Research on the Influence of River Morphological Changes on Water Self-Purification Capacity: A Case Study of the Shiwuli River in Chaohu Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Method
3. Results
3.1. Self-Purification Capacity of Meandering Rivers Under Natural Conditions
3.2. Curvature and Self-Purification Capacity Correlation Analysis
3.2.1. Relationship Between River Sinuosity and Water Self-Purification Capacity
3.2.2. Correlation Between the River Curvature and the Self-Purification Capacity of Water Bodies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.; Peng, D.; Pang, B.; Zuo, D.; Song, J.; Zhang, X.; Wang, X.; Zhan, C.; Liu, Z.; Yin, X. Theoretical Basis and Calculation Method for Ecological Base Flow for Rivers: Case Study in the Guanzhong Reach of the Wei River. Science: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Jiang, X.; Xu, S.; Liu, Y.; Wang, X. River ecosystem assessment and application in ecological restorations: A mathematical approach based on evaluating its structure and function. Ecol. Eng. 2015, 76, 151–157. [Google Scholar] [CrossRef]
- Giller, P.S. River restoration: Seeking ecological standards. Editor's introduction. J. Appl. Ecol. 2005, 42, 201–207. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. North Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Rohde, S.; Hostmann, M.; Peter, A.; Ewald, K. Room for rivers: An integrative search strategy for floodplain restoration. Landsc. Urban Plan. 2006, 78, 50–70. [Google Scholar] [CrossRef]
- Perşoiu, I.; Rădoane, M. Spatial and temporal controls on historical channel responses–study of an atypical case: Someşu Mic River, Romania. Earth Surf. Process. Landf. 2011, 36, 1391–1409. [Google Scholar] [CrossRef]
- Buijse, A.D.; Coops, H.; Staras, M.; Jans, L.; Van Geest, G.; Grift, R.; Ibelings, B.W.; Oosterberg, W.; Roozen, F.C. Restoration strategies for river floodplains along large lowland rivers in Europe. Freshw. Biol. 2002, 47, 889–907. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, J.; Xiao, X.; Zhang, M.; Tian, B.; Zhou, Y.; Li, B.; Ma, Z. Land claim and loss of tidal flats in the Yangtze Estuary. Sci. Rep. 2016, 6, 24018. [Google Scholar] [CrossRef]
- Li, Z.; Yan, C.; Boota, M.W. Review and outlook of river morphology expression. J. Water Clim. Change 2022, 13, 1725–1747. [Google Scholar] [CrossRef]
- Islam, M.R.; Mohonto, S.; Noor, F. Evolution of Char lands in the Padma River in Bangladesh and its impacts on planform morphology of the river. Results Earth Sci. 2025, 3, 100075. [Google Scholar] [CrossRef]
- Arfa, A.; Ayyoubzadeh, S.A.; Shafizadeh-Moghadam, H.; Mianabadi, H. Transboundary hydropolitical conflicts and their impact on river morphology and environmental degradation in the Hirmand Basin, West Asia. Sci. Rep. 2025, 15, 2754. [Google Scholar] [CrossRef] [PubMed]
- Meckenstock, R.U.; Elsner, M.; Griebler, C.; Lueders, T.; Stumpp, C.; Aamand, J.; Agathos, S.N.; Albrechtsen, H.-J.; Bastiaens, L.; Bjerg, P.L. Biodegradation: Updating the concepts of control for microbial cleanup in contaminated aquifers. Environ. Sci. Technol. 2015, 49, 7073–7081. [Google Scholar] [CrossRef]
- Wei, G.; Yang, Z.; Cui, B.; Li, B.; Chen, H.; Bai, J.; Dong, S. Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China. Water Resour. Manag. 2009, 23, 1763–1780. [Google Scholar] [CrossRef]
- Mirauda, D.; Caniani, D.; Colucci, M.T.; Ostoich, M. Assessing the fluvial system resilience of the river Bacchiglione to point sources of pollution in Northeast Italy: A novel Water Resilience Index (WRI) approach. Environ. Sci. Pollut. Res. 2021, 28, 36775–36792. [Google Scholar] [CrossRef] [PubMed]
- Green, M.O.; Coco, G. Review of wave-driven sediment resuspension and transport in estuaries. Rev. Geophys. 2014, 52, 77–117. [Google Scholar] [CrossRef]
