Impact of the Anaerobic Feeding Strategy on the Formation and Stability of Aerobic Granular Sludge Treating Dairy Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactor Set-Up and Operating Conditions
2.2. Analyses
2.2.1. In Situ Cycle Measurements
2.2.2. Industrial Dairy Wastewater
3. Results and Discussion
3.1. Period 1: Development of AGS Using a Slow Anaerobic Mixed Feeding Strategy
3.2. Period 2: Comparison of Feeding Strategies for Stable Granulation
3.3. The Potential Role of Thiothrix Species in C- and P-Cycling
3.4. Implications for AGS Formation in Industrial Activated Sludge Plants
3.5. Outlook and Perspectives in View of a Circular Water Economy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Vydehi, P.; Ravindran, G.; Shyamala, G.; Ramesh, S. Aerobic granular sludge-based wastewater treatment: Current trends, formation, applications, granulation, efficiency, and bottlenecks. J. Water Process Eng. 2025, 70, 107075. [Google Scholar] [CrossRef]
- van Dijk, E.J.H.; Haaksman, V.A.; van Loosdrecht, M.C.M.; Pronk, M. On the mechanisms for aerobic granulation—model based evaluation. Water Res. 2022, 216, 118365. [Google Scholar] [CrossRef] [PubMed]
- Haaksman, V.A.; Schouteren, M.; van Loosdrecht, M.C.M.; Pronk, M. Impact of the anaerobic feeding mode on substrate distribution in aerobic granular sludge. Water Res. 2023, 233, 119803. [Google Scholar] [CrossRef] [PubMed]
- Pronk, M.; de Kreuk, M.K.; de Bruin, B.; Kamminga, P.; Kleerebezem, R.; van Loosdrecht, M.C.M. Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res. 2015, 84, 207–217. [Google Scholar] [CrossRef]
- de Kreuk, M.; van Loosdrecht, M.C.M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci. Technol. 2004, 49, 9–17. [Google Scholar] [CrossRef]
- Pronk, M.; Abbas, B.; Al-Zuhairy, S.H.K.; Kraan, R.; Kleerebezem, R.; van Loosdrecht, M.C.M. Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge. Appl. Microbiol. Biotechnol. 2015, 99, 5257–5268. [Google Scholar] [CrossRef]
- Zhang, C.; Guisasola, A.; Baeza, J.A. A critical review on the effect of different carbon sources on EBPR: Revaluation of performance and applications. Chem. Eng. J. 2025, 509, 161083. [Google Scholar] [CrossRef]
- Iorhemen, O.T.; Liu, Y. Effect of feeding strategy and organic loading rate on the formation and stability of aerobic granular sludge. J. Water Process. Eng. 2021, 39, 101709. [Google Scholar] [CrossRef]
- Sun, S.; Chen, Z.; Wang, X.; Wang, S.; Liu, L.; Yan, P.; Chen, Y.; Fang, F.; Guo, J. Effect of different feeding strategies on performance of aerobic granular sludge: From perspective of extracellular polymeric substances and microorganisms. J. Environ. Chem. Eng. 2023, 12, 111688. [Google Scholar] [CrossRef]
- Franca, R.D.G.; Pinheiro, H.M.; van Loosdrecht, M.C.; Lourenço, N.D. Stability of aerobic granules during long-term bioreactor operation. Biotechnol. Adv. 2018, 36, 228–246. [Google Scholar] [CrossRef]
- Tsertou, E.; Caluwé, M.; Goossens, K.; Dobbeleers, T.; Dockx, L.; Poelmans, S.; Seguel Suazo, K.; Dries, J. Is building up substrate during anaerobic feeding necessary for granulation? Water Sci. Technol. 2022, 86, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Caluwé, M.; Goossens, K.; Seguel Suazo, K.; Tsertou, E.; Dries, J. Granulation strategies applied to industrial wastewater treatment: From lab to full-scale. Water Sci. Technol. 2022, 85, 2761–2771. [Google Scholar] [CrossRef] [PubMed]
