Runoff and Drought Responses to Land Use Change and CMIP6 Climate Projections
Abstract
:1. Introduction
2. Study Area and Aata
2.1. Overview of the Study Area
2.2. Data Source: Pre-Processing
3. Research Methods
3.1. Research Framework
3.2. SWAT Hydrological Model
3.3. Selection of CMIP6 Climate Models
3.4. PLUS Model
3.5. Hydrological Drought SRI and Travel Time Theory
4. Results Analysis
4.1. SWAT Model Parameter Calibration and Validation
4.2. CMIP6 Global Climate Model
4.2.1. Taylor Diagram Comparison Between Meteorological Models and Ensemble Average Models
4.2.2. Analysis of Meteorological Model and Ensemble Mean Model Deviations
4.2.3. Future Climate Change Scenarios
4.3. Land Use Changes
4.4. Runoff Prediction Under Changing Weather Conditions
4.5. Drought Analysis at Different Scales
4.5.1. SRI-1 and SRI-12 Drought Analysis
4.5.2. Trend and Sudden Changes in Land Use Before and After
5. Discussion
6. Conclusions
- (1)
- The SWAT model performs well in simulating runoff in the Naoli River Basin, and the model results can be used for runoff prediction. The R2 values for both the calibration period and the validation period are >0.75, and the NS values are >0.97. The PLUS model has good adaptability in simulating land use in this basin, with an overall accuracy greater than 0.93 and a Kappa coefficient >0.85.
- (2)
- In terms of future land use changes, forest land will continue to grow under different scenarios, while farmland will continue to decline under all scenarios. Water areas will show a significant growth trend under the SSP245 scenario, and construction land will see a gradual increase in area under the SSP585 scenario.
- (3)
- A total of 15 CMIP6 models provided reliable temperature predictions for the Rao River Basin from 1970 to 2014 (r > 0.97, RMSE < 2.98). The models with the best performance were the EC-Earth3, IPSL-CM6A-LR, MPI-ESM1–2-HR, and MPI-ESM1–2-LR. NorESM2-MM performed excellently in precipitation predictions (r > 0.75, RMSE < 30.99, standard deviation ≈ 41.28), with their ensemble average MMM-Best (r = 0.80, RMSE = 26.15) being the best model for predictions from 2025 to 2100. Deviation analysis shows that the EC-Earth3 exhibits the largest deviations under the SSP245 and SSP585 scenarios, with high prediction uncertainty; IPSL-CM6A-LR and NorESM2-MM are the most stable, consistent with MMM-Best, and the NorESM2-MM has the smallest deviation and most conservative predictions under the SSP585 scenario.
- (4)
- For the years 2025–2100, precipitation, temperature, and runoff in the basin are higher than historical levels under both scenarios. Under the SSP245 and SSP585 scenarios, the SRI-1 values indicate a trend toward future climate warming and increased extreme events, with positive values predominating after 2060, particularly during the summer (June–August) with significant positive values (reaching up to 3.34 and 3.66), indicating an increase in high-temperature or drought events. Land use changes mitigate SRI-1 fluctuations in the SSP245 scenario (−3.62 to 3.34), but the mitigating effect is limited in the SSP585 scenario, with slightly increased positive values (peaking at 3.66). Seasonal analysis shows that positive values are more frequent in summer, while winter and spring are dominated by negative values, with greater intensity in the high-emission scenario (SSP585).
- (5)
- Under the SSP245 and SSP585 scenarios, hydrological drought (SRI-12) in the Naoli River Basin from 2025 to 2100 shows increased frequency and duration under SSP585. Land use changes have a minimal impact on drought frequency from 2025 to 2040, reduce events from 2041 to 2060 (SSP245: 7 to 4; SSP585: 5 to 4), and increase events from 2061 to 2100 (SSP245: 11 to 14; SSP585: 12 to 15), while shortening long-term drought duration (SSP245: 11.3 to 10.43 months; SSP585: 15.3 to 13.1 months). Land use mitigates drought in the medium to long term, but its effect is limited under high-emission scenarios.
