New Insights About the Drivers of Change in the Coastal Wetlands of Peru: Results of a Rapid Field Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Monitoring
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DOC | Drivers of change |
CCC | Cophenetic correlation coefficient |
References
- Li, C.; Wang, H.; Liao, X.; Xiao, R.; Liu, K.; Bai, J.; Li, B.; He, Q. Heavy Metal Pollution in Coastal Wetlands: A Systematic Review of Studies Globally over the Past Three Decades. J. Hazard. Mater. 2022, 424, 127312. [Google Scholar] [CrossRef] [PubMed]
- Sievers, M.; Brown, C.J.; Tulloch, V.J.D.; Pearson, R.M.; Haig, J.A.; Turschwell, M.P.; Connolly, R.M. The Role of Vegetated Coastal Wetlands for Marine Megafauna Conservation. Trends Ecol. Evol. 2019, 34, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Sutton-Grier, A.E.; Sandifer, P.A. Conservation of Wetlands and Other Coastal Ecosystems: A Commentary on Their Value to Protect Biodiversity, Reduce Disaster Impacts, and Promote Human Health and Well-Being. Wetlands 2019, 39, 1295–1302. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, J.; Wang, Z.-L.; Wang, Y.-D. Variation Characteristics of Reed Marshes in Tianjin and Its Cause during 1984–2009. Wetl. Sci. 2014, 12, 325–331. [Google Scholar] [CrossRef]
- Lu, D.; Chang, J. Examining Human Disturbances and Inundation Dynamics in China’s Marsh Wetlands by Using Time Series Remote Sensing Data. Sci. Total Environ. 2023, 863, 160961. [Google Scholar] [CrossRef]
- Van Dam, A.A.; Fennessy, M.S.; Finlayson, C.M. What’s Driving Wetland Loss and Degradation? In Ramsar Wetlands: Values, Assessment, Management; Elsevier: Amsterdam, The Netherlands, 2023; pp. 259–306. [Google Scholar]
- Cahoon, D.R. Global Warming, Sea-Level Rise, and Coastal Marsh Survival; U.S. Geological Survey FS-091-97; National Wetlands Research Center: Washington, DC, USA, 1997.
- Grieger, R.; Capon, S.J.; Hadwen, W.L.; Mackey, B. Between a Bog and a Hard Place: A Global Review of Climate Change Effects on Coastal Freshwater Wetlands. Clim. Change 2020, 163, 161–179. [Google Scholar] [CrossRef]
- Sarkar, P.; Salami, M.; Githiora, Y.; Vieira, R.; Navarro, A.; Clavijo, D.; Padgurschi, M. A Conceptual Model to Understand the Drivers of Change in Tropical Wetlands: A Comparative Assessment in India and Brazil. Biota Neotrop. 2020, 20, e20190913. [Google Scholar] [CrossRef]
- Hopkinson, C.S.; Wolanski, E.; Cahoon, D.R.; Perillo, G.M.E.; Brinson, M.M. Chapter 1—Coastal Wetlands: A Synthesis. In Coastal Wetlands, 2nd ed.; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–75. ISBN 978-0-444-63893-9. [Google Scholar]
- White, E.; Kaplan, D. Restore or Retreat? Saltwater Intrusion and Water Management in Coastal Wetlands. Ecosyst. Health Sustain. 2017, 3, e01258. [Google Scholar] [CrossRef]
- Mustafa, G.; Hussain, S.; Liu, Y.; Ali, I.; Liu, J.; Bano, H. Microbiology of Wetlands and the Carbon Cycle in Coastal Wetland Mediated by Microorganisms. Sci. Total Environ. 2024, 954, 175734. [Google Scholar] [CrossRef]
- Newton, A.; Icely, J.; Cristina, S.; Perillo, G.M.E.; Turner, R.E.; Ashan, D.; Cragg, S.; Luo, Y.; Tu, C.; Li, Y.; et al. Anthropogenic, Direct Pressures on Coastal Wetlands. Front. Ecol. Evol. 2020, 8, 144. [Google Scholar] [CrossRef]
- Junk, W.J. Current State of Knowledge Regarding South America Wetlands and Their Future under Global Climate Change. Aquat. Sci. 2013, 75, 113–131. [Google Scholar] [CrossRef]
- Peng, J.; Liu, S.; Lu, W.; Liu, M.; Feng, S.; Cong, P. Continuous Change Mapping to Understand Wetland Quantity and Quality Evolution and Driving Forces: A Case Study in the Liao River Estuary from 1986 to 2018. Remote Sens. 2021, 13, 4900. [Google Scholar] [CrossRef]
- Pacheco, V.; Pacheco, J.; Zevallos, A.; Valentin, P.; Salvador, J.; Ticona, G. Mamíferos pequeños de humedales de la costa central del Perú. Rev. Peru. Biología 2020, 27, 483–498. [Google Scholar] [CrossRef]
- Pulido, V. Ciento quince años de registros de aves en Pantanos de Villa. Rev. Peru. Biología 2018, 25, 291–306. [Google Scholar] [CrossRef]