- Stes, H.; Aerts, S.; Caluwe, M.; D'Aes, J.; De Vleesschauwer, F.; Dobbeleers, T.; De Langhe, P.; Kiekens, F.; Dries, J. Influence of mixed feeding rate in a conventional SBR on biological P-removal and granule stability while treating different industrial effluents. Water Sci. Technol. 2019, 79, 645–655. [Google Scholar] [CrossRef]
- Seguel Suazo, K.; Dobbeleers, T.; Dries, J. Bacterial community and filamentous population of industrial wastewater treatment plants in Belgium. Appl. Microbiol. Biotechnol. 2024, 108, 43. [Google Scholar] [CrossRef]
- Henriet, O.; Meunier, C.; Henry, P.; Mahillon, J. Filamentous bulking caused by Thiothrix species is efficiently controlled in full-scale wastewater treatment plants by implementing a sludge densification strategy. Sci. Rep. 2017, 7, 1430. [Google Scholar] [CrossRef]
- Meunier, C.; Henriet, O.; Schoonbroodt, B.; Boeur, J.-M.; Mahillon, J.; Henry, P. Influence of feeding pattern and hydraulic selection pressure to control filamentous bulking in biological treatment of dairy wastewaters. Bioresour. Technol. 2016, 221, 300–309. [Google Scholar] [CrossRef]
- Slavov, A.K. Dairy Wastewaters—General Characteristics and Treatment Possibilities—A Review. Food Technol. Biotechnol. 2017, 55, 14–28. [Google Scholar] [CrossRef]
- De Vleeschauwer, F.; Dries, J. Full dynamic control of dairy wastewater treatment by aerobic granular sludge using electric conductivity and oxygen uptake rate. Water Sci. Technol. 2023, 88, 2707–2718. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Nierychlo, M.; Andersen, K.S.; Xu, Y.; Green, N.; Jiang, C.; Albertsen, M.; Dueholm, M.S.; Nielsen, P.H. MiDAS 3: An ecosystem-specific reference database, taxonomy and knowledge platform for activated sludge and anaerobic digesters reveals species-level microbiome composition of activated sludge. Water Res. 2020, 182, 115955. [Google Scholar] [CrossRef]
- Tabelini, D.B.; Lima, J.P.P.; Borges, A.C.; Aguiar, A. A review on the characteristics and methods of dairy industry wastewater treatment in the state of Minas Gerais, Brazil. J. Water Process Eng. 2023, 53, 103779. [Google Scholar] [CrossRef]
- Muszyński, A.; Załęska-Radziwiłł, M. Influence of the bioreactor operating mode and wastewater composition on the structure of microbial communities in activated sludge and abundance and activity of polyphosphate and glycogen accumulating organisms. Desalination Water Treat. 2023, 301, 91–105. [Google Scholar] [CrossRef]
- Ruiz-Haddad, L.; Ali, M.; Pronk, M.; van Loosdrecht, M.C.M.; Saikaly, P.E. Demystifying polyphosphate-accumulating organisms relevant to wastewater treatment: A review of their phylogeny, metabolism, and detection. Environ. Sci. Ecotechnol. 2024, 21, 100387. [Google Scholar] [CrossRef] [PubMed]
- Diaz, R.; Mackey, B.; Chadalavada, S.; Kainthola, J.; Heck, P.; Goel, R. Enhanced Bio-P removal: Past, present, and future—A comprehensive review. Chemosphere 2022, 309, 136518. [Google Scholar] [CrossRef]
- Rubio-Rincón, F.J.; Welles, L.; Lopez-Vazquez, C.M.; Nierychlo, M.; Abbas, B.; Geleijnse, M.; Nielsen, P.H.; van Loosdrecht, M.C.M.; Brdjanovic, D. Long-term effects of sulphide on the enhanced biological removal of phosphorus: The symbiotic role of Thiothrix caldifontis. Water Res. 2017, 116, 53–64. [Google Scholar] [CrossRef]
- Chen, L.; Deng, X.; Xie, X.; Wang, K.; Chen, H.; Cen, S.; Huang, F.; Wang, C.; Li, Y.; Wei, C.; et al. Candidatus Thiothrix phosphatis SCUT-1: A novel polyphosphate-accumulating organism abundant in the enhanced biological phosphorus removal system. Water Res. 2024, 267, 122479. [Google Scholar] [CrossRef]