- Tian, S.; Wang, Z.; Shang, H. Study on the Self-purification of Juma River. Procedia Environ. Sci. 2011, 11, 1328–1333. [Google Scholar] [CrossRef]
- Guzelj, M.; Hauer, C.; Egger, G. The third dimension in river restoration: How anthropogenic disturbance changes boundary conditions for ecological mitigation. Sci. Rep. 2020, 10, 13106. [Google Scholar] [CrossRef]
- Zingraff-Hamed, A.; Greulich, S.; Pauleit, S.; Wantzen, K.M. Urban and rural river restoration in France: A typology. Restor. Ecol. 2017, 25, 994–1004. [Google Scholar] [CrossRef]
- Kumar, B.A.; Gopinath, G.; Chandran, M.S. River sinuosity in a humid tropical river basin, south west coast of India. Arab. J. Geosci. 2014, 7, 1763–1772. [Google Scholar] [CrossRef]
- Mueller, J.E. An introduction to the hydraulic and topographic sinuosity indexes. Ann. Assoc. Am. Geogr. 1968, 58, 371–385. [Google Scholar] [CrossRef]
- Chen, L.; Ji, H.; Zhang, L. Controls on the sinuosity of alluvial meandering rivers with scroll bars. Arab. J. Geosci. 2022, 15, 1–8. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, J.; Chen, D.; Chen, R. Effects of river sinuosity on the self-purification capacity of the Shiwuli River, China. Water Supply 2019, 19, 1152–1159. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, J.; Yuan, X.; Chen, R.; Song, X. Model test of the effect of river sinuosity on nitrogen purification efficiency. Water 2020, 12, 1677. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, J.; Chen, D.; Chen, R.; Song, X. Mechanism of sinuosity effect on self-purification capacity of rivers. Environ. Sci. Pollut. Res. 2023, 30, 112184–112193. [Google Scholar] [CrossRef]
- Jiahui, H. Study on the River Meandering Degree Impact on the River Self-Purification Capacity; South China University of Technology: Guangzhou, China, 2014. [Google Scholar]
- Poole, G.C.; Fogg, S.K.; O’Daniel, S.J.; Amerson, B.E.; Reinhold, A.M.; Carlson, S.P.; Mohr, E.J.; Oakland, H.C. Hyporheic hydraulic geometry: Conceptualizing relationships among hyporheic exchange, storage, and water age. PLoS ONE 2022, 17, e0262080. [Google Scholar] [CrossRef]
- Jin, G.; Yuan, H.; Zhang, G.; Zhang, Z.; Chen, C.; Tang, H.; Li, L. Effects of bed geometric characteristics on hyporheic exchange. J. Hydro-Environ. Res. 2022, 43, 1–9. [Google Scholar] [CrossRef]
- Luoqi, Z.; Denggao, F.; Xiaoni, W.; Change, L.; Xinqi, Y.; Sichen, W.; Changqun, D. Opposite response of constructed wetland performance in nitrogen and phosphorus removal to short and long terms of operation. J. Environ. Manag. 2024, 351, 120002. [Google Scholar]
- Zhou, Y.; Zhang, H.; Chang, F.; Duan, L.; Li, H.; Wen, X.; Bi, R.; Wu, H.; Zhu, M. Seasonal variations of water quality parameters in Lake Qilu. Adv. Geosci 2017, 7, 487–499. [Google Scholar] [CrossRef]
- Miao, Q.; Wang, C.; Cao, X.J.; Gu, Y.T.; Sun, J.J. The Study on the Correlation between Removal Rate of Pollutants and its Influencing Factors in Xinxue River Constructed Wetland of China. Adv. Mater. Res. 2012, 374, 932–936. [Google Scholar] [CrossRef]
- Yuan, S.; Huang, G.; Chen, W.; Chen, Z.; Yin, X. Study on Relationship between Seasonal Temperatures and Municipal Wastewater Pollutant Concentration and Removal Rate. In Proceedings of the MATEC Web of Conferences, Amsterdam, Netherlands, 23–25 March 2016; p. 14007. [Google Scholar]
- Zhi, W.; Ouyang, W.; Shen, C.; Li, L. Temperature outweighs light and flow as the predominant driver of dissolved oxygen in US rivers. Nat. Water 2023, 1, 249–260. [Google Scholar] [CrossRef]
- Chi, L.; Song, X.; Yuan, Y.; Wang, W.; Zhou, P.; Fan, X.; Cao, X.; Yu, Z. Distribution and key influential factors of dissolved oxygen off the Changjiang River Estuary (CRE) and its adjacent waters in China. Mar. Pollut. Bull. 2017, 125, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Froehlich, H.E.; Hennessey, S.M.; Essington, T.E.; Beaudreau, A.H.; Levin, P.S. Spatial and temporal variation in nearshore macrofaunal community structure in a seasonally hypoxic estuary. Mar. Ecol. Prog. Ser. 2015, 520, 67–83. [Google Scholar] [CrossRef]
