in Morocco. In Wastewater from Olive Oil Production: Environmental Impacts, Treatment and Valorisation; Springer International Publishing: Cham, Switzerland, 2023; pp. 183–212. [Google Scholar]
- Das, P.P.; Sharma, M.; Purkait, M.K. Recent Progress on Electrocoagulation Process for Wastewater Treatment: A Review. Sep. Purif. Technol. 2022, 292, 121058. [Google Scholar] [CrossRef]
- Niazmand, R.; Jahani, M.; Sabbagh, F.; Rezania, S. Optimization of Electrocoagulation Conditions for the Purification of Table Olive Debittering Wastewater Using Response Surface Methodology. Water 2020, 12, 1687. [Google Scholar] [CrossRef]
- Tezcan Ün, Ü.; Uğur, S.; Koparal, A.S.; Bakır Öğütveren, Ü. Electrocoagulation of Olive Mill Wastewaters. Sep. Purif. Technol. 2006, 52, 136–141. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Zghoul, T.M.; Jamrah, A. The Performance of Pharmaceutical Wastewater Treatment System of Electrocoagulation Assisted Adsorption Using Perforated Electrodes to Reduce Passivation. Environ. Sci. Pollut. Res. 2024, 31, 20434–20448. [Google Scholar] [CrossRef]
- Kobya, M.; Delipinar, S. Treatment of the Baker’s Yeast Wastewater by Electrocoagulation. J. Hazard. Mater. 2008, 154, 1133–1140. [Google Scholar] [CrossRef]
- Ilhan, F.; Kurt, U.; Apaydin, O.; Gonullu, M.T. Treatment of Leachate by Electrocoagulation Using Aluminum and Iron Electrodes. J. Hazard. Mater. 2008, 154, 381–389. [Google Scholar] [CrossRef]
- Hashem, S.A.M.; Gaber, G.A.; Hussein, W.A.; Ahmed, A.S.I. Electrocoagulation Process with Fe/Al Electrodes to Eliminate Pollutants from Real and Synthetic Wastewater. Results Mater. 2024, 23, 100606. [Google Scholar] [CrossRef]
- Behbahani, M.; Alavi, M.M.; Arami, M. A Comparison Between Aluminum and Iron Electrodes on Removal of Phosphate from Aqueous Solutions by Electrocoagulation Process. Int. J. Environ. Res. 2011, 5, 403–412. [Google Scholar]
- Al-Qodah, Z.; Al-Shannag, M.; Hudaib, B.; Bani-Salameh, W.; Shawaqfeh, A.T.; Assirey, E. Synergy and Enhanced Performance of Combined Continuous Treatment Processes of Pre-Chemical Coagulation (CC), Solar-Powered Electrocoagulation (SAEC), and Post-Adsorption for Dairy Wastewater. Case Stud. Chem. Environ. Eng. 2025, 11, 101183. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Shannag, M.; Hudaib, B.; Bani-Salameh, W. Enhancement of Dairy Wastewater Treatment Efficiency in Batch Chemical-Assisted Solar-Powered Electrocoagulation-Adsorption System. Case Stud. Chem. Environ. Eng. 2024, 9, 100760. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Color | - | Grey (G) |
