Soil–Groundwater Environmental Quality and Water Resource: Assessment of Contaminant Sources, Species, and Transformations
1. Introduction
2. Hydrological Processes and Water Resources
3. Contaminant Assessment and Sources
4. Mobilization and Transformation
5. Challenges and New Techniques
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Chen, S.; Jiang, W.; Zhang, Z.; Liu, F.; Zhang, J.; Ning, H. Analysis of Runoff Variation Characteristics and Influencing Factors in the Typical Watershed of Miyun Reservoir, China. Water 2025, 17, 442.
- Meng, L.; Ning, H.; Jiang, W.; Sheng, Y.; Wang, W.; Tang, C. Comprehensive Study on Hydrogeological Conditions and Suitability Evaluation of In Situ Leaching for Sandstone-Hosted Uranium Deposit in Erlian Basin. Water 2024, 16, 2785.
- Yang, X.; Mirjat, M.U.; Baloch, A.; Talpur, M.A.; Kori, S.M.; Soothar, R.K.; Shaikh, S.A.; Mari, I.A.; Chandio, F.A. The Characterization of Aquifer Parameters in Using Skimming Tubewells Through the Pumping Test Method: A Case Study of Tando Allahyar. Water 2024, 16, 3180.
- Wang, B.; Zhao, Y.; Cai, Y.; Zhang, S.; Yang, B.; Liu, F. Feasibility Research on Surface Water Reinjection into the Sandstone Geothermal Reservoir of the Guantao Formation in Tianjin Based on Laboratory Experiments. Water 2024, 16, 2475.
- He, J.; Wu, P.; Li, Y.; Zeng, M.; Chen, C.; Jakada, H.; Zhao, X. Comprehending Spatial Distribution and Controlling Mechanisms of Groundwater in Topical Coastal Aquifers of Southern China Based on Hydrochemical Evaluations. Water 2024, 16, 2502.
- Xia, Y.; Chen, G.; Liu, F.; Zhang, J.; Ning, H. Hydrogeochemical Characteristics and Health Risk Assessment of Groundwater in Grassland Watersheds of Cold and Arid Regions in Xilinhot, China. Water 2024, 16, 2488.
- Si, L.; Zhang, B.; Zhou, R.; Jiang, R.; Dong, W.; Ma, R.; Liu, S. Study on the Evolution Mechanism of Temporal Variability of Chloride Ions in Typical Districts of Ordos City. Water 2024, 16, 2935.
- Ji, Y.; Zhou, Y.; Zhao, X.; Zhou, J.; Sun, Y.; Lei, M. Distribution and Co-Enrichment Factors of Arsenic and Fluoride in the Groundwater of the Plain Area of the Aksu River Basin, Xinjiang, PR China. Water 2024, 16, 3201.
- Zhu, M.; Yao, Z.; Xu, X.; Wei, Y.; Yan, X.; Xiao, M. Accumulation, Source Apportionment, and Ecological-Health Risks Assessment of Topsoil Heavy Metals in Agricultural and Pastoral Areas in the Eastern Qaidam Basin, China. Water 2024, 16, 3719.
- Liu, H.; Bai, Y.; Gao, Y.; Han, B.; Miao, J.; Shi, Y.; Yang, F. Status, Sources, and Risks of Heavy Metals in Surface Sediments of Baiyangdian Lake and Inflow Rivers, North China. Water 2024, 16, 2723.
- Zeng, Y.; Xu, Z.; Dong, B. Spatial Distribution, Leaching Characteristics, and Ecological and Health Risk Assessment of Potential Toxic Elements in a Typical Open-Pit Iron Mine Along the Yangzi River. Water 2024, 16, 3017.
- Yang, M.; Wang, B.; Xia, Y.; Qiu, Y.; Li, C.; Cao, Z. Changing Soil Water Content: Main Trigger of the Multi-Phase Mobilization and Transformation of Petroleum Pollution Components—Insights from the Batch Experiments. Water 2024, 16, 1775.
