Assessing the Sustainability of Instream Flow Under Climate Change Considering Reservoir Operation in a Multi-Dam Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Setting
2.2.1. Hydrological Modeling
2.2.2. Climate Change Scenario
2.2.3. Dam Operation Scenario
2.3. Sustainability Index
2.4. Temporal Resolution
3. Results and Discussion
3.1. Model Preparation
3.2. Group-Level Evaluation of Sustainability Index
3.3. Probabilistic Approach to Evaluate the Sustainability Index
3.3.1. Probability Distribution Fitting
3.3.2. Evaluation of Deficit Events
- —
- S1 (SI < I1): low sustainability with high vulnerability to instream flow deficits.
- —
- S2 (I1 ≤ SI < I2): main occurrence zone where the system performance is most evident.
- —
- S3 (SI ≥ I2): high sustainability and long-term system reliability.
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- National Research Council, Division on Earth, Life Studies, Water Science, Technology Board, Committee on Review of Methods for Establishing Instream Flows for Texas Rivers. The Science of Instream Flows: A Review of the Texas Instream Flow Program; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Sutter, P.S. The world with us: The state of American environmental history. J. Am. Hist. 2013, 100, 94–119. [Google Scholar] [CrossRef]
- Acreman, M.C.; Dunbar, M.J. Defining environmental river flow requirements—A review. Hydrol. Earth Syst. Sci. 2004, 8, 861–876. [Google Scholar] [CrossRef]
- Richter, B.; Baumgartner, J.; Wigington, R.; Braun, D. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef]
- Arthington, A.H.; Bunn, S.E.; Poff, N.L.; Naiman, R.J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 2006, 16, 1311–1318. [Google Scholar] [CrossRef]
- Pahl-Wostl, C.; Holtz, G.; Kastens, B.; Knieper, C. Analyzing complex water governance regimes: The management and transition framework. Environ. Sci. Policy 2010, 13, 571–581. [Google Scholar] [CrossRef]
- Hirji, R.; Davis, R. Environmental Flows in Water Resources Policies, Plans, and Projects: Findings and Recommendations; World Bank Publications: Washington, DC, USA, 2009. [Google Scholar]
- Poff, N.L.; Zimmerman, J.K.H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- Postel, S.; Richter, B. Rivers for Life: Managing Water for People and Nature; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Kang, M.; Wang, Y.; Zhu, Y.; He, F.; Jiang, S.; Yang, M. Optimizing the structure of food production in China to improve the sustainability of water resources. Sci. Total. Environ. 2023, 900, 165750. [Google Scholar] [CrossRef]
- Gilby, B.L.; Olds, A.D.; Brown, C.J.; Connolly, R.M.; Henderson, C.J.; Maxwell, P.S.; Schlacher, T.A. Applying systematic conservation planning to improve the allocation of restoration actions at multiple spatial scales. Restor. Ecol. 2021, 29, e13403. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, D.-H.; You, K.-A.; Chang, K.-H.; Kim, J.-H. The Concept and Assessment of River Continuity: Review of Global Trends for Domestic Application. Korean J. Ecol. Environ. 2024, 57, 169–188. [Google Scholar] [CrossRef]
- Kim, Y.-O.; Eum, H.-I.; Lee, E.-G.; Ko, I.H. Optimizing operational policies of a Korean multireservoir system using sampling stochastic dynamic programming with ensemble streamflow prediction. J. Water Resour. Plan. Manag. 2007, 133, 4–14. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar] [CrossRef]
- White, H.; Caplat, P.; Emmerson, M.; Yearsley, J. Predicting future stability of ecosystem functioning under climate change. Agric. Ecosyst. Environ. 2021, 320, 107600. [Google Scholar] [CrossRef]
- Li, J.; Chou, J.; Zhao, W.; Xu, Y.; Hao, Y.; Li, Y. Future drought and flood vulnerability and risk prediction of China’s agroecosystem under climate change. Sustainability 2022, 14, 10069. [Google Scholar] [CrossRef]