pH | - | 5 |
Temperature | °C | 13.8 |
Initial Total COD | g O2/L | 123.9 |
BOD5 | g O2/L | 5 |
BOD5/COD | - | 0.04 |
TPh | mg Gallic Acid/L | 8562.8 |
TN | g O2/L | 403.4 |
Turbidity | NTU | 1770 |
Total solid (TS) | g/L | 65.132 |
TSS | g/L | 6.355 |
Total dissolved solid (TDS) | g/L | 58.777 |
Coded Values | |||||
Continuous Variable | −1.68179 | −1 | 0 | 1 | 1.68179 |
Uncoded Values | |||||
Time (min) | 5 | 10 | 27.5 | 50 | 65 |
Current Density (mA/cm2) | 4.17 | 8.33 | 12.5 | 16.67 | 20.833 |
Distance between electrodes (cm) | 1 | 2 | 3 | 3.5 | 4 |
Coded Values | |||||
Categorical Variables | 1 | 2 | 3 | ||
Uncoded Values | |||||
Number of Electrodes | 2 | 4 | 6 |
Coded Value | Uncoded Value | |||||||
---|---|---|---|---|---|---|---|---|
Run | CD, mA/cm2 | Reaction Time, min | Distance Between Electrodes, cm | Number of Electrodes | CD, mA/cm2 | Reaction Time, min | Distance Between Electrodes, cm | Number of Electrodes |
1 | 0 | 0 | −1 | 3 | 12.5 | 27.5 | 2 | 6 |
2 | 0 | 0 | 1.68179 | 2 | 12.5 | 27.5 | 4 | 4 |
3 | 0 | 0 | 0 | 3 | 12.5 | 27.5 | 3 | 6 |
4 | 1.68179 | 1 | 0 | 3 | 20.833 | 50 | 3 | 6 |
5 | 0 | 0 | −1 | 1 | 12.5 | 27.5 | 2 | 2 |
6 | 0 | 1.68179 | −1 | 2 | 12.5 | 65 | 2 | 4 |
7 | 0 | 0 | −1.68179 | 1 | 12.5 | 27.5 | 1 | 2 |
8 | −1 | 0 | −1 | 3 | 8.333 | 27.5 | 2 | 6 |
9 | 0 | 0 | −1 | 1 | 12.5 | 27.5 | 2 | 2 |
10 | 0 | 0 | −1 | 1 | 12.5 | 27.5 | 2 | 2 |
11 | −1.68179 | 1 | 0 | 3 | 4.17 | 50 | 3 | 6 |
12 | 0 | 0 | −1 | 2 | 12.5 | 27.5 | 2 | 4 |
13 | 1 | 1 | 0 | 1 | 16.67 | 50 | 3 | 2 |
14 | 1.68179 | 0 | −1 | 3 | 20.833 | 27.5 | 2 | 6 |
15 | 1 | 1 | −1.68179 | 2 | 16.67 | 50 | 1 | 4 |
16 | 0 | −1 | −1 | 2 | 12.5 | 10 | 2 | 4 |
17 | 1.68179 | 0 | −1 | 2 | 20.833 | 27.5 | 2 | 4 |
18 | −1.68179 | −1.68179 | −1.68179 | 1 | 4.17 | 5 | 1 | 2 |
19 | 0 | −1 | −1 | 3 | 12.5 | 10 | 2 | 6 |
20 | 0 | 0 | −1.68179 | 2 | 12.5 | 27.5 | 1 | 4 |
21 | 0 | −1.68179 | −1 | 1 | 12.5 | 5 | 2 | 2 |
22 | 1 | 1 | −1.68179 | 2 | 16.67 | 50 | 1 | 4 |
23 | 0 | −1.68179 | −1 | 2 | 12.5 | 5 | 2 | 4 |
24 | 0 | −1.68179 | −1 | 3 | 12.5 | 5 | 2 | 6 |
25 | 0 | 1.68179 | −1 | 3 | 12.5 | 65 | 2 | 6 |
26 | −1.68179 | 1 | 0 | 1 | 4.17 | 50 | 3 | 2 |
27 | −1.68179 | −1.68179 | 0 | 2 | 4.17 | 5 | 3 | 4 |
28 | −1.68179 | 1 | 0 | 2 | 4.17 | 50 | 3 | 4 |
29 | 1 | −1.68179 | 0 | 1 | 16.67 | 5 | 3 | 2 |
30 | 1.68179 | 0 | −1 | 1 | 20.833 | 27.5 | 2 | 2 |