- (6)
- The Pettitt test showed that the SRI-3 mutation point was July 2074 under the SSP245 scenario and April 2060 under the SSP585 scenario (p < 0.05). Land use change had a limited impact on the mutation, with climate drivers being the primary factor, and the mutation occurred earlier under SSP585. The Mann–Kendall test indicated that the trend was highly variable under SSP245, and the number of crossover points increased to 40 after land use change, exacerbating fluctuations; under SSP585, the trend remained stable with only seven crossover points, and land use change had a minor impact, with climate signals dominating. The mutation point coincides with the period of significant trends, indicating that fluctuations under SSP245 are influenced by land use, while the high-emission scenario under SSP585 dominates early mutations and the stable trend.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Peng, T.; He, Y.; Singh, V.P.; Lin, Q.; Dong, X.; Fan, T.; Liu, J.; Guo, J.; Wang, G. Attribution analysis of non-stationary hydrological drought using the GAMLSS framework and an improved SWAT model. J. Hydrol. 2023, 627, 130420. [Google Scholar] [CrossRef]
- Kiprotich, P.; Wei, X.; Zhang, Z.; Ngigi, T.; Qiu, F.; Wang, L. Assessing the impact of land use and climate change on surface runoff response using gridded observations and swat+. Hydrology 2021, 8, 48. [Google Scholar] [CrossRef]
- Lukas, P.; Melesse, A.M.; Kenea, T.T. Integrating Land Use/Land Cover and Climate Change Projections to Assess Future Hydrological Responses: A CMIP6-Based Multi-Scenario Approach in the Omo–Gibe River Basin, Ethiopia. Climate 2025, 13, 51. [Google Scholar] [CrossRef]
- Abdelmoaty, H.M.; Papalexiou, S.M.; Rajulapati, C.R.; AghaKouchak, A. Biases beyond the mean in CMIP6 extreme precipitation: A global investigation. Earth’s Future 2021, 9, e2021EF002196. [Google Scholar] [CrossRef]
- Fredriksen, H.B.; Smith, C.J.; Modak, A.; Rugenstein, M. 21st century scenario forcing increases more for CMIP6 than CMIP5 models. Geophys. Res. Lett. 2023, 50, e2023GL102916. [Google Scholar] [CrossRef]
- Wei, S.; Wang, X.; Liu, L.; Qie, L.; Li, Y.; Wang, Q.; Wang, T.; Wang, J.; Gou, X.; Yang, M. Bias correction of CMIP6 GCMs for historical and future air temperatures across China. Atmos. Res. 2025, 323, 108193. [Google Scholar] [CrossRef]
- DeGuzman, K.; Knappenberger, T.; Brantley, E.; Olshansky, Y. Estimating runoff probability from precipitation data: A binomial regression analysis. Hydrol. Process. 2023, 37, e15029. [Google Scholar] [CrossRef]
- Yi, S.; Saemian, P.; Sneeuw, N.; Tourian, M.J. Estimating runoff from pan-Arctic drainage basins for 2002–2019 using an improved runoff-storage relationship. Remote Sens. Environ. 2023, 298, 113816. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, T.; Liu, C.; Li, W.; Zhang, L.; Ran, G.; Xu, Y.; Tang, Y.; Han, Z.; Hu, C. Improving the understanding of rainfall-runoff processes: Temporal dynamic of event runoff response in Loess Plateau, China. J. Environ. Manag. 2025, 375, 123436. [Google Scholar] [CrossRef]
- Nepal, D.; Parajuli, P.B.; Ouyang, Y.; To, S.F.; Wijewardane, N. Assessing hydrological and water quality responses to dynamic landuse change at watershed scale in Mississippi. J. Hydrol. 2023, 625, 129983. [Google Scholar] [CrossRef]
- Shrestha, S.; Bhatta, B.; Talchabhadel, R.; Virdis, S.G.P. Integrated assessment of the landuse change and climate change impacts on the sediment yield in the Songkhram River Basin, Thailand. Catena 2022, 209, 105859. [Google Scholar] [CrossRef]
