Positive–Unlabeled Learning-Based Hybrid Models and Interpretability for Groundwater Potential Mapping in Karst Areas
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Samples
2.3. Groundwater Conditional Factors
2.3.1. Topographical Factors
2.3.2. Hydrological Factors
2.3.3. Geological Factors
2.3.4. Meteorological Factor
2.3.5. Land Cover Factor
3. Methodology
3.1. Research Framework
3.2. Multicollinearity and Correlation Analysis
3.3. Bagging Positive–Unlabeled Learning Algorithms
3.4. Evaluation Indexes and Model Comparison Method
3.5. Zoning Methods of the Groundwater Potential Maps
3.6. The Shapley Additive Explanations (SHAP) Approach
4. Results
4.1. Correlation Between Groundwater Conditional Factors
4.2. Model Evaluation and Analysis
4.3. Groundwater Potential Spatial Modelling
4.4. Model Interpretability in Groundwater Potential Mapping
5. Discussion
5.1. Factors Driving Groundwater Enrichment in Karst Areas
5.2. Strengths and Limitations of PUL Models
6. Conclusions
- (1)
- The BPUL algorithm, integrated with four base learners (LR, KNN, RF, and LightGBM) effectively overcame the scarcity of negative samples by leveraging positive and unlabeled data, achieving satisfactory prediction results across all models. Among them, the hybrid ensemble models (RF-BPUL and LightGBM-BPUL) exhibited superior performance, as evidenced by their higher validation scores.
- (2)
- Through evaluating the correlations and SHAP values of groundwater conditional factors, we identified lithology (particularly pure carbonate rocks), MRVBF, and CaO content as critical drivers of groundwater enrichment in karst zones.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A | Accuracy |
AUC | Area under the curve |
BPUL | Bagging-based Positive–Unlabeled learning |
CaO | Calcium oxide |
DEM | Digital elevation model |
DTF | Distance to Faults |
DTR | Distance to Rivers |
F | F-score |
GWP | Groundwater potential |
KNN | K-nearest neighbor |
LC | Land cover |
LightGBM | Light Gradient Boosting Machine |
LR | Logistic Regression |
MRN | Melton Ruggedness Number |
MRVBF | Multiresolution index of valley bottom flatness |
MSE | Mean Square Error |
N | Negative |
PDP | Partial Dependence Plot |
PRC | Prediction rate curve |
PUL | Positive–Unlabeled learning |
RF | Random Forest |
RMSE | Root Mean Square Error |
SHAP | Shapley additive explanations |
SRC | Success rate curve |
STI | Surface texture index |
TOL | Tolerance |
TP | True positive |
TWI | Topographic Wetness Index |
VIF | Variance inflation factor |
References
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Pointet, T. The United Nations World Water Development Report 2022 on groundwater, a synthesis. Lhb 2022, 108, 2090867. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Panahi, M.; Sadhasivam, N.; Pourghasemi, H.R.; Rezaie, F.; Lee, S. Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). J. Hydrol. 2020, 588, 125033. [Google Scholar] [CrossRef]
- Thanh, N.N.; Thunyawatcharakul, P.; Ngu, N.H.; Chotpantarat, S. Global review of groundwater potential models in the last decade: Parameters, model techniques, and validation. J. Hydrol. 2022, 614, 128501. [Google Scholar] [CrossRef]
- Díaz-Alcaide, S.; Martínez-Santos, P. Review: Advances in groundwater potential mapping. Hydrogeol. J. 2019, 27, 2307–2324. [Google Scholar] [CrossRef]
- Binley, A.; Hubbard, S.S.; Huisman, J.A.; Revil, A.; Robinson, D.A.; Singha, K.; Slater, L.D. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 2015, 51, 3837–3866. [Google Scholar] [CrossRef]