- Sun, W.; Wang, S.; Yu, J.; Lin, H.; Sun, L. Mechanisms of Non-Aqueous Phase Liquid Retention in Low-Permeability Aquifer Lenses: Effects on Contaminant Remediation. Water 2025, 17, 573.
- Yang, S.; Zhang, S.; Ma, S.; Zhao, S.; Liu, Z. Field Demonstration of In Situ Slow-Release Oxygen Chemicals Coupled with Microbial Agents for Injection to Remediate BTEX Contamination. Water 2024, 16, 2815.
References
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graa, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Srivastava, S.; Mehta, L.; Naess, L.O. Increased attention to water is key to adaptation. Nat. Clim. Chang. 2022, 12, 113–114. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Y.; Yang, H.; Wang, L.W.; Han, J.B.; Hao, Q.C.; Wang, J.; Zhao, Z.; Hu, W.X.; Wang, S.B.; et al. Interaction regimes of surface waterand groundwater in a hyper-aridendorheic watershed on TibetanPlateau: Insights from multi-proxydata. J. Hydrol. 2024, 644, 132020. [Google Scholar] [CrossRef]
- Xie, J.; Liu, X.; Jasechko, S.; Berghuijs, W.; Wang, K.; Liu, C.; Reichstein, M.; Jung, M.; Koirala, S. Majority of global river flow sustained by groundwater. Nat. Geosci. 2024, 2024. 17, 770–777. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Gleeson, T.; Moosdorf, N.; Befus, K.M.; Schneider, A.; Hartmann, J.; Lehner, B. Global patterns and dynamics of climate-groundwater interactions. Nat. Clim. Change 2019, 9, 137–141. [Google Scholar] [CrossRef]
- Rohde, M.M.; Albano, C.M.; Huggins, X.; Klausmeyer, K.R.; Morton, C.; Sharman, A.; Zaveri, E.; Saito, L.; Freed, Z.; Howard, J.K.; et al. Groundwater-dependent ecosystem map exposes global dryland protection needs. Nature 2024, 632, 101–107. [Google Scholar] [CrossRef]
- Jasechko, S.; Seybold, H.; Perrone, D.; Fan, Y.; Shamsudduha, M.; Taylor, R.G.; Fallatah, O.; Kirchner, J.W. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 2024, 625, 715–721. [Google Scholar]
- Kuang, X.X.; Liu, J.G.; Scanlon, B.R.; Jiao, J.J.; Jasechko, S.; Lancia, M.; Biskaborn, B.K.; Wada, Y.; Li, H.L.; Zeng, Z.Z.; et al. The changing nature of groundwater in the global water cycle. Science 2024, 383, eadf0630. [Google Scholar] [CrossRef]
- Niazi, H.; Wild, T.B.; Turner, S.W.D.; Graham, N.T.; Hejazi, M.; Msangi, S.; Kim, S.; Lamontagne, J.R.; Mengqi Zhao, M.Q. Global peak water limit of future groundwater withdrawals. Nat. Sustain. 2024, 7, 413–422. [Google Scholar] [CrossRef]
- Long, D.; Yang, W.; Scanlon, B.R.; Zhao, J.S.; Liu, D.; Burek, P.; Pan, Y.; You, L.Z.; Wada, Y. South-to-North Water Diversion stabilizing Beijing’s groundwater levels. Nat. Commun. 2020, 11, 3665. [Google Scholar] [CrossRef]
- Thaw, M.; GebreEgziabher, M.; Villafañe-Pagán, J.Y.; Jasechko, S. Modern groundwater reaches deeper depths in heavily pumped aquifer systems. Nat. Commun. 2022, 13, 5263. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.Z.; Jiang, J.W.; Zhang, M. Mobilization, Speciation, and Transformation of Organic and Inorganic Contaminants in Soil-Groundwater Ecosystems. Appl. Sci. 2023, 13, 11454. [Google Scholar] [CrossRef]
- Sheng, Y.; Baars, O.; Guo, D.; Whitham, J.; Srivastava, S.; Dong, H.L. Mineral-bound trace metals as cofactors for anaerobic biological nitrogen fixation. Environ. Sci. Technol. 2023, 57, 7206–7216. [Google Scholar] [CrossRef]