- Kang, X.; Qi, J.; Bourque, C.P.-A.; Li, S.; Jin, C.; Meng, F.-R. Assessing watershed-scale impacts of best management practices and elevated atmospheric carbon dioxide concentrations on water yield. Sci. Total Environ. 2024, 926, 171629. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, Y.; Li, H.; Wang, X.; Yin, Q. Assessing the response of non-point source nitrogen pollution to land use change based on SWAT model. Ecol. Indic. 2024, 158, 111391. [Google Scholar] [CrossRef]
- Yonaba, R.; Biaou, A.C.; Koïta, M.; Tazen, F.; Mounirou, L.A.; Zouré, C.O.; Queloz, P.; Karambiri, H.; Yacouba, H. A dynamic land use/land cover input helps in picturing the Sahelian paradox: Assessing variability and attribution of changes in surface runoff in a Sahelian watershed. Sci. Total Environ. 2021, 757, 143792. [Google Scholar] [CrossRef] [PubMed]
- Yonaba, R.; Mounirou, L.A.; Tazen, F.; Koïta, M.; Biaou, A.C.; Zouré, C.O.; Queloz, P.; Karambiri, H.; Yacouba, H. Future climate or land use? Attribution of changes in surface runoff in a typical Sahelian landscape. C. R. Géosci. 2023, 355, 411–438. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.; Zhang, J.; Chen, Y. A global drought-aridity index: The spatiotemporal standardized precipitation evapotranspiration index. Ecol. Indic. 2023, 153, 110484. [Google Scholar] [CrossRef]
- Tahir, Z.; Haseeb, M.; Mahmood, S.A.; Batool, S.; Abdullah-Al-Wadud, M.; Ullah, S.; Tariq, A. Predicting land use and land cover changes for sustainable land management using CA-Markov modelling and GIS techniques. Sci. Rep. 2025, 15, 3271. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Z.; Lai, C.; Wu, X.; Chen, X. Climate and landuse change enhance spatio-temporal variability of Dongjiang river flow and ammonia nitrogen. Sci. Total Environ. 2023, 867, 161483. [Google Scholar] [CrossRef]
- Guédé, K.G.; Yu, Z.; Simonovic, S.P.; Gu, H.; Emani, G.F.; Badji, O.; Chen, X.; Sika, B.; Adiaffi, B. Combined effect of landuse/landcover and climate change projection on the spatiotemporal streamflow response in cryosphere catchment in the Tibetan Plateau. J. Environ. Manag. 2025, 376, 124353. [Google Scholar] [CrossRef]
- Lv, K.; Si, Z.; Ren, W.; Zhao, Z. Exploring ecosystem services dynamics and interactions under future climate change: A case study of the city cluster in the middle reaches of the Yangtze River. Ecol. Front. 2025, 45, 719–739. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, L.; Lv, X.; Yu, H.; Li, G. Changes in stream peak flow and regulation in Naoli river watershed as a result of wetland loss. Sci. World J. 2014, 2014, 209547. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Bao, Z.; Ning, L.; Tong, S. Change of rice paddy and its impact on human well-being from the perspective of land surface temperature in the northeastern Sanjiang plain of China. Int. J. Environ. Res. Public Health 2022, 19, 9690. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, X.; Yonghe, S.; Zhike, C.; Wu, H.; Zhao, Y. Hydrological evolution of wetland in Naoli River Basin and its driving mechanism. Water Resour. Manag. 2012, 26, 1455–1475. [Google Scholar] [CrossRef]
- Du, X.; Chang, K.; Lu, X. Characteristics and causes of groundwater dynamic changes in Naoli River Plain, Northeast China. Water Supply 2020, 20, 2603–2615. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Fu, B.; Jin, X.; Yang, G.; Zhang, X. Spatial–temporal changes in the degradation of marshes over the past 67 years. Sci. Rep. 2022, 12, 6070. [Google Scholar] [CrossRef]
- Bai, X.; Wang, B.; Qi, Y. The effect of returning farmland to grassland and coniferous forest on watershed runoff—A case study of the Naoli River Basin in Heilongjiang Province, China. Sustainability 2021, 13, 6264. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, J.; Blanchette, M.; Rousseau, A.N.; Xu, Y.J.; Hu, B.; Zhang, G. Wetland mitigation functions on hydrological droughts: From drought characteristics to propagation of meteorological droughts to hydrological droughts. J. Hydrol. 2023, 617, 128971. [Google Scholar] [CrossRef]