31 | 0 | 1 | −1 | 1 | 12.5 | 50 | 2 | 2 |
32 | 1.68179 | −1.68179 | −1.68179 | 2 | 20.833 | 5 | 1 | 4 |
33 | −1.68179 | 1 | −1.68179 | 1 | 4.17 | 50 | 1 | 2 |
34 | 0 | 0 | −1 | 1 | 12.5 | 27.5 | 2 | 2 |
35 | 0 | 0 | −1 | 1 | 12.5 | 27.5 | 2 | 2 |
36 | 0 | 0 | −1 | 3 | 12.5 | 27.5 | 2 | 6 |
37 | 0 | 1 | −1 | 2 | 12.5 | 50 | 2 | 4 |
38 | 0 | 0 | −1 | 3 | 12.5 | 27.5 | 2 | 6 |
39 | 0 | 1.68179 | −1 | 1 | 12.5 | 65 | 2 | 2 |
40 | 1.68179 | 1 | 0 | 2 | 20.833 | 50 | 3 | 4 |
41 | 0 | −1.68179 | −1 | 2 | 12.5 | 5 | 2 | 4 |
42 | 1.68179 | −1.68179 | 0 | 2 | 20.833 | 5 | 3 | 4 |
43 | −1.68179 | −1.68179 | −1.68179 | 2 | 4.17 | 5 | 1 | 4 |
44 | 1.68179 | −1.68179 | 0 | 3 | 20.833 | 5 | 3 | 6 |
45 | 0 | 0 | −1 | 3 | 12.5 | 27.5 | 2 | 6 |
46 | 0 | 0 | −1 | 2 | 12.5 | 27.5 | 2 | 4 |
47 | 1.68179 | −1.68179 | −1.68179 | 1 | 20.833 | 5 | 1 | 2 |
48 | 0 | 0 | −1 | 3 | 12.5 | 27.5 | 2 | 6 |
49 | 0 | 0 | −1 | 2 | 12.5 | 27.5 | 2 | 4 |
50 | 1.68179 | −1.68179 | −1.68179 | 3 | 20.833 | 5 | 1 | 6 |
51 | −1.68179 | 1 | −1.68179 | 3 | 4.17 | 50 | 1 | 6 |
52 | −1.68179 | −1.68179 | −1.68179 | 3 | 4.17 | 5 | 1 | 6 |
53 | −1.68179 | −1.68179 | 0 | 3 | 4.17 | 5 | 3 | 6 |
54 | −1.68179 | −1.68179 | 0 | 1 | 4.17 | 5 | 3 | 2 |
55 | 0 | 0 | −1.68179 | 3 | 12.5 | 27.5 | 1 | 6 |
56 | 1.68179 | 1 | −1.68179 | 1 | 20.833 | 50 | 1 | 2 |
57 | 0 | −1 | −1 | 1 | 12.5 | 10 | 2 | 2 |
58 | 1.68179 | 1 | −1.68179 | 3 | 20.833 | 50 | 1 | 6 |
59 | −1 | 0 | −1 | 2 | 8.333 | 27.5 | 2 | 4 |
60 | −1 | 0 | −1 | 1 | 8.333 | 27.5 | 2 | 2 |
Parameter | Unit | Current Study | [53] | [54] | [55] | [56] | [57] | [58] | [59] | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1st Sample | 2nd Sample | 1st Sample | 2nd Sample | ||||||||
pH | - | 5 | 4.91 | 5.2 | 5.6 | 6.5 | 4.6–5.1 | 4.2–5.5 | 4.62 ± 0.01 | 4.53 ± 0.02 | 4.47 ± 0.03 |
COD | mg O2/L | 123,900 | 58,614 | 180,000 | 121,000 | 2500 | 25,800–146,000 | 45,230–106,800 | 52,100 | 100,800 | 118,500 |
BOD5 | mg O2/L | 5000 | 36,329 | 8900 | 22,000 | 1050 | 5260 | 17,640–41,720 | - | 22,500 | 28,400 |
BOD5/COD | - | 0.04 | 0.62 | 0.049 | 0.182 | 0.42 | 0.204–0.036 | 0.39–0.391 | - | 0.22 ± 0.03 | 0.24 ± 0.024 |
TPh | mg/L | 8563 | 2269 | 5500 | 4500 | - | 1540 | - | 6920 | 8710 | 7420 |
TKN | mg O2/L | 403,400 | 544 | - | - | - | - | - | - | - | - |
Turbidity | NTU | 1770 | - | - | 323 | 1264 | - | - | - | - | |
TS | mg/L | 65,132 | - | 91,200 | 72,000 | 3400 | - | - | - | - | - |