- Guo, G.; Ekama, G.A.; Wang, Y.; Dai, J.; Biswal, B.K.; Chen, G.; Wu, D. Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review. Bioresour. Technol. 2019, 285, 121303. [Google Scholar] [CrossRef]
- Seguel Suazo, K.; Dobbeleers, T.; Dries, J. The impact of reduced sulfur compounds on aerobic granular sludge formation and biological phosphorus removal. Biochem. Eng. J. 2024, 206, 109288. [Google Scholar] [CrossRef]
- Schwarzenbeck, N.; Borges, J.M.; Wilderer, P.A. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl. Microbiol. Biotechnol. 2004, 66, 711–718. [Google Scholar] [CrossRef]
- Jenkins, D.; Richard, M.G.; Daigger, G.T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Seviour, R.J.; Nielsen, P.H. Microbial Communities in Activated Sludge Plants. In Microbial Ecology of Activated Sludge; IWA Publishing: London, UK, 2010; pp. 95–126. [Google Scholar]
- Xu, P.; Xie, Z.; Shi, L.; Yan, X.; Fu, Z.; Ma, J.; Zhang, W.; Wang, H.; Xu, B.; He, Q. Distinct responses of aerobic granular sludge sequencing batch reactors to nitrogen and phosphorus deficient conditions. Sci. Total Environ. 2022, 834, 155369. [Google Scholar] [CrossRef]
- Matsuura, N.; Masakke, Y.; Karthikeyan, S.; Kanazawa, S.; Honda, R.; Yamamoto-Ikemoto, R.; Konstantinidis, K.T. Metagenomic insights into the effect of sulfate on enhanced biological phosphorus removal. Appl. Microbiol. Biotechnol. 2021, 105, 2181–2193. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Zeng, W.; Wang, B.; Fan, Z.; Peng, Y. New insights in the competition of polyphosphate-accumulating organisms and glycogen-accumulating organisms under glycogen accumulating metabolism with trace Poly-P using flow cytometry. Chem. Eng. J. 2020, 385, 123915. [Google Scholar] [CrossRef]
- Wang, G.; Huang, X.; Wang, S.; Yang, F.; Sun, S.; Yan, P.; Chen, Y.; Fang, F.; Guo, J. Effect of food-to-microorganisms ratio on aerobic granular sludge settleability: Microbial community, potential roles and sequential responses of extracellular proteins and polysaccharides. J. Environ. Manag. 2023, 345, 118814. [Google Scholar] [CrossRef]
- Martins, A.M.P.; Pagilla, K.; Heijnen, J.J.; van Loosdrecht, M.C.M. Filamentous bulking sludge—A critical review. Water Res. 2004, 38, 793–817. [Google Scholar] [CrossRef]
- de Graaff, D.R.; van Loosdrecht, M.C.M.; Pronk, M. Stable granulation of seawater-adapted aerobic granular sludge with filamentous Thiothrix bacteria. Water Res. 2020, 175, 115683. [Google Scholar] [CrossRef]
- Haaksman, V.A.; Mirghorayshi, M.; van Loosdrecht, M.C.M.; Pronk, M. Impact of aerobic availability of readily biodegradable COD on morphological stability of aerobic granular sludge. Water Res. 2020, 187, 116402. [Google Scholar] [CrossRef]
- Iorhemen, O.T.; Ukaigwe, S.; Dang, H.; Liu, Y. Phosphorus Removal from Aerobic Granular Sludge: Proliferation of Polyphosphate-Accumulating Organisms (PAOs) under Different Feeding Strategies. Processes 2022, 10, 1399. [Google Scholar] [CrossRef]
- Cheng, L.; Wei, M.; Guo, G.; Hu, Q.; Li, B.; Jiang, Y.; Hu, Z. Effects of feeding mode on the formation and stability of aerobic granular sludge under combined antibiotic stress. Chem. Eng. J. 2023, 475, 145996. [Google Scholar] [CrossRef]
- Areskoug, T.; Mendoza, J.A.; Modin, O.; Lorick, D.; Tumlin, S.; Wilén, B.-M. Sustainable carbon management in aerobic granular sludge for municipal wastewater treatment. Bioresour. Technol. 2025, 431, 132624. [Google Scholar] [CrossRef]