- Rohde, M.M.; Stella, J.C.; Singer, M.B.; Roberts, D.A.; Caylor, K.K.; Albano, C.M. Establishing ecological thresholds and targets for groundwater management. Nat. Water. 2024, 2, 312–323. [Google Scholar] [CrossRef]
- Jiang, W.J.; Wang, G.C.; Sheng, Y.Z.; Shi, X.M.; Zhang, H. Isotopes in groundwater (2H, 18O, 14C) revealed the climate and groundwater re-charge in the Northern China. Sci. Total Environ. 2019, 666, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.J.; Sheng, Y.Z.; Wang, G.C.; Shi, Z.M.; Liu, F.T.; Zhang, J.; Chen, D.L. Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins, a review. Environ. Chem. Lett. 2022, 20, 1497–1528. [Google Scholar] [CrossRef]
- Cao, W.G.; Zhang, Z.; Fu, Y.; Zhao, L.H.; Ren, Y.; Nan, T.; Guo, H.M. Prediction of arsenic and fluoride in groundwater of the North China Plain using enhanced stacking ensemble learning. Water Res. 2024, 259, 121848. [Google Scholar] [CrossRef] [PubMed]
- Rateb, A.; Scanlon, B.R.; Pool, D.R.; Sun, A.; Zhang, Z.Z.; Chen, J.L.; Clark, B.; Faunt, C.C.; Haugh, C.J.; Hill, M.; et al. Comparison of Groundwater Storage Changes From GRACE Satellites With Monitoring and Modeling of Major U.S. Aquifers. Water Resour. Res. 2020, 56, e2020WR027556. [Google Scholar] [CrossRef]
- Yang, J.; Pan, Y.; Zhang, C.; Gong, H.; Xu, L.; Huang, Z.; Lu, S. Comparison of groundwater storage changes over losing and gaining aquifers of China using GRACE satellites, modeling and in-situ observations. Sci. Total Environ. 2024, 938, 173514. [Google Scholar] [CrossRef]
- Jiang, W.J.; Sheng, Y.Z.; Shi, Z.M.; Guo, H.M.; Chen, X.L.; Mao, H.R.; Liu, F.T.; Ning, H.; Liu, N.N.; Wang, G.C. 2024 Hydrogeochemical characteristics and evolution of formation water in the continental sedimentary basin: A case study in the Qaidam Basin, China. Sci. Total Environ. 2024, 957, 177672. [Google Scholar] [CrossRef]
- Mukherjee, A.; Coomar, P.; Sarkar, S.; Johannesson, K.H.; Fryar, A.E.; Schreiber, M.E.; Ahmed, K.M.; Alam, M.A.; Bhattacharya, P.; Bundschuh, J.; et al. Arsenic and other geogenic contaminants in global groundwater. Nat. Rev. Earth Environ. 2024, 5, 312–328. [Google Scholar] [CrossRef]
- Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef]
- Gandhi, T.P.; Sampath, P.V.; Maliyekkal, S.M. A critical review of uranium contamination in groundwater: Treatment and sludge disposal. Sci. Total Environ. 2022, 825, 153947. [Google Scholar] [CrossRef]
- Wang, Y.X.; Li, J.X.; Ma, T.; Xie, X.J.; Deng, Y.M.; Gan, Y.Q. Genesis of geogenic contaminated groundwater: As, F and I. Crit. Crit. Rev. Environ. Sci. Technol. 2020, 51, 2895–2933. [Google Scholar] [CrossRef]
- Zhao, B.; Sun, Z.X.; Guo, Y.D.; Zhou, Z.K.; Wang, X.G.; Ke, P.C. Occurrence characteristics of uranium mineral-related substances in various environmental media in China: A critical review. J. Hazard. Mater. 2023, 441, 129856. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Beusen, A.H.W.; van Grinsven, H.J.M.; Wang, J.J.; van Hoek, W.J.; Ran, X.B.; José, M.; Mogollón, J.M.; Bouwman, A.F. Impact of groundwater nitrogen legacy on water quality. Nat. Sustain. 2024, 7, 891–900. [Google Scholar] [CrossRef]