TSS | mg/L | 6355 | - | - | - | - | 12,760 | - | - | 25,500 | 22,660 |
Parameters | Unit | Biochar | ||
---|---|---|---|---|
400 °C | 500 °C | 600 °C | ||
pH | - | 10.53 | 10.87 | 10.92 |
Ash Contents | % | 3.562 | 7.79 | 6.067 |
Yield | % | 32.08 | 28.11 | 24.62 |
Moisture Contents | % | −0.121 | 1.20 | 1.79 |
Zeta Potential | mV | −22.72 | −26.39 | −25.2 |
Electrical Conductivity | mS/cm | 0.0113 | 0.078 | 0.018 |
Surface Structure | ||||
Langmuir Surface area | m2/g | 2.73 | 70.50 | 14.84 |
BET Surface area | m2/g | 1.90 | 44.19 | 9.96 |
Single point Surface area at P/Po = 0.297 | m2/g | 1.98 | 38.92 | 9.91 |
Total pore volume | cm3/g | 0.0012 | 0.026 | 0.0055 |
Average pore width | Å | 24.53 | 23.99 | 21.95 |
Model | R2 (%) | R2adj (%) | R2adj (Pred) (%) |
---|---|---|---|
%CODtotal | 93.69 | 91.13 | 82.43 |
%CODsoluble | 88 | 83.15 | 72.36 |
%TPh | 94.81 | 92.72 | 90.17 |
%TKN | 70.66 | 58.79 | 39.27 |
%Turbidity | 94.41 | 92.15 | 84.02 |
ENC | 51.5 | 31.88 | 22.2 |
Term | F Value | CODtotal | F Value | CODsoluble | F Value | TPh | F Value | Turbidity | F Value | TKN | F Value | ENC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t Value | p Value | t Value | p Value | t Value | p Value | t Value | p Value | t Value | p Value | t Value | p Value | |||||||
Model | 36.65 | 0.000 | 18.12 | 0.000 | 45.18 | 0.000 | 5.59 | 0.000 | 41.74 | 0.000 | 2.62 | 0.006 | ||||||
Linear | 39.99 | 0.000 | 15.03 | 0.000 | 47.41 | 0.000 | 12.67 | 0.000 | 30.16 | 0.000 | 4.87 | 0.001 | ||||||
T | 71.47 | 8.45 | 0.000 | 53.85 | 7.34 | 0.000 | 194.66 | 13.95 | 0.000 | 42.76 | 6.54 | 0.000 | 113.49 | 10.65 | 0.000 | 8.45 | 2.91 | 0.006 |
CD | 67.18 | 8.20 | 0.000 | 17.12 | 4.14 | 0.000 | 17.83 | 4.22 | 0.000 | 10.24 | 3.20 | 0.003 | 0.27 | 0.52 | 0.608 | 13.21 | 3.63 | 0.001 |
D | 5.34 | −2.31 | 0.000 | 0.16 | 0.40 | 0.692 | 3.17 | 1.79 | 0.082 | 1.22 | −1.11 | 0.275 | 3.50 | −1.87 | 0.068 | 1.03 | 1.01 | 0.317 |
N | 30.03 | −7.73 | 0.000 | 3.13 | −2.46 | 0.054 | 16.82 | −4.28 | 0.000 | 4.79 | −3.09 | 0.013 | 15.62 | −4.36 | 0.000 | 1.50 | 1.69 | 0.235 |
Square | 55.05 | 0.000 | 25.61 | 0.000 | 36.97 | 0.000 | 1.93 | 0.139 | 67.85 | 0.000 | 0.96 | 0.419 | ||||||
T*T | 87.88 | −9.37 | 0.000 | 53.60 | −7.32 | 0.000 | 90.05 | −9.49 | 0.000 | 1.27 | 1.13 | 0.266 | 107.63 | −10.37 | 0.000 | 1.94 | −1.39 | 0.171 |
CD*CD | 17.47 | −4.18 | 0.000 | 5.78 | −2.40 | 0.021 | 1.82 | −1.35 | 0.184 | 4.88 | −2.21 | 0.033 | 34.82 | −5.90 | 0.000 | 1.71 | 1.31 | 0.198 |