- Li, H.; Zhang, G.; Li, X.; Gao, R. Spatial Characteristics of Water Quality of Wetland in Northeast China–the Case of Zhalong Wetland. Procedia Environ. Sci. 2012, 12, 1024–1029. [Google Scholar] [CrossRef]
- Li, J.; Han, S.; He, Z.; Cao, T.; Han, S.; Li, T.; Li, J.; Jia, J.; Qin, W.; He, Y. Micro-polluted water source purification of root channel wetland in Jiaxing, China. Water Environ. Res. 2024, 96, e11112. [Google Scholar] [CrossRef]
Season | Spring | Summer | Autumn | Winter | ||||
---|---|---|---|---|---|---|---|---|
Indicator | In 2017 | In 2024 | In 2017 | In 2024 | In 2017 | In 2024 | In 2017 | In 2024 |
K(TP)/d−1 | 0.1314 | 0.1548 | 0.2355 | 0.3662 | 0.0114 | 0.3329 | 0.0645 | 0.1515 |
K(TN)/d−1 | 0.1489 | 0.2211 | 0.1182 | 0.3125 | 0.0442 | 0.1067 | / | 0.0148 |
K(NH3-N)/d−1 | 0.2299 | 0.1744 | 0.1921 | 0.5855 | 0.0489 | 0.1229 | 0.0362 | 0.2964 |
K(COD)/d−1 | 0.0947 | 0.0807 | 0.1155 | 0.0550 | / | 0.1065 | 0.0139 | 0.0668 |
K(DO)/d−1 | 0.0997 | 0.2928 | 0.0889 | 0.3765 | 0.0715 | 0.2178 | / | 0.1944 |
Season | Indicator | R(TP) | R(TN) | R(NH3-N) | R(COD) | -R(DO) |
---|---|---|---|---|---|---|
Spring | correlation coefficient | 0.673 | 0.559 | 0.420 | 0.640 | 0.797 * |
significance level | 0.067 | 0.150 | 0.301 | 0.088 | 0.018 | |
Summer | correlation coefficient | 0.818 * | 0.107 | 0.718 | 0.797 * | 0.988 ** |
significance level | 0.025 | 0.819 | 0.069 | 0.032 | 0.001 | |
Autumn | correlation coefficient | 0.819 * | 0.699 | 0.469 | 0.317 | 0.269 |
significance level | 0.013 | 0.054 | 0.241 | 0.444 | 0.520 | |
Winter | correlation coefficient | 0.098 | 0.876 ** | 0.700 * | 0.101 | 0.577 |
significance level | 0.818 | 0.004 | 0.050 | 0.812 | 0.134 |
Season | Indicator | R(TP) | R(TN) | R(NH3-N) | R(COD) | -R(DO) |
---|---|---|---|---|---|---|
Spring | correlation coefficient | 0.390 | 0.835 * | 0.814 * | 0.842 * | 0.915 ** |
significance level | 0.444 | 0.039 | 0.049 | 0.035 | 0.010 | |
Summer | correlation coefficient | 0.055 | 0.759 | 0.814 * | 0.880 * | 0.836 * |
significance level | 0.917 | 0.080 | 0.049 | 0.021 | 0.038 | |
Autumn | correlation coefficient | 0.938 ** | 0.901 * | 0.833 * | 0.928 ** | 0.910 * |
significance level | 0.006 | 0.014 | 0.039 | 0.008 | 0.012 | |
Winter | correlation coefficient | 0.774 | 0.776 | 0.634 | 0.832 * | 0.919 ** |
significance level | 0.071 | 0.070 | 0.176 | 0.040 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, C.; Chai, Z.; Chen, D.; Luo, Z.; Li, Y.; Ou, Q.; Zhang, Y. Research on the Influence of River Morphological Changes on Water Self-Purification Capacity: A Case Study of the Shiwuli River in Chaohu Basin. Water 2025, 17, 1694. https://doi.org/10.3390/w17111694
Xiao C, Chai Z, Chen D, Luo Z, Li Y, Ou Q, Zhang Y. Research on the Influence of River Morphological Changes on Water Self-Purification Capacity: A Case Study of the Shiwuli River in Chaohu Basin. Water. 2025; 17(11):1694. https://doi.org/10.3390/w17111694
Chicago/Turabian StyleXiao, Chenguang, Zengyuan Chai, Dan Chen, Zhaohui Luo, Yuke Li, Qijun Ou, and Yuchuan Zhang. 2025. "Research on the Influence of River Morphological Changes on Water Self-Purification Capacity: A Case Study of the Shiwuli River in Chaohu Basin" Water 17, no. 11: 1694. https://doi.org/10.3390/w17111694
APA StyleXiao, C., Chai, Z., Chen, D., Luo, Z., Li, Y., Ou, Q., & Zhang, Y. (2025). Research on the Influence of River Morphological Changes on Water Self-Purification Capacity: A Case Study of the Shiwuli River in Chaohu Basin. Water, 17(11), 1694. https://doi.org/10.3390/w17111694