- Wang, D.; Qian, J.; Ma, L.; Xu, H.; Wang, X.; Wang, Y. Integration of multiple hydrogeological survey technologies for exploring the groundwater distribution in karst areas: A case study in Xingfu Spring, Chaohu City, China. J. Hydrol. 2022, 614, 128637. [Google Scholar] [CrossRef]
- Luo, M.; Chen, Z.; Zhou, H.; Jakada, H.; Zhang, L.; Han, Z.; Shi, T. Identifying structure and function of karst aquifer system using multiple field methods in karst trough valley area, South China. Environ. Earth Sci. 2016, 75, 824. [Google Scholar] [CrossRef]
- Pourmorad, S.; Abbasi, S.; Patel, N.; Mohanty, A. Investigation and Potential Identification of Karsts as Groundwater Resources with the Help of GIS Studies, a Case Study of Western Iran. Lithol. Miner. Resour. 2022, 57, 584–599. [Google Scholar] [CrossRef]
- Opoku, P.A.; Shu, L.; Amoako-Nimako, G.K. Assessment of Groundwater Potential Zones by Integrating Hydrogeological Data, Geographic Information Systems, Remote Sensing, and Analytical Hierarchical Process Techniques in the Jinan Karst Spring Basin of China. Water 2024, 16, 565. [Google Scholar] [CrossRef]
- Ally, A.M.; Yan, J.; Bennett, G.; Lyimo, N.N.; Mayunga, S.D. Assessment of groundwater potential zones using remote sensing and GIS-based fuzzy analytical hierarchy process (F-AHP) in Mpwapwa District, Dodoma, Tanzania. Geosystems Geoenvironment 2024, 3, 100232. [Google Scholar] [CrossRef]
- Arabameri, A.; Rezaei, K.; Cerda, A.; Lombardo, L.; Rodrigo-Comino, J. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Sci. Total Environ. 2019, 658, 160–177. [Google Scholar] [CrossRef] [PubMed]
- Çelik, M.Ö.; Kuşak, L.; Yakar, M. Assessment of Groundwater Potential Zones Utilizing Geographic Information System-Based Analytical Hierarchy Process, Vlse Kriterijumska Optimizacija Kompromisno Resenje, and Technique for Order Preference by Similarity to Ideal Solution Methods: A Case Study in Mersin, Türkiye. Sustainability 2024, 16, 2202. [Google Scholar] [CrossRef]
- Ferretti, V.; Montibeller, G. Key challenges and meta-choices in designing and applying multi-criteria spatial decision support systems. Decis. Support Syst. 2016, 84, 41–52. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Pradhan, B.; Saharkhiz, M.A.; Lee, S. Groundwater aquifer potential modeling using an ensemble multi-adoptive boosting logistic regression technique. J. Hydrol. 2019, 579, 124172. [Google Scholar] [CrossRef]
- Jari, A.; Bachaoui, E.M.; Hajaj, S.; Khaddari, A.; Khandouch, Y.; El Harti, A.; Jellouli, A.; Namous, M. Investigating machine learning and ensemble learning models in groundwater potential mapping in arid region: Case study from Tan-Tan water-scarce region, Morocco. Front. Water 2023, 5, 1305998. [Google Scholar] [CrossRef]
- Khosravi, K.; Panahi, M.; Tien Bui, D. Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrol. Earth Syst. Sci. 2018, 22, 4771–4792. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Ahmadi, K.; Daneshi, A. Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping. Water Resour. Manag. 2017, 31, 2761–2775. [Google Scholar] [CrossRef]
- Pham, B.T.; Jaafari, A.; Prakash, I.; Singh, S.K.; Quoc, N.K.; Bui, D.T. Hybrid computational intelligence models for groundwater potential mapping. Catena 2019, 182, 104101. [Google Scholar] [CrossRef]
- Guo, X.; Gui, X.; Xiong, H.; Hu, X.; Li, Y.; Cui, H.; Qiu, Y.; Ma, C. Critical role of climate factors for groundwater potential mapping in arid regions: Insights from random forest, XGBoost, and LightGBM algorithms. J. Hydrol. 2023, 621, 129599. [Google Scholar] [CrossRef]