- Yildirim, I.; Aksoy, H.; Hrachowitz, M. Formative drought rate to quantify propagation from meteorological to hydrological drought. Hydrol. Process. 2024, 38, e15229. [Google Scholar] [CrossRef]
- Ma, Q.; Li, Y.; Liu, F.; Feng, H.; Biswas, A.; Zhang, Q. SPEI and multi-threshold run theory based drought analysis using multi-source products in China. J. Hydrol. 2023, 616, 128737. [Google Scholar] [CrossRef]
- Chi, G.; Zhu, B.; Huang, B.; Chen, X.; Shi, Y. Spatiotemporal dynamics in soil iron affected by wetland conversion on the Sanjiang Plain. Land Degrad. Dev. 2021, 32, 4669–4679. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, M.; Li, L.; Yin, R.; Huo, L. Holocene terrestrialization process on the Sanjiang Plain (China) and its significance to the East Asian summer monsoon circulation. Sci. Total Environ. 2022, 806, 150578. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, Z.; Fu, Z.; Xiong, S.; Chen, H.; Zhang, W.; Wang, S.; Zhang, D.; Lu, H.; Jiang, X. Impacts of climatic fluctuations and vegetation greening on regional hydrological processes: A case study in the Xiaoxinganling Mountains–Sanjiang Plain region, Northeastern China. Remote Sens. 2024, 16, 2709. [Google Scholar] [CrossRef]
- Luo, C.; Fu, X.; Zeng, X.; Cao, H.; Wang, J.; Ni, H.; Qu, Y.; Liu, Y. Responses of remnant wetlands in the Sanjiang Plain to farming-landscape patterns. Ecol. Indic. 2022, 135, 108542. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, N.; Wang, H.; Li, J.; Zhong, H.; Dong, H.; Zeng, Z.; Zong, C. Variations in the diversity of the soil microbial community and structure under various categories of degraded wetland in Sanjiang Plain, northeastern China. Land Degrad. Dev. 2021, 32, 2143–2156. [Google Scholar] [CrossRef]
- Zhang, L.; Nan, Z.; Yu, W.; Ge, Y. Modeling land-use and land-cover change and hydrological responses under consistent climate change scenarios in the Heihe River Basin, China. Water Resour. Manag. 2015, 29, 4701–4717. [Google Scholar] [CrossRef]
- Ma, L.; Liu, J.; Pang, X.; Jing, H. Analysis of Hydrological Elements and Runoff Prediction in Tao′er River Basin under Land Use and Climate Change. J. Soil Water Conserv. 2025, 39, 1009–2242. [Google Scholar]
- Long, S.; Gao, J.; Shao, H.; Wang, L.; Zhang, X.; Gao, Z. Developing SWAT-S to strengthen the soil erosion forecasting performance of the SWAT model. Land Degrad. Dev. 2024, 35, 280–295. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.; Hou, J. Soil and Water Assessment Tool (SWAT)-informed deep learning for streamflow forecasting with remote sensing and in situ precipitation and discharge observations. Remote Sens. 2024, 16, 3999. [Google Scholar] [CrossRef]
- Wang, Z.; He, Y.; Li, W.; Chen, X.; Yang, P.; Bai, X. A generalized reservoir module for SWAT applications in watersheds regulated by reservoirs. J. Hydrol. 2023, 616, 128770. [Google Scholar] [CrossRef]
- Valencia, S.; Villegas, J.C.; Hoyos, N.; Duque-Villegas, M.; Salazar, J.F. Streamflow response to land use/land cover change in the tropical Andes using multiple SWAT model variants. J. Hydrol. Reg. Stud. 2024, 54, 101888. [Google Scholar] [CrossRef]
- Melaku, N.D.; Brown, C.W.; Tavakoly, A.A. Improving process-based prediction of stream water temperature in SWAT using semi-Lagrangian formulation. J. Hydrol. 2025, 651, 132612. [Google Scholar] [CrossRef]
- Cao, K.; Liu, X.; Fu, Q.; Wang, Y.; Liu, D.; Li, T.; Li, M. Dynamic and harmonious allocation of irrigation water resources under climate change: A SWAT-based multi-objective nonlinear framework. Sci. Total Environ. 2023, 905, 167221. [Google Scholar] [CrossRef]