D*D | 1.48 | −1.22 | 0.231 | 0.74 | 0.86 | 0.396 | 11.73 | 3.42 | 0.001 | 0.16 | 0.40 | 0.690 | 1.56 | 1.25 | 0.218 | 0.18 | −0.43 | 0.671 |
Interaction | 5.38 | 0.000 | 1.53 | 0.170 | 0.32 | 0.963 | 0.72 | 0.692 | 5.29 | 0.000 | 1.33 | 0.249 | ||||||
T*CD | 25.54 | 5.05 | 0.000 | 8.07 | 2.84 | 0.007 | 0.20 | −0.45 | 0.657 | 0.28 | 0.53 | 0.601 | 7.88 | −2.81 | 0.008 | 7.31 | 2.70 | 0.010 |
T*D | 0.43 | −0.65 | 0.516 | 0.12 | 0.35 | 0.731 | 0.45 | −0.67 | 0.508 | 0.01 | 0.11 | 0.912 | 3.89 | 1.97 | 0.055 | 1.53 | 1.24 | 0.222 |
T*N | 8.84 | −4.17 | 0.001 | 0.63 | −1.11 | 0.538 | 0.69 | −0.99 | 0.505 | 0.92 | 1.22 | 0.405 | 0.13 | −0.44 | 0.878 | 0.02 | 0.13 | 0.983 |
CD*D | 0.73 | 0.85 | 0.399 | 0.64 | −0.80 | 0.429 | 0.34 | −0.58 | 0.565 | 0.01 | 0.11 | 0.910 | 4.91 | −2.22 | 0.032 | 1.13 | 1.06 | 0.293 |
CD*N | 1.53 | −1.64 | 0.227 | 0.35 | −0.82 | 0.708 | 0.04 | −0.09 | 0.960 | 0.10 | 0.01 | 0.905 | 13.33 | −3.95 | 0.000 | 0.83 | −1.12 | 0.444 |
D*N | 0.48 | −0.08 | 0.621 | 1.49 | 1.26 | 0.236 | 0.22 | −0.57 | 0.806 | 2.05 | −1.71 | 0.142 | 2.03 | 1.57 | 0.144 | 0.17 | 0.58 | 0.843 |
Lack of Fit | 2083.95 | 0.000 | 2.08 | 0.099 | - | - | - | - | - | 975,409.98 | 0.000 |
Time, min | CD, mA/cm2 | Number of Electrode | Distance, cm | |
---|---|---|---|---|
Optimized Values | 53.4848 | 15.1104 | 6 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamrah, A.; Al-Zghoul, T.M.; Al-Qodah, Z.; Al-Karablieh, E. Performance of Combined Olive Mills Wastewater Treatment System: Electrocoagulation-Assisted Adsorption as a Post Polishing Sustainable Process. Water 2025, 17, 1697. https://doi.org/10.3390/w17111697
Jamrah A, Al-Zghoul TM, Al-Qodah Z, Al-Karablieh E. Performance of Combined Olive Mills Wastewater Treatment System: Electrocoagulation-Assisted Adsorption as a Post Polishing Sustainable Process. Water. 2025; 17(11):1697. https://doi.org/10.3390/w17111697
Chicago/Turabian StyleJamrah, Ahmad, Tharaa M. Al-Zghoul, Zakaria Al-Qodah, and Emad Al-Karablieh. 2025. "Performance of Combined Olive Mills Wastewater Treatment System: Electrocoagulation-Assisted Adsorption as a Post Polishing Sustainable Process" Water 17, no. 11: 1697. https://doi.org/10.3390/w17111697
APA StyleJamrah, A., Al-Zghoul, T. M., Al-Qodah, Z., & Al-Karablieh, E. (2025). Performance of Combined Olive Mills Wastewater Treatment System: Electrocoagulation-Assisted Adsorption as a Post Polishing Sustainable Process. Water, 17(11), 1697. https://doi.org/10.3390/w17111697