- Ragragui, H.; Aouragh, M.H.; El-Hmaidi, A.; Ouali, L.; Saouita, J.; Iallamen, Z.; Ousmana, H.; Jaddi, H.; El Ouali, A. Mapping and modeling groundwater potential using machine learning, deep learning and ensemble learning models in the Saiss basin (Fez-Meknes region, Morocco). Groundw. Sustain. Dev. 2024, 26, 101281. [Google Scholar] [CrossRef]
- Mohammed, A.; Kora, R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J. King Saud. Univ. Comput. Inf. Sci. 2023, 35, 757–774. [Google Scholar] [CrossRef]
- Kamali Maskooni, E.; Naghibi, S.A.; Hashemi, H.; Berndtsson, R. Application of Advanced Machine Learning Algorithms to Assess Groundwater Potential Using Remote Sensing-Derived Data. Remote Sens. 2020, 12, 2742. [Google Scholar] [CrossRef]
- Nykänen, V.; Lahti, I.; Niiranen, T.; Korhonen, K. Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geol. Rev. 2015, 71, 853–860. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Niu, R.; Peng, L. Landslide Susceptibility Prediction Based on Positive Unlabeled Learning Coupled with Adaptive Sampling. IEEE J.-Stars 2021, 14, 11581–11592. [Google Scholar] [CrossRef]
- Gu, T.; Duan, P.; Wang, M.; Li, J.; Zhang, Y. Effects of non-landslide sampling strategies on machine learning models in landslide susceptibility mapping. Sci. Rep. 2024, 14, 7201. [Google Scholar] [CrossRef]
- Bekker, J.; Davis, J. Learning from positive and unlabeled data: A survey. Mach. Learn. 2020, 109, 719–760. [Google Scholar] [CrossRef]
- Gao, M.; Wang, G.; Yang, W.; Zhang, Z.; Cai, D.; Xu, Y.; Yang, S. Bagging-based Positive–Unlabeled Data Learning Algorithm with Base Learners Random Forest and XGBoost for 3D Exploration Targeting in the Kalatongke District, Xinjiang, China. Nat. Resour. Res. 2023, 32, 437–459. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, G.; Liu, C.; Cheng, L.; Sha, D. Bagging-based positive-unlabeled learning algorithm with Bayesian hyperparameter optimization for three-dimensional mineral potential mapping. Comput. Geosci. 2021, 154, 104817. [Google Scholar] [CrossRef]
- Wu, B.; Qiu, W.; Jia, J.; Liu, N. Landslide Susceptibility Modeling Using Bagging-Based Positive-Unlabeled Learning. IEEE Geosci. Remote S 2021, 18, 766–770. [Google Scholar] [CrossRef]
- Waltham, T. Guangxi Karst: The Fenglin and Fengcong Karst of Guilin and Yangshuo. In Geomorphological Landscapes of the World; Migon, P., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 293–302. [Google Scholar]
- Dai-zhao, C.; Hai-ruo, Q. Devonian-Carboniferous Carbonates in Guilin, South China: Depositional Records of Platform-Basin Complex and Major Biocrisises. In Field Trip Guidebook on Chinese Sedimentary Geology; Hu, X., Ed.; Springer Nature: Singapore, 2024; pp. 809–871. [Google Scholar]
- Pu, Z.; Huang, Q.; Liao, H.; Wu, H.; Jiao, Y.; Luo, F.; Li, T.; Zhao, G.; Zou, C. Underground karst development characteristics and their influence on exploitation of karst groundwater in Guilin City, southwestern China. Carbonate Evaporite 2024, 39, 34. [Google Scholar] [CrossRef]
- Saha, A.; Saha, S. Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling: A study on Kurseong region of Darjeeling Himalaya, India. Remote Sens. Appl. Soc. Environ. 2020, 19, 100323. [Google Scholar] [CrossRef]
- Miraki, S.; Zanganeh, S.H.; Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Pham, B.T. Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach. Water Resour. Manag. 2019, 33, 281–302. [Google Scholar] [CrossRef]