- Zabihi, O.; Ahmadi, A. Multi-criteria evaluation of CMIP6 precipitation and temperature simulations over Iran. J. Hydrol. Reg. Stud. 2024, 52, 101707. [Google Scholar] [CrossRef]
- Mesgari, E.; Hosseini, S.A.; Hemmesy, M.S.; Houshyar, M.; Partoo, L.G. Assessment of CMIP6 models’ performances and projection of precipitation based on SSP scenarios over the MENAP region. J. Water Clim. Change 2022, 13, 3607–3619. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, K.; Liu, H.; Meng, Y.; Chen, R. Spatio-temporal variation of precipitation in the Qinling mountains from 1970 to 2100 based on CMIP6 data. Sustainability 2022, 14, 8654. [Google Scholar] [CrossRef]
- Guo, W.; Yu, L.; Huang, L.; He, N.; Chen, W.; Hong, F.; Wang, B.; Wang, H. Ecohydrological response to multi-model land use change at watershed scale. J. Hydrol. Reg. Stud. 2023, 49, 101517. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Chen, G.; Lin, Y.; Yang, A.; Cheng, J. Coupling PLUS–InVEST model for ecosystem service research in Yunnan Province, China. Sustainability 2022, 15, 271. [Google Scholar] [CrossRef]
- Lin, X.; Jiao, X.; Tian, Z.; Sun, Q.; Zhang, Y.; Zhang, P.; Ji, Z.; Chen, L.; Lun, F.; Chang, X.; et al. Projecting diversity conflicts of future land system pathways in China under anthropogenic and climate forcing. Earth’s Future 2023, 11, e2022EF003406. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Riahi, K.; Calvin, K.; Dellink, R.; Emmerling, J.; Fujimori, S.; Kc, S.; Kriegler, E.; O’Neill, B. The Shared Socio-economic Pathways: Trajectories for human development and global environmental change. Glob. Environ. Change 2017, 42, 148–152. [Google Scholar] [CrossRef]
- Rajwa-Kuligiewicz, A.; Bojarczuk, A. Streamflow response to catastrophic windthrow and forest recovery in subalpine spruce forest. J. Hydrol. 2024, 634, 131078. [Google Scholar] [CrossRef]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Miralles, D.G.; Beck, H.E.; Siegmund, J.F.; Alvarez-Garreton, C.; Verbist, K.; Garreaud, R.; Boisier, J.P.; Galleguillos, M. On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes. Hydrol. Earth Syst. Sci. 2024, 28, 1415–1439. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yao, H.; Zhang, D. Multi-timescale assessment of propagation thresholds from meteorological to hydrological drought. Sci. Total Environ. 2021, 765, 144232. [Google Scholar] [CrossRef]
- Wen, L.; Rogers, K.; Ling, J.; Saintilan, N. The impacts of river regulation and water diversion on the hydrological drought characteristics in the Lower Murrumbidgee River, Australia. J. Hydrol. 2011, 405, 382–391. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, W.; Feng, Y.; Mo, Q.; Su, Y.; Njoroge, B.; Qu, C.; Gan, X.; Liu, X. Soil organic carbon primarily control the soil moisture characteristic during forest restoration in subtropical China. Front. Ecol. Evol. 2022, 10, 1003532. [Google Scholar] [CrossRef]
- Zhang, L.; Nan, Z.; Yu, W.; Ge, Y. Hydrological responses to land-use change scenarios under constant and changed climatic conditions. Environ. Manag. 2016, 57, 412–431. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.-Y.; Li, D.-M. The analysis of the impact of land-use changes on flood exposure of Wuhan in Yangtze River Basin, China. Water Resour. Manag. 2014, 28, 2507–2522. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Qian, Z.; Wang, S.; Wang, M.; Liu, Z.; Li, H.; Xia, H.; Zhao, Z.; Li, T.; et al. Drought trend and its impact on ecosystem carbon sequestration in Lancang-Mekong River Basin. Acta Geogr. Sin. 2024, 79, 747–764. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Yang, S.; Wang, H.; Tong, J.; Bai, Y.; Alatalo, J.M.; Liu, G.; Fang, Z.; Zhang, F. Impacts of environment and human activity on grid-scale land cropping suitability and optimization of planting structure, measured based on the MaxEnt model. Sci. Total Environ. 2022, 836, 155356. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, Q.; Sun, P.; Fang, C. Assessment of impacts of climate change and human activities on runoff with HSPF for the Xinjiang River Basin. Trop. Geogr. 2014, 34, 293–301. [Google Scholar]