- Kehrein, P.; van Loosdrecht, M.; Osseweijer, P.; Posada, J. Exploring resource recovery potentials for the aerobic granular sludge process by mass and energy balances—Energy, biopolymer and phosphorous recovery from municipal wastewater. Environ. Sci. Water Res. Technol. 2020, 6, 2164–2179. [Google Scholar] [CrossRef]
- Li, J.; Hao, X.; Persiani, R.; van Loosdrecht, M.C.M.; Lin, Y. Reinvestigating the Composition of Alginate-Like Exopolymers Extracted from Activated Sludge. ACS ES & T Water 2024, 4, 3007–3015. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, S.; Li, C.; Cai, Y.-A.; Xiong, X.; Tang, Y.; Shao, S.; Wang, C.; Ng, H.Y. Unraveling the mechanism of fouling mitigation in AGS-MBR system: From AGS properties to foulant interactions. Water Res. 2025, 279, 123403. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Jiang, J.; Yang, B.; Wang, B.; Bin, L.; Chen, W.; Li, P.; Huang, S.; Tang, B. Insights into the formation and development of membrane fouling in a continuous flow aerobic granular sludge membrane bioreactor. Chem. Eng. J. 2025, 505, 159365. [Google Scholar] [CrossRef]
- Tsertou, E.; Caluwé, M.; Goossens, K.; Seguel Suazo, K.; Dries, J. Performance of an aerobic granular sludge membrane filtration in a full-scale industrial plant. Water Sci. Technol. 2023, 87, 3002–3016. [Google Scholar] [CrossRef]
(a) SBR_A (period 1) and SBR_SlowF (period 2) | ||||||
Anaerobic mixed feed | Anaerobic reaction | Aerobic reaction | Anoxic reaction | Aerobic refresh | Settling & discharge | |
90 | 15 | 150 | 60 | 5 | 30 + 10 | |
(b) SBR_StaticF (period 2) | ||||||
Anaerobic static feed | Anaerobic mixed feed | Anaerobic reaction | Aerobic reaction | Anoxic reaction | Aerobic refresh | Settling & discharge |
45 | 45 | 15 | 150 | 60 | 5 | 30 + 10 |
Period | COD (mg/L) | NH4-N (mg/L) | PO4-P (mg/L) | COD/N | COD/P |
---|---|---|---|---|---|
1 (n = 19) | 1482 ± 410 | 55 ± 19 | 5 ± 2 | 28 ± 8 | 310 ± 98 |
2 (n = 16) | 1315 ± 423 | 53 ± 16 | 11 ± 3 | 26 ± 9 | 144 ± 102 |
SBR | Active OLR (gCOD/L·d) | Effluent Quality (mg/L) | Removal Efficiency (%) | |||||
---|---|---|---|---|---|---|---|---|
Anaerobic Reaction Step | Total SBR Cycle | COD | TN | PO4-P | COD | TN | PO4-P | |
SlowF | 1.8 ± 0.6 | 0.6 ± 0.2 | 59 ± 31 | 3.2 ± 1.1 | 1.4 ± 0.3 | 96 ± 2 | 89 ± 14 | 86 ± 4 |
StaticF | 3.2 ± 1.0 | 0.7 ± 0.2 | 60 ± 26 | 2.9 ± 1.5 | 1.7 ± 0.5 | 95 ± 2 | 90 ± 13 | 84 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobbeleers, T.; Feyaerts, M.; Dries, J. Impact of the Anaerobic Feeding Strategy on the Formation and Stability of Aerobic Granular Sludge Treating Dairy Wastewater. Water 2025, 17, 1648. https://doi.org/10.3390/w17111648
Dobbeleers T, Feyaerts M, Dries J. Impact of the Anaerobic Feeding Strategy on the Formation and Stability of Aerobic Granular Sludge Treating Dairy Wastewater. Water. 2025; 17(11):1648. https://doi.org/10.3390/w17111648
Chicago/Turabian StyleDobbeleers, Thomas, Marc Feyaerts, and Jan Dries. 2025. "Impact of the Anaerobic Feeding Strategy on the Formation and Stability of Aerobic Granular Sludge Treating Dairy Wastewater" Water 17, no. 11: 1648. https://doi.org/10.3390/w17111648
APA StyleDobbeleers, T., Feyaerts, M., & Dries, J. (2025). Impact of the Anaerobic Feeding Strategy on the Formation and Stability of Aerobic Granular Sludge Treating Dairy Wastewater. Water, 17(11), 1648. https://doi.org/10.3390/w17111648