New Efficient Parameter and Respective Units for Measurement of Light Irradiation Availability in Microalgae Photobioreactors
Abstract
1. Introduction
2. Theoretical Aspects
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bang Truong, H.; Nguyen, T.H.T.; Ba Tran, Q.; Son Lam, V.; Thao Nguyen Nguyen, T.; Cuong Nguyen, X. Algae-constructed wetland integrated system for wastewater treatment: A review. Bioresour. Technol. 2024, 406, 131003. [Google Scholar] [CrossRef] [PubMed]
- Phyu, K.; Zhi, S.; Graham, D.W.; Cao, Y.; Xu, X.; Liu, J.; Wang, H.; Zhang, K. Impact of indigenous vs. cultivated microalgae strains on biomass accumulation, microbial community composition, and nutrient removal in algae-based dairy wastewater treatment. Bioresour. Technol. 2025, 426, 132349. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, L.; Qiang, X.; Song, Y.; Gu, W.; Ma, Z.; Wang, G. Design, construction and application of algae-bacteria synergistic system for treating wastewater. J. Environ. Manag. 2024, 366, 121720. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, S.; Chou, S.K.; Cao, S.; Wu, C.; Zhou, Z. An updated comprehensive techno-economic analysis of algae biodiesel. Bioresour. Technol. 2013, 145, 150–156. [Google Scholar] [CrossRef]
- Du, Y.; Schuur, B.; Samorì, C.; Tagliavini, E.; Brilman, D.W.F. Secondary amines as switchable solvents for lipid extraction from non-broken microalgae. Bioresour. Technol. 2013, 149, 253–260. [Google Scholar] [CrossRef]
- Samorì, C.; López Barreiro, D.; Vet, R.; Pezzolesi, L.; Brilman, D.W.F.; Galletti, P.; Tagliavini, E. Effective lipid extraction from algae cultures using switchable solvents. Green Chem. 2013, 15, 353–356. [Google Scholar] [CrossRef]
- Lo, C.; Wijffels, R.H.; Eppink, M.H.M. Lipid recovery from deep eutectic solvents by polar antisolvents. Food Bioprod. Process. 2024, 143, 21–27. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, X.; Du, W.; Cai, Y.; Yang, Z.; Yin, Y.; Wakisaka, M.; Wang, J.; Zhou, Z.; Liu, D.; et al. Leveraging microalgae as a sustainable ingredient for meat analogues. Food Chem. 2024, 450, 139360. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Caetano, P.A.; Jacob-Lopes, E.; Zepka, L.Q.; de Rosso, V.V. Alternative green solvents associated with ultrasound-assisted extraction: A green chemistry approach for the extraction of carotenoids and chlorophylls from microalgae. Food Chem. 2024, 455, 139939. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef]
- Zhou, T.; Xie, Z.; Jiang, X.; Zou, X.; Cheng, J.; Chen, C.; Kuang, C.; Ye, J.; Wang, Y.; Liu, F. Efficient Solar-Powered Bioremediation of Hexavalent Chromium in Contaminated Waters by Chlorella sp. MQ-1. Water 2024, 16, 3315. [Google Scholar] [CrossRef]
- Li, T.; Zheng, Y.; Yu, L.; Chen, S. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenergy 2014, 66, 204–213. [Google Scholar] [CrossRef]
- Klamczynska, B.; Mooney, W.D. Chapter 20—Heterotrophic Microalgae: A Scalable and Sustainable Protein Source. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 327–339. [Google Scholar]
- Mehta, A.K.; Chakraborty, S. Multiscale integration of mixotrophic microalgal cultivation, lipid synthesis, rapid biomass harvesting, and nutrient recycling in pilot-scale photobioreactors. Algal Res. 2021, 53, 102146. [Google Scholar] [CrossRef]
- Amiri, R.; Ahmadi, M. Treatment of wastewater in sewer by Spirogyra sp. green algae: Effects of light and carbon sources. Water Environ. J. 2020, 34, 311–321. [Google Scholar] [CrossRef]
- Palikrousis, T.L.; Manolis, C.; Kalamaras, S.D.; Samaras, P. Effect of Light Intensity on the Growth and Nutrient Uptake of the Microalga Chlorella sorokiniana Cultivated in Biogas Plant Digestate. Water 2024, 16, 2782. [Google Scholar] [CrossRef]
- Jia, H.; Yuan, Q. Ammonium removal using algae–bacteria consortia: The effect of ammonium concentration, algae biomass, and light. Biodegradation 2018, 29, 105–115. [Google Scholar] [CrossRef]
- Satthong, S.; Saego, K.; Kitrungloadjanaporn, P.; Nuttavut, N.; Amornsamankul, S.; Triampo, W. Modeling the effects of light sources on the growth of algae. Adv. Differ. Equ. 2019, 2019, 170. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Bouterfas, R.; Belkoura, M.; Dauta, A. Light and temperature effects on the growth rate of three freshwater [2pt] algae isolated from a eutrophic lake. Hydrobiologia 2002, 489, 207–217. [Google Scholar] [CrossRef]
- Lee, M.-C.; Yeh, H.-Y.; Jhang, F.-J.; Lee, P.-T.; Lin, Y.-K.; Nan, F.-H. Enhancing growth, phycoerythrin production, and pigment composition in the red alga Colaconema sp. Through optimal environmental conditions in an indoor system. Bioresour. Technol. 2021, 333, 125199. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Song, X.; Jiang, M.; Zhao, X.; Cao, X. The inhibitory effects of simulated light sources on the activity of algae cannot be ignored in photocatalytic inhibition. Chemosphere 2022, 309, 136611. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, C.; Zhao, X.; Wang, Y.; Li, Z.; Zhou, Y.; Ren, G. Algae-Bacteria cooperated microbial ecosystem: A self-circulating semiartificial photosynthetic purifying strategy. Sci. Total Environ. 2023, 905, 167187. [Google Scholar] [CrossRef] [PubMed]
Parameter | Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4 |
---|---|---|---|---|
Diameter, m | 0.2 | 0.04 | 0.4 | 0.01 |
Height, m | 1 | 5 | 0.5 | 20 |
Volume, L | 31.4 | 6.28 | 62.8 | 1.57 |
Surface, m2 | 0.628 | 0.628 | 0.628 | 0.628 |
, m | 0.05 | 0.01 | 0.1 | 0.0025 |
Light illuminance, lx | 1000 | 1000 | 1000 | 1000 |
Exposure time, h | 16 | 16 | 16 | 16 |
, | 3200 | 16,000 | 1600 | 64,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsioptsias, C.; Samaras, P. New Efficient Parameter and Respective Units for Measurement of Light Irradiation Availability in Microalgae Photobioreactors. Water 2025, 17, 1518. https://doi.org/10.3390/w17101518
Tsioptsias C, Samaras P. New Efficient Parameter and Respective Units for Measurement of Light Irradiation Availability in Microalgae Photobioreactors. Water. 2025; 17(10):1518. https://doi.org/10.3390/w17101518
Chicago/Turabian StyleTsioptsias, Costas, and Petros Samaras. 2025. "New Efficient Parameter and Respective Units for Measurement of Light Irradiation Availability in Microalgae Photobioreactors" Water 17, no. 10: 1518. https://doi.org/10.3390/w17101518
APA StyleTsioptsias, C., & Samaras, P. (2025). New Efficient Parameter and Respective Units for Measurement of Light Irradiation Availability in Microalgae Photobioreactors. Water, 17(10), 1518. https://doi.org/10.3390/w17101518