- Siddha, S.; Sahu, P. Impact of climate change on the river ecosystem. In Ecological Significance of River Ecosystems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 79–104. [Google Scholar] [CrossRef]
- Abbas, S.A.; Xuan, Y.; Bailey, R.T. Assessing climate change impact on water resources in water demand scenarios using SWAT-MODFLOW-WEAP. Hydrology 2022, 9, 164. [Google Scholar] [CrossRef]
- Ware, H.H.; Chang, S.W.; Lee, J.E.; Chung, I.-M. Evaluating the Hydrological Impact of Reservoir Operation on Downstream Flow of Seomjin River Basin: SWAT Model Approach. Water 2024, 16, 3584. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, C.; Fu, G.; Wang, B.; Bao, Z.; Zheng, H. Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China. Water Resour. Manag. 2012, 26, 2199–2217. [Google Scholar] [CrossRef]
- Kiprotich, P.; Wei, X.; Zhang, Z.; Ngigi, T.; Qiu, F.; Wang, L. Assessing the impact of land use and climate change on surface runoff response using gridded observations and swat+. Hydrology 2021, 8, 48. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Zhou, S.; Chen, F. Quantifying the effects of land surface change on annual runoff considering precipitation variability by SWAT. Water Resour. Manag. 2016, 30, 1071–1084. [Google Scholar] [CrossRef]
- Choi, S.J.; Kang, S.K.; Lee, D.R. Evaluation of Water Supply Stability According to Changes in Instream Flow. J. Korean Soc. Hazard Mitig. 2021, 21, 369–375. [Google Scholar] [CrossRef]
- Jeong, G.; Kang, D. Hydro-economic water allocation model for water supply risk analysis: A case study of Namhan River Basin, South Korea. Sustainability 2021, 13, 6005. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Wu, D.; Lee, J.-H.; Kim, J.-S.; Park, S.-Y. Evaluation and securing of ecological flow by linking fish growth scenarios and basin water budget analysis. Ecol. Indic. 2024, 158, 111468. [Google Scholar] [CrossRef]
- Meehl, G.A.; Washington, W.M.; Arblaster, J.M.; Hu, A.; Teng, H.; Tebaldi, C.; Sanderson, B.N.; Lamarque, J.-F.; Conley, A.; Strand, W.G.; et al. Climate system response to external forcings and climate change projections in CCSM4. J. Clim. 2012, 25, 3661–3683. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wires Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Frame, D.J.; Rosier, S.M.; Noy, I.; Harrington, L.J.; Carey-Smith, T.; Sparrow, S.N.; Stone, D.A.; Dean, S.M. Climate change attribution and the economic costs of extreme weather events: A study on damages from extreme rainfall and drought. Clim. Chang. 2020, 162, 781–797. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef]
- Loucks, D.P. Quantifying trends in system sustainability. Hydrol. Sci. J. 1997, 42, 513–530. [Google Scholar] [CrossRef]
- Sandoval-Solis, S.; McKinney, D.C.; Loucks, D.P. Sustainability index for water resources planning and management. J. Water Resour. Plan. Manag. 2011, 137, 381–390. [Google Scholar] [CrossRef]
- Wang, B.; Jhun, J.-G.; Moon, B.-K. Variability and singularity of Seoul, South Korea, rainy season (1778–2004). J. Clim. 2007, 20, 2572–2580. [Google Scholar] [CrossRef]
- Choi, Y.; Cho, S.J. Climate Variability and Agricultural Outputs in North Korea: An Econometric Analysis of Rice and Corn Yields. J. Agric. Life Environ. Sci. 2024, 36, 23–36. [Google Scholar]
- Kim, W.; Choi, S.; Kang, S.; Woo, S. Assessment of Future Water Security under Climate Change: Practical Water Allocation Scenarios in a Drought-Prone Watershed in South Korea. Water 2024, 16, 2933. [Google Scholar] [CrossRef]
- Zamani, R.; Akhond-Ali, A.M.; Ahmadianfar, I.; Elagib, N.A. Optimal reservoir operation under climate change based on a probabilistic approach. J. Hydrol. Eng. 2017, 22, 05017019. [Google Scholar] [CrossRef]
- McMahon, T.A.; Pegram, G.G.; Vogel, R.M.; Peel, M.C. Revisiting reservoir storage–yield relationships using a global streamflow database. Adv. Water Resour. 2007, 30, 1858–1872. [Google Scholar] [CrossRef]