- Podgorski, J.; Berg, M. Global analysis and prediction of fluoride in groundwater. Nat. Commun. 2022, 13, 4232. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef]
- Aullón, A.A.; Schulz, C.; Bundschuh, J.; Jacks, G.; Thunvik, R.; Gustafsson, J.P.; Mörth, C.M.; Sraceke, O.; Ahmad, A.; Bhattacharya, P. Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern LaPampa Province in Argentina. Sci. Total Environ. 2020, 715, 136671. [Google Scholar] [CrossRef]
- Zhou, X.; Sheng, Y.; Zheng, Y.; Jiang, M.Y.; Wang, M.M.; Zhu, Z.H.; Li, G.Y.; Baars, O.; Dong, H.L. Bioavailability of molybdenite to support nitrogen fixation on early Earth by an anoxygenic phototroph. Earth Planet Sci. Lett. 2024, 647, 119056. [Google Scholar] [CrossRef]
- Nghiem, A.A.; Prommer, H.; Mozumder, M.R.H.; Siade, A.; Jamieson, J.; Ahmed, K.M.; van Geen, A.; Bostick, B.C. Sulfate reduction accelerates groundwater arsenic contamination even in aquifers with abundant iron oxides. Nat. Water 2023, 1, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Ning, H.; Jiang, W.J.; Sheng, Y.Z.; Wang, K.L.; Chen, S.M.; Zhang, Z.; Liu, F.T. Comprehensive evaluation of nitrogen contamination in water ecosystems of the Miyun reservoir watershed, northern China: Distribution, source apportionment and risk assessment. Environ. Geochem. Health 2024, 46, 278. [Google Scholar] [CrossRef] [PubMed]
- Vengosh, A.; Coyte, R.M.; Podgorski, J.; Johnson, T.M. A critical review on the occurrence and distribution of the uranium- and tho-rium-decay nuclides and their effect on the quality of groundwater. Sci. Total Environ. 2022, 808, 151914. [Google Scholar] [CrossRef]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and antibiotic resistant genes (ARGs) in ground Water. A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, V.; Ramil, M.; Cela, R.; Rodríguez, I. Occurrence and risk assessment of pesticides and pharmaceuticals in viticulture impacted watersheds from Northwest Spain. Chemosphere 2023, 341, 140098. [Google Scholar] [CrossRef]
- Yun, J.; Yang, Q.; Zhao, C.; Chen, C.Z.; Liu, G.R. Atmospheric emissions of fine particle matter bound rare earth elements from industry. Nat. Commun. 2024, 15, 9338. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Z.S.; Liu, Q.; Liu, Y.M.; Liu, M.L.; Wang, T.C.; Zhu, L.Y. Insights into Uptake, Translocation, and Transformation Mechanisms of Perfluorophosphinates and Perfluorophosphonates in Wheat (Triticum aestivum L.). Environ. Sci. Technol. 2020, 54, 276–285. [Google Scholar] [CrossRef]
- MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65. [Google Scholar] [CrossRef]
- Tang, K.H.D.; Li, R.; Li, Z.; Wang, D. Health risk of human exposure to microplastics: A review. Environ. Chem. Lett. 2024, 22, 1155–1183. [Google Scholar] [CrossRef]
- Grunfeld, D.A.; Gilbert, D.; Hou, J.; Jones, A.M.; Lee, M.J.; Kibbey, T.C.G.; O’Carroll1, D.M. Underestimated burden of per- and polyfluoroalkyl substances in global surface waters and groundwaters. Nat. Geosci. 2024, 17, 340–346. [Google Scholar] [CrossRef]
- Lyu, X.Y.; Xiao, F.; Shen, C.Y.; Chen, J.J.; Park, C.M.; Sun, Y.Y.; Flury, M.; Wang, D.J. Per- and Polyfluoroalkyl Substances (PFAS) in Subsurface Environments: Occurrence, Fate, Transport, and Research Prospect. Rev. Geophys. 2022, 60, e2021RG000765. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, L.; Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef]
