Occurrence, Risk Assessment, and Removal of Emerging Contaminants in Aquatic Environment
1. Introduction
2. An Overview of Published Articles
3. Conclusions and Future Directions
Acknowledgments
Conflicts of Interest
List of Contributions
- Wang, J.; Sun, Z.; Li, J. Feasibility Study of Using Excess Sludge Fermentation Broth as a Co-Metabolic Carbon Source for 2,4,6-Trichlorophenol Degradation. Water 2023, 15, 4008. https://doi.org/10.3390/w15224008.
- Wang, J.; Li, S. Exploring 2,4,6-Trichlorophenol Degradation Characteristics and Functional Metabolic Gene Abundance Using Sludge Fermentation Broth as the Carbon Source. Water 2023, 15, 4279. https://doi.org/10.3390/w15244279.
- Lin, X.; Fang, H.; Wang, L.; Sun, D.; Zhao, G.; Xu, J. Photocatalytic Degradation of Sulfamethoxazole and Enrofloxacin in Water Using Electrospun Composite Photocatalytic Membrane. Water 2024, 16, 218. https://doi.org/10.3390/w16020218.
- Yang, Y.; Luan, J.; Nie, J.; Zhang, X.; Du, J.; Zhao, G.; Dong, L.; Fan, Y.; Cui, H.; Li, Y. Reprocessing and Resource Utilization of Landfill Sludge—A Case Study in a Chinese Megacity. Water 2024, 16, 468. https://doi.org/10.3390/w16030468.
- Wang, J.; Fang, H.; Li, S.; Yu, H. Delving into the Impacts of Different Easily Degradable Carbon Sources on the Degradation Characteristics of 2,4,6-Trichlorophenol and Microbial Community Properties. Water 2024, 16, 974. https://doi.org/10.3390/w16070974.
- Liu, Y.; Song, Y.; Li, H.; Yang, Z. Occurrence, Fate, and Mass Balance Analysis of Organophosphate Flame Retardants in a Municipal Wastewater Treatment Plant in Hunan Province, China. Water 2024, 16, 1462. https://doi.org/10.3390/w16111462.
- Lu, X.; Huang, S.; Liu, H.; Yang, F.; Zhang, T.; Wan, X. Research on Intelligent Chemical Dosing System for Phosphorus Removal in Wastewater Treatment Plants. Water 2024, 16, 1623. https://doi.org/10.3390/w16111623.
- Wu, L.; Zhang, J.; Chen, F.; Li, J.; Wang, W.; Li, S.; He, L. Review of Surfactant-Enhanced Remediation Technology for NAPL Pollution in Soil and Groundwater. Water 2024, 16, 2093. https://doi.org/10.3390/w16152093.
- Zhu, L.; Lin, X.; Di, Z.; Cheng, F.; Xu, J. Occurrence, Risks, and Removal Methods of Antibiotics in Urban Wastewater Treatment Systems: A Review. Water 2024, 16, 3428. https://doi.org/10.3390/w16233428.
- Hernández, B.; Duque-Sarango, P.; Tonón, M.D.; Abril-González, M.; Pinos-Vélez, V.; García-Sánchez, C.R.; Rodríguez, M.J. Determination of the Occurrence of Trihalomethanes in the Drinking Water Supply of the City of Cuenca, Ecuador. Water 2025, 17, 591. https://doi.org/10.3390/w17040591.
References
- Puri, M.; Gandhi, K.; Kumar, M.S. Emerging environmental contaminants: A global perspective on policies and regulations. J. Environ. Manag. 2023, 332, 117344. [Google Scholar] [CrossRef] [PubMed]
- Rathi, B.S.; Kumar, P.S.; Show, P.L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 2021, 409, 124413. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.E.; You, L.H.; Zhang, J.J.; Chen, H.T.; Nguyen, V.T.; He, Y.L.; Gin, K.Y.H. A comprehensive modelling approach to understanding the fate, transport and potential risks of emerging contaminants in a tropical reservoir. Water Res. 2021, 200, 117298. [Google Scholar] [CrossRef]
- Kundu, P.; Dutta, N.; Bhattacharya, S. Application of microalgae in wastewater treatment with special reference to emerging contaminants: A step towards sustainability. Front. Anal. Sci. 2024, 4, 1513153. [Google Scholar] [CrossRef]
- Reyes, N.; Geronimo, F.K.F.; Yano, K.A.V.; Guerra, H.B.; Kim, L.H. Pharmaceutical and Personal Care Products in Different Matrices: Occurrence, Pathways, and Treatment Processes. Water 2021, 13, 1159. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Wang, B.D.; Xin, M.; Lin, C.Y.; Gu, X.; Lian, M.S.; Li, Y. Comprehensive profiling of the distribution, risks and priority of pharmaceuticals and personal care products: A large-scale study from rivers to coastal seas. Water Res. 2023, 230, 119591. [Google Scholar] [CrossRef]
- Byrne, P.; Mayes, W.M.; James, A.L.; Comber, S.; Biles, E.; Riley, A.L.; Runkel, R.L. PFAS River Export Analysis Highlights the Urgent Need for Catchment-Scale Mass Loading Data. Environ. Sci. Technol. Lett. 2024, 11, 266–272. [Google Scholar] [CrossRef]
- Pétré, M.A.; Salk, K.R.; Stapleton, H.M.; Ferguson, P.L.; Tait, G.; Obenour, D.R.; Knappe, D.R.U.; Genereux, D.P. Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina. Sci. Total Environ. 2022, 831, 154763. [Google Scholar] [CrossRef]