- Gonzáles, S.; Aponte, H. Diversidad taxonómica y patrones de diversidad de la flora en humedales de la costa peruana. Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2022, 46, 730–741. [Google Scholar] [CrossRef]
- Castillo Velásquez, R.M.; Huamantinco Araujo, A.A. Spatial Variation of the Aquatic Macroinvertebrates Community in the Littoral Zone of the Santa Rosa Coastal Wetland, Lima, Peru. Rev. Biol. Trop. 2020, 68, 50–68. [Google Scholar] [CrossRef]
- Moscoso, D.A.B.; Ccasani, G.T.; Ramírez, D.W. Primer reporte de anfibios y reptiles en el Refugio de Vida Silvestre Los Pantanos de Villa (Lima-Perú). Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2024, 48, 595–605. [Google Scholar] [CrossRef]
- Fabian Tolentino, E.D.; Torres Cordero, N.A.; Bardales Martínez, M.F.; Naquiche Yesquen, D.L.; Ramírez Huaroto, D.W. Evolución espacio-temporal de las unidades de ordenamiento ambiental (ZPB, ZPAES) y el refugio de vida silvestre de Los Pantanos de Villa, Perú (1987–2022). Rev. Kawsaypacha Soc. Medio Ambiente 2024, 13, A-009. [Google Scholar] [CrossRef]
- Gomez, A.; Aponte, H.; Gonzáles, S. ¿Cómo proteger los humedales costeros peruanos? Una respuesta a partir de un modelo conceptual de sus impulsores de cambio. Boletín Investig. Mar. Costeras 2023, 52, 125–142. [Google Scholar] [CrossRef]
- Gómez-Sánchez, R.; Cuba, D.; Aponte, H. Sobre la necesidad de descentralización y diversificación de la investigación en humedales costeros peruanos. Biologist 2022, 20, 121–150. [Google Scholar] [CrossRef]
- Aponte, H.; Gonzales, S.; Gomez, A. Impulsores de cambio en los humedales de América Latina: El caso de los humedales costeros de Lima. South Sustain. 2020, 1, e023. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.; Ryan, P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Abshirini, E.; Koch, D. Rivers as Integration Devices in Cities. City Territ. Archit. 2016, 3, 1. [Google Scholar] [CrossRef]
- Perrodin, L.; Navarro, A.; Toor, M.; Canto, R.; Becker, M.; Dong, Y.; Worthington, T.; Murray, N.J. Analysing Drivers of Worldwide Tidal Wetland Change. bioRxiv 2024. [Google Scholar] [CrossRef]
- Demnati, F.; Allache, F.; Ernoul, L.; Samraoui, B. Socio-Economic Stakes and Perceptions of Wetland Management in an Arid Region: A Case Study from Chott Merouane, Algeria. Ambio 2012, 41, 504–512. [Google Scholar] [CrossRef]
- León Sulca, G.M. Gobernanza ambiental y conservación: Las gestiones del SERNANP y PROHVILLA en el Refugio de Vida Silvestre Los Pantanos de Villa. Rev. Argum. 2020, 1, 119–124. [Google Scholar] [CrossRef]
- Cruces Aguirre, D.E. Educación ambiental, una estrategia para la conservación de los humedales de Ventanilla. Boletín Col. Geógrafos Perú 2018, 4, 71–90. [Google Scholar]
- Gupta, R.; Chembolu, V.; Marjoribanks, T.I.; Dutta, S. Assessing the Efficacy of Hydro-Ecological Based Wetland Management Approach for Flood Resilience of a Large River Catchment. J. Hydrol. 2024, 641, 131761. [Google Scholar] [CrossRef]
- Montes-Iturrizaga, D.; Aponte, H.; Valle-Rubio, S. Un nuevo humedal artificial en la costa central de Perú: Primera caracterización de su avifauna. Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2023, 47, 352–370. [Google Scholar] [CrossRef]
- Quispe-López, M.; Barreda, S.; Carranza, D.M.; Mejía, R.; Santana, C.; Ramirez, D.W. Patrones de actividad diaria y lunar de Cavia tschudii (RODENTIA) en un humedal costero tropical. Mastozoología Neotrop. 2022, 29, 631. [Google Scholar] [CrossRef]
- Bravo-Naranjo, V.; Jiménez, R.R.; Zuleta, C.; Rau, J.R.; Valladares, P.; Piñones, C.; Bravo-Naranjo, V.; Jiménez, R.R.; Zuleta, C.; Rau, J.R.; et al. Selección de Presas Por Perros Callejeros En El Humedal Estero Culebrón (Coquimbo, Chile). Gayana (Concepción) 2019, 83, 102–113. [Google Scholar] [CrossRef]