- Sunil, A.; Singh, R.; Molakala, M. Adaptive (re)operations facilitate environmental flow maintenance downstream of multi-purpose reservoirs. J. Hydrol. 2024, 644, 132123. [Google Scholar] [CrossRef]
- Homa, E.S.; Vogel, R.M.; Smith, M.P.; Apse, C.D.; Huber-Lee, A.; Sieber, J. An optimization approach for balancing human and ecological flow needs. In Impacts of Global Climate Change, Proceedings of the EWRI 2005 World Water and Environmental Resources Congress, ASCE, Anchorage, Alaska, 15–19 May 2005; Academia.edu: San Francisco, CA, USA, 2005; pp. 1–12. [Google Scholar]
Model | Institute |
---|---|
ACCESS-CM2 | Commonwealth Scientific and Industrial Research Organization (Australia) |
ACCESS-ESM1-5 | Commonwealth Scientific and Industrial Research Organization (Australia) |
CanESM5 | Canadian Centre for Climate Modeling and Analysis (Canada) |
CNRM-CM6-1 | Centre National de Recherches Meteorologiques (France) |
CNRM-ESM2-1 | Centre National de Recherches Meteorologiques (France) |
GFDL-ESM4 | Geophysical Fluid Dynamics Laboratory (USA) |
INM-CM4-8 | Institute for Numerical Mathematics (Russia) |
INM-CM5-0 | Institute for Numerical Mathematics (Russia) |
IPSL-CM6A-LR | Institute Pierre-Simon Laplace (France) |
MIROC6 | Japan Agency for Marine-Earth Science and Technology/Atmosphere and Ocean Research Institute/National Institute for Environmental Studies/RIKEN Center for Computational Science (Japan) |
MPI-ESM1-2-HR | Max Planck Institute for Meteorology (Germany) |
MPI-ESM1-2-LR | Max Planck Institute for Meteorology (Germany) |
MRI-ESM2-0 | Meteorological Research Institute (Japan) |
NorESM2-LM | NorESM Climate modeling Consortium consisting of CICERO (Norway) |
UKESM1-0-LL | Met Office Hadley Centre (UK) |
Index | Definition | Unit |
---|---|---|
RX1day | Monthly maximum 1-day precipitation | mm |
RX5day | Monthly maximum consecutive 5-day precipitation | mm |
SDII | Annual total precipitation divided by the number of wet days (PRCP ≥ 1.0 mm) in the year | mm/day |
R10 | Annual count of days when precipitation ≥ 10 mm | Days |
R20 | Annual count of days when precipitation ≥ 20 mm | Days |
R25 | Annual count of days when precipitation ≥ 25 mm | Days |
CDD | Maximum number of consecutive days with RR < 1 mm | Days |
CWD | Maximum number of consecutive days with RR ≥ 1 mm | Days |
R95p | Annual total precipitation from days > 95th percentile | mm |
R99p | Annual total precipitation from days > 99th percentile | mm |
PRCPTOT | Annual total precipitation in wet days (RR ≥ 1 mm) | mm |
Category | Deficit | Firm | |||||
---|---|---|---|---|---|---|---|
Lower Boundary | Mode | Upper Boundary | Lower Boundary | Mode | Upper Boundary | ||
Hydrological Stage | Dry | 0.898 | 0.975 | 0.994 | 0.874 | 0.970 | 0.992 |
Wet | 0.892 | 0.983 | 0.995 | 0.899 | 0.979 | 0.994 | |
Farming season | Off | 0.884 | 0.969 | 0.992 | 0.873 | 0.971 | 0.992 |
Busy | 0.892 | 0.979 | 0.994 | 0.898 | 0.975 | 0.994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.; Choi, S.; Kang, S.; Woo, S. Assessing the Sustainability of Instream Flow Under Climate Change Considering Reservoir Operation in a Multi-Dam Watershed. Water 2025, 17, 1610. https://doi.org/10.3390/w17111610
Kim W, Choi S, Kang S, Woo S. Assessing the Sustainability of Instream Flow Under Climate Change Considering Reservoir Operation in a Multi-Dam Watershed. Water. 2025; 17(11):1610. https://doi.org/10.3390/w17111610
Chicago/Turabian StyleKim, Wonjin, Sijung Choi, Seongkyu Kang, and Soyoung Woo. 2025. "Assessing the Sustainability of Instream Flow Under Climate Change Considering Reservoir Operation in a Multi-Dam Watershed" Water 17, no. 11: 1610. https://doi.org/10.3390/w17111610
APA StyleKim, W., Choi, S., Kang, S., & Woo, S. (2025). Assessing the Sustainability of Instream Flow Under Climate Change Considering Reservoir Operation in a Multi-Dam Watershed. Water, 17(11), 1610. https://doi.org/10.3390/w17111610