Data Type | Data Name | Year | Data Source |
---|---|---|---|
Basic data | A dataset of multi-period remote sensing monitoring of land use in China, CNLUCC | 2000, 2010, and 2020 | Chinese Academy of Sciences Center for Resources and Environmental Science and Data (https://www.resdc.cn/, accessed on 29 May 2025) |
hydrological station data | 2020 | Earth Resources Data Cloud Platform (www.gis5g.com, accessed on 29 May 2025) | |
Natural element | ASTER GDEM V3 (X1) | 2019 | Geospatial data cloud (https://www.gscloud.cn/, accessed on 29 May 2025) |
slope (X2) | Calculated from DEM slope | ||
Distance from water (X3) | 2019 | OpenStreetMap (https://www.openstreetmap.org, accessed on 29 May 2025) | |
Temperature/forecast (X4) | 2040, 2060, and 2080 | Chinese Academy of Sciences Center for Resources and Environmental Science and Data (https://www.resdc.cn/, accessed on 29 May 2025) | |
Precipitation/future precipitation (X5) | CMIP6 database (https://www.nccs.nasa.gov, accessed on 29 May 2025) | ||
Socioeconomic factor | Population/future population (X6) | 2019, 2040, 2060, and 2080 | Chinese Academy of Sciences Center for Resources and Environmental Science and Data (https://www.resdc.cn/, accessed on 29 May 2025) |
Scientific data bank (https://cstr.cn/31253.11.sciencedb.01683, accessed on 29 May 2025) | |||
GDP/future GDP (X7) | Chinese Academy of Sciences Center for Resources and Environmental Science and Data (https://www.resdc.cn/, accessed on 29 May 2025) | ||
Distance between government seat (city or county level) (X8 and X9) | 2019 | National Geographic Information Resources Catalog Service System (https://www.webmap.cn/, accessed on 29 May 2025) | |
Nature reserve (X10) | 2019 | OpenStreetMap (https://www.openstreetmap.org, accessed on 29 May 2025) | |
Distance to primary, secondary, and tertiary roads (X11, X12, and X13) | |||
Night light (X14) |
Pattern Name | Country | Spatial Resolution | Pattern Name | Country | Spatial Resolution |
---|---|---|---|---|---|
ACCESS-CM2 | Australia | 0.25° × 0.25° | EC-Earth3 | Europe | 0.25° × 0.25° |
ACCESS-ESM1–5 | IPSL-CM6A-LR | ||||
NorESM2-LM | Norway | MIROC6 | Japan | ||
NorESM2-MM | MIROC-ES2L | ||||
MPI-ESM1–2-HR | Germany | MRI-ESM2–0 | |||
MPI-ESM1–2-LR | GFDL-CM4 GFDL-ESM4 | United States | |||
INM-CM4–8 | Russia | CanESM5 | Canada |
Land Use Type | Field Weight | SSP245 Scenario | SSP585 Scenario | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | F | G | W | B | U | C | F | G | W | B | U | ||
C | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
F | 0.671 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
G | 0.008 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
W | 0.028 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
B | 0.001 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
U | 0.075 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Parameter Name | Physical Meaning | Optimal Value | Scope |
---|---|---|---|
V__CN2.mgt | Curve Number II | 89.211525 | 82.38~97.60 |
V__TRNSRCH.bsn | Transmission Loss to Deep Aquifer | 0.02 | 0.00~0.08 |
V__GWQMN.gw | Shallow Aquifer Return Flow Threshold | 491.41 | 328.87~986.91 |
R__CH_W2.rte | Main Channel Width | 1.20 | 0.43~1.47 |
V__ALPHA_BNK.rte | Bank Storage Baseflow Factor | 0.71 | 0.59~0.78 |