- Liao, Z.; Jian, Y.; Lu, J.; Liu, Y.L.; Li, Q.Y.; Deng, X.Z.; Xu, Y.; Wang, Q.P.; Yang, Y.; Luo, Z.F. Distribution, migration patterns, and food chain human health risks of endocrine-disrupting chemicals in water, sediments, and fish in the Xiangjiang River. Sci. Total Environ. 2024, 930, 172484. [Google Scholar] [CrossRef]
- Sanchis, J.; Redondo-Hasselerharm, P.E.; Villanueva, C.M.; Farre, M.J. Non targeted screening of nitrogen containing disinfection by-products in formation potential tests of river water and subsequent monitoring in tap water samples. Chemosphere 2022, 303, 135087. [Google Scholar] [CrossRef]
- Wu, S.N.; Dong, H.Y.; Zhang, L.P.; Qiang, Z.M. Formation Characteristics and Risk Assessment of Disinfection By-Products in Drinking Water in Two of China’s Largest Basins: Yangtze River Basin Versus Yellow River Basin. ACS EST Water 2023, 4, 79–90. [Google Scholar] [CrossRef]
- Saharia, A.M.; Zhu, Z.; Aich, N.; Baalousha, M.; Atkinson, J.F. Modeling the transport of titanium dioxide nanomaterials from combined sewer overflows in an urban river. Sci. Total Environ. 2019, 696, 133904. [Google Scholar] [CrossRef]
- Bian, P.Y.; Liu, Y.X.; Zhao, K.H.; Hu, Y.; Zhang, J.; Kang, L.; Shen, W.B. Spatial variability of microplastic pollution on surface of rivers in a mountain-plain transitional area: A case study in the Chin Ling-Wei River Plain, China. Ecotoxicol. Environ. Saf. 2022, 232, 113298. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Ma, S.T.; Yang, Y.; Qi, Z.H.; Wang, Y.J.; Li, G.Y.; Tang, J.H.; Yu, Y.X. Organophosphate flame retardants, tetrabromobisphenol A, and their transformation products in sediment of e-waste dismantling areas and the flame-retardant production base. Ecotoxicol. Environ. Saf. 2021, 225, 112717. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Li, X.D.; Song, F.H. Emerging Contaminants in Natural and Engineered Water Environments: Environmental Behavior, Ecological Effects and Control Strategies. Water 2025, 17, 1329. [Google Scholar] [CrossRef]
- Yang, J.Y.; Zhang, X.; Liu, Z.S.; Yang, C.X.; Li, S.; Zhou, H.Y.; Gao, Z.X. The impact of emerging contaminants exposure on human health effects: A review of organoid assessment models. Chem. Eng. J. 2024, 498, 155882. [Google Scholar] [CrossRef]
- Boro, D.; Chirania, M.; Verma, A.K.; Chettri, D.; Verma, A.K. Comprehensive approaches to managing emerging contaminants in wastewater: Identification, sources, monitoring and remediation. Environ. Monit. Assess. 2025, 197, 456. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Azevedo, R.S.A.; da Silva, J.D., Jr.; Teixeira, L.S.G.; dos Santos, I.F.; dos Santos, W.N.L.; Queiroz, A.F.S.; de Oliveira, O.M.C.; Guarieiro, L.L.N.; dos Anjos, J.P.; et al. Emerging contaminants—General aspects: Sources, substances involved, and quantification. Appl. Spectrosc. Rev. 2024, 59, 632–651. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Li, J.X.; Jiao, S.P.; Li, Y.; Zhou, Y.; Zhang, X.; Maryam, B.; Liu, X.H. Microfluidic sensors for the detection of emerging contaminants in water: A review. Sci. Total Environ. 2024, 929, 172734. [Google Scholar] [CrossRef]
- Auersperger, P.; Korosa, A.; Mali, N.; Jamnik, B. Passive Sampling with Active Carbon Fibres in the Determination of Organic Pollutants in Groundwater. Water 2022, 14, 585. [Google Scholar] [CrossRef]
- Paszkiewicz, M.; Godlewska, K.; Lis, H.; Caban, M.; Bia, A.; Stepnowski, P. Advances in suspect screening and non-target analysis of polar emerging contaminants in the environmental monitoring. TrAC Trends Anal. Chem. 2022, 154, 116671. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Shao, B.; Xu, J. Occurrence, Risk Assessment, and Removal of Emerging Contaminants in Aquatic Environment. Water 2025, 17, 1657. https://doi.org/10.3390/w17111657
Lin X, Shao B, Xu J. Occurrence, Risk Assessment, and Removal of Emerging Contaminants in Aquatic Environment. Water. 2025; 17(11):1657. https://doi.org/10.3390/w17111657
Chicago/Turabian StyleLin, Xiaohu, Binbin Shao, and Jingcheng Xu. 2025. "Occurrence, Risk Assessment, and Removal of Emerging Contaminants in Aquatic Environment" Water 17, no. 11: 1657. https://doi.org/10.3390/w17111657
APA StyleLin, X., Shao, B., & Xu, J. (2025). Occurrence, Risk Assessment, and Removal of Emerging Contaminants in Aquatic Environment. Water, 17(11), 1657. https://doi.org/10.3390/w17111657