- Hultine, K.; Dudley, T. Tamarix from Organism to Landscape. In Tamarix: A Case Study of Ecological Change in the American West; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Ostoja, S.M.; Brooks, M.L.; Dudley, T.; Lee, S.R. Short-Term Vegetation Response Following Mechanical Control of Saltcedar (Tamarix spp.) on the Virgin River, Nevada, USA. Invasive Plant Sci. Manag. 2014, 7, 310–319. [Google Scholar] [CrossRef]
Name | Type | Altitude (m.a.s.l.) | District | Province/Department | Vegetation Characteristics | Area (ha) |
---|---|---|---|---|---|---|
La Chepa Estuary | River mouth | 0 | Corrales | Tumbes/Tumbes | Mangrove with sections of of dry forest. | 51 |
Reserva Natural Malaca | Coastal lagoon | 2 | Pariñas | Talara/Piura | Transitional zone of dry forest, coastal environment with a main coastal lagoon. Presence of grasslands and scrublands. | 71 |
La Bocana | River mouth | 0 | Colán | Paita/Piura | Young mangrove with transitional vegetation of the dry forest. | 50 |
San José Wetland | Coastal lagoon | 3 | San José | Chiclayo/Lambayeque | Coastal lagoon with reed beds and grasslands. | 37.2 |
Salaverry Wetland | Coastal lagoon | 7 | Salaverry | Trujillo/La Libertad | Coastal wetland with lagoons. Extensive vegetation is predominantly composed of Sessuvium. portulacastrum. | 385 |
Mouth of the Casma River | River mouth | 3 | Comandante Noel | Casma/Ancash | River mouth with the presence of grasslands, cattails, small rushes, and succulent vegetation (Batis maritima and Salicornia sp.). | 46 |
Mouth of the Chincha River | River mouth | 3 | Tambo de Mora | Chincha/Ica | River mouth with low-growing, predominantly herbaceous vegetation. | 4.85 |
Chaviña Wetland | Coastal lagoon | 4 | Bella Unión | Caravelí/Arequipa | Coastal wetlands with lagoons, river mouths, grasslands, and extensive reed beds. | 113 |
El Chiflón Wetland | River mouth | 5 | Mariscal Cáceres | Camaná/Arequipa | River mouth with small coastal lagoons. Riparian vegetation along the edges of the mouth. | 33 |
Mouth of the Osmore River | River mouth | 9 | Ilo | Ilo/Moquegua | River mouth, featuring reed beds and low-lying vegetation along the edges. | 2.29 |
Mouth of the Sama River | River mouth | 9 | Sama | Tacna/Tacna | River mouth with abundant shrub vegetation on the edges (Tessaria sp. and Baccharis sp.). | 14 |
Wetland | L | AG | S | H | U | G | F | FSH | EX | P | W | O |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La Chepa Estuary | X++ | X | X | X a,b | ||||||||
Malaca Nature Reserve | X++ | X | X | X 2 | X c | |||||||
La Bocana | X++ | X | X | X | X 1,2 | X a | X 3 | |||||
San José Wetland | X+++ | X | X | X | X | X | X b,d | |||||
Salaverry Wetland | X+ | X | X 1,2 | Xd | ||||||||
Mouth of the Casma River | X++ | X | X | X | X | X | X | X 1 | X a | X 4 | ||
Mouth of the Chincha River | X++ | X | X | X | X | X | X | X 1 | X a | X 4,5 | ||
Chaviña Wetland | X+ | X | X | X a,b,d | ||||||||
El Chiflón Wetland | X++ | X | X | X | X | X | X 1 | X b,d | X | X 6 | ||
Mouth of the Osmore River | X+ | X | X | X | X b,d | X | X 4,5 | |||||
Mouth of the Sama River | X+ | X | X | X | X a,d | X 7 | ||||||
FR (%) | 100 | 55 | 18 | 9 | 46 | 82 | 55 | 82 | 55 | 100 | 18 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aponte, H.; Coello-Sarmiento, M.-P.; Montes-Iturrizaga, D. New Insights About the Drivers of Change in the Coastal Wetlands of Peru: Results of a Rapid Field Survey. Water 2025, 17, 1473. https://doi.org/10.3390/w17101473
Aponte H, Coello-Sarmiento M-P, Montes-Iturrizaga D. New Insights About the Drivers of Change in the Coastal Wetlands of Peru: Results of a Rapid Field Survey. Water. 2025; 17(10):1473. https://doi.org/10.3390/w17101473
Chicago/Turabian StyleAponte, Héctor, Maria-Paula Coello-Sarmiento, and David Montes-Iturrizaga. 2025. "New Insights About the Drivers of Change in the Coastal Wetlands of Peru: Results of a Rapid Field Survey" Water 17, no. 10: 1473. https://doi.org/10.3390/w17101473
APA StyleAponte, H., Coello-Sarmiento, M.-P., & Montes-Iturrizaga, D. (2025). New Insights About the Drivers of Change in the Coastal Wetlands of Peru: Results of a Rapid Field Survey. Water, 17(10), 1473. https://doi.org/10.3390/w17101473