- Kozlov, M. Landmark study links microplastics to serious health problems. Nature 2024. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yeh, P.J.F.; Jiao, J.J.; Luo, X.; Pan, Y.; Long, Y.; Pan, Y.; Long, Y.N.; Zhang, C.; Zheng, L.Q. A new approach for assessing groundwater recharge by combining GRACE and baseflow with case studies in karst areas of southwest China. Water Resour. Res. 2023, 59, e2022WR032091. [Google Scholar] [CrossRef]
- He, Y.Q.; McDonough, L.K.; Zainab, S.M.; Guo, Z.F.; Chen, C.; Xu, Y.Y. Microplastic accumulation in groundwater: Data-scaled insights and future research. Water Res. 2024, 258, 121808. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 196–204. [Google Scholar] [CrossRef]
- Jiang, W.J.; Meng, L.S.; Liu, F.T.; Sheng, Y.Z.; Chen, S.M.; Yang, J.L.; Mao, H.R.; Zhang, J.; Zhang, Z.; Ning, H. Distribution, source investigation, and risk assessment of topsoil heavy metals in areas with intensive anthropogenic activities using the positive matrix factorization (PMF) model coupled with self-organizing map (SOM). Environ. Geochem. Health 2023, 45, 6353–6370. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.G.; Hou, X.S.; Li, Z.P.; Li, P.; Sun, Y.; Yu, B.W.; Li, M. Quantify the effects of groundwater level recovery on groundwater nitrate dynamics through a quasi-3D integrated model for the vadose zone-groundwater coupled system. Water Res. 2022, 226, 119213. [Google Scholar] [CrossRef]
- Wei, Y.Q.; Chen, Y.L.; Cao, X.D.; Yeh, T.C.J.; Zhang, J.; Zhan, Z.; Cui, Y.D.; Li, H. Modeling of Microplastics Migration in Soil and Groundwater: Insights into Dispersion and Particle Property Effects. Environ. Sci. Technol. 2024, 58, 15224–15235. [Google Scholar] [CrossRef]
- Pang, M.; Du, E.H.; Zheng, C.M. Contaminant Transport Modeling and Source Attribution with Attention-Based Graph Neural Network. Water Resour. Res. 2024, 60, e2023WR035278. [Google Scholar] [CrossRef]
- Mao, H.R.; Wang, G.C.; Liao, F.; Shi, Z.; Rao, Z.; Zhang, H.Y.; Qiao, Z.Y.; Bai, Y.F.; Chen, X.L.; Yan, X.; et al. Spatiotemporal Variation of Groundwater Nitrate Concentration Controlled by Groundwater Flow in a Large Basin: Evidence From Multi-Isotopes (15N, 11B, 18O, and 2H). Water Resour. Res. 2024, 60, e2023WR035299. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Sheng, Y. Soil–Groundwater Environmental Quality and Water Resource: Assessment of Contaminant Sources, Species, and Transformations. Water 2025, 17, 1493. https://doi.org/10.3390/w17101493
Jiang W, Sheng Y. Soil–Groundwater Environmental Quality and Water Resource: Assessment of Contaminant Sources, Species, and Transformations. Water. 2025; 17(10):1493. https://doi.org/10.3390/w17101493
Chicago/Turabian StyleJiang, Wanjun, and Yizhi Sheng. 2025. "Soil–Groundwater Environmental Quality and Water Resource: Assessment of Contaminant Sources, Species, and Transformations" Water 17, no. 10: 1493. https://doi.org/10.3390/w17101493
APA StyleJiang, W., & Sheng, Y. (2025). Soil–Groundwater Environmental Quality and Water Resource: Assessment of Contaminant Sources, Species, and Transformations. Water, 17(10), 1493. https://doi.org/10.3390/w17101493