R__SOL_AWC(..).sol | Soil Available Water Capacity | −0.09 | −0.09~−0.07 |
R__CH_L1.sub | Main Channel Length | 2.43 | 1.54~2.51 |
V__SMTMP.bsn | Snow Melt Temperature | 12.63 | 8.81~17.79 |
V__CH_K1.sub | Tributary Channel Conductivity | 54.71 | 49.30~117.75 |
V__LAT_TTIME.hru | Lateral Flow Travel Time | 96.51 | 75.26~120.58 |
V__CH_N1.sub | Tributary Channel Manning’s n | 16.90 | 13.06~21.72 |
V__SLSUBBSN.hru | Slope Length | 100.99 | 98.51~125.17 |
V__CANMX.hru | Maximum Canopy Storage | 93.22 | 70.92~100.00 |
V__GW_REVAP.gw | Groundwater Revap Coefficient | 0.07 | 0.04~0.08 |
V__RAINHHMX(..).wgn | Maximum Half-Hour Rainfall | 0.39 | 0.18~0.43 |
V__ESCO.hru | Soil Evaporation Compensation | 1.23 | 1.12~1.56 |
V__ADJ_PKR.bsn | Sediment Peak Rate Adjustment | 103.15 | 88.84~106.15 |
Base Period (1970–2014) | Future Scenario | Recent Horizontal Year (2025–2040) | Intermediate Horizontal Year (2041–2060) | Long-Term Horizontal Year (2061–2100) | |||
---|---|---|---|---|---|---|---|
Actual Measured Value/mm | Predicted Value/mm | Rate of Change% | Predicted Value/mm | Rate of Change% | Predicted Value/mm | Rate of Change% | |
487.06 | SSP245 | 623.96 | 28.11% | 643.27 | 32.07% | 657.95 | 35.09% |
SSP585 | 630.59 | 29.47% | 666.05 | 36.75% | 686.28 | 40.90% | |
average value | 627.275 | 28.79% | 654.66 | 34.41% | 672.115 | 37.99% |
Base Period (1970–2014) | Future Scenario | Recent Horizontal Year (2025–2040) | Intermediate Horizontal Year (2041–2060) | Long-Term Horizontal Year (2061–2100) | |||
---|---|---|---|---|---|---|---|
Actual Measured Value/mm | Predicted Value/mm | Rate of Change% | Predicted Value/mm | Rate of Change% | Predicted Value/mm | Rate of Change% | |
3.76 | SSP245 | 5.11 | 35.90% | 5.77 | 53.45% | 6.74 | 79.25% |
SSP585 | 4.98 | 32.44% | 6.34 | 68.61% | 9.34 | 148.40% | |
average value | 5.05 | 34.17% | 6.06 | 61.03% | 8.04 | 113.825% |
Change Scenario | Climate Period | Land Use Time | Excluding Land Use Runoff (m3/s) | Account for Land Use Runoff (m3/s) | Rate of Change in Land Use Impact |
---|---|---|---|---|---|
SSP245 | 2025~2040 | 2040 | 628.40 | 572.38 | −8.91% |
SSP585 | 723.28 | 662.95 | −8.34% | ||
SSP245 | 2041~2060 | 2060 | 670.30 | 612.63 | −8.60% |
SSP585 | 764.30 | 701.66 | −8.20% | ||
SSP245 | 2061~2100 | 2080 | 634.17 | 571.81 | −9.83% |
SSP585 | 615.86 | 538.34 | −12.59% |
Change Scenario | Climate Period | Land Use Time | Number of Droughts Not Counted for Land Use | Number of Drought Occurrences Factored into Land Use | Average Duration Not Including Land Use | Average Duration of Land Use |
---|---|---|---|---|---|---|
SSP245 | 2025~2040 | 2040 | 6 | 6 | 10.4 | 11.3 |
SSP585 | 3 | 3 | 16.7 | 16.3 | ||
SSP245 | 2041~2060 | 2060 | 7 | 4 | 10.14 | 13.75 |
SSP585 | 5 | 4 | 9.2 | 9.25 | ||
SSP245 | 2061~2100 | 2080 | 11 | 14 | 11.3 | 10.43 |
SSP585 | 12 | 15 | 15.3 | 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Si, Z.; Liu, Y.; Wang, L.; Zhao, Y.; Wang, J. Runoff and Drought Responses to Land Use Change and CMIP6 Climate Projections. Water 2025, 17, 1696. https://doi.org/10.3390/w17111696
Liu T, Si Z, Liu Y, Wang L, Zhao Y, Wang J. Runoff and Drought Responses to Land Use Change and CMIP6 Climate Projections. Water. 2025; 17(11):1696. https://doi.org/10.3390/w17111696
Chicago/Turabian StyleLiu, Tao, Zhenjiang Si, Yan Liu, Longfei Wang, Yusu Zhao, and Jing Wang. 2025. "Runoff and Drought Responses to Land Use Change and CMIP6 Climate Projections" Water 17, no. 11: 1696. https://doi.org/10.3390/w17111696
APA StyleLiu, T., Si, Z., Liu, Y., Wang, L., Zhao, Y., & Wang, J. (2025). Runoff and Drought Responses to Land Use Change and CMIP6 Climate Projections. Water, 17(11), 1696. https://doi.org/10.3390/w17111696