- Kalantar, B.; Al-Najjar, H.; Pradhan, B.; Saeidi, V.; Halin, A.A.; Ueda, N.; Naghibi, S.A. Optimized Conditioning Factors Using Machine Learning Techniques for Groundwater Potential Mapping. Water 2019, 11, 1909. [Google Scholar] [CrossRef]
- Zhao, R.; Fan, C.C.; Arabameri, A.; Santosh, M.; Mohammad, L.; Mondal, I. Groundwater spring potential mapping: Assessment the contribution of hydrogeological factors. Adv. Space Res. 2024, 74, 48–64. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Govindaraju, R.S. Role of slope on infiltration: A review. J. Hydrol. 2018, 557, 878–886. [Google Scholar] [CrossRef]
- Iwahashi, J.; Pike, R.J. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 2007, 86, 409–440. [Google Scholar] [CrossRef]
- Gallant, J.C.; Dowling, T.I. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resour. Res. 2003, 39, 1347. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Sadhasivam, N.; Yousefi, S.; Tavangar, S.; Ghaffari Nazarlou, H.; Santosh, M. Using machine learning algorithms to map the groundwater recharge potential zones. J. Environ. Manag. 2020, 265, 110525. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Guduru, J.U.; Jilo, N.B. Groundwater potential zone assessment using integrated analytical hierarchy process-geospatial driven in a GIS environment in Gobele watershed, Wabe Shebele river basin, Ethiopia. J. Hydrol. Reg. Stud. 2022, 44, 101218. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J.; Freer, J.E.; Lamb, R. A history of TOPMODEL. Hydrol. Earth Syst. Sci. 2021, 25, 527–549. [Google Scholar] [CrossRef]
- Melton, M.A. The Geomorphic and Paleoclimatic Significance of Alluvial Deposits in Southern Arizona: A Reply. J. Geol. 1966, 74, 102–106. [Google Scholar] [CrossRef]
- Arabameri, A.; Pal, S.C.; Rezaie, F.; Nalivan, O.A.; Chowdhuri, I.; Saha, A.; Lee, S.; Moayedi, H. Modeling groundwater potential using novel GIS-based machine-learning ensemble techniques. J. Hydrol. Reg. Stud. 2021, 36, 100848. [Google Scholar] [CrossRef]
- Andualem, T.G.; Demeke, G.G. Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. J. Hydrol. Reg. Stud. 2019, 24, 100610. [Google Scholar] [CrossRef]
- Al-Djazouli, M.O.; Elmorabiti, K.; Rahimi, A.; Amellah, O.; Fadil, O.A.M. Delineating of groundwater potential zones based on remote sensing, GIS and analytical hierarchical process: A case of Waddai, eastern Chad. Geojournal 2021, 86, 1881–1894. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Shu, L.; Wang, Y.; Tong, F.; Han, J.; Shu, W.; Li, D.; Wen, J. The controlling factors of the karst water hydrochemistry in a karst basin of southwestern China. Environ. Earth Sci. 2021, 80, 793. [Google Scholar] [CrossRef]
- Al-Hashim, M.H.; Al-Aidaros, A.; Zaidi, F.K. Geological and Hydrochemical Processes Driving Karst Development in Southeastern Riyadh, Central Saudi Arabia. Water 2024, 16, 1937. [Google Scholar] [CrossRef]
- Thapa, R.; Gupta, S.; Gupta, A.; Reddy, D.V.; Kaur, H. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India. Hydrogeol. J. 2018, 26, 899–922. [Google Scholar] [CrossRef]
- Zabidi, H.; Termizi, M.; Aliman, S.; Ariffin, K.S.; Khalil, N.L. Geological Structure and Geomorphological Aspects in Karstified Susceptibility Mapping of Limestone Formations. Procedia Chem. 2016, 19, 659–665. [Google Scholar] [CrossRef]
- Yeh, H.; Cheng, Y.; Lin, H.; Lee, C. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain. Environ. Res. 2016, 26, 33–43. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Tahmassebipoor, N.; Rahmati, O.; Noormohamadi, F.; Lee, S. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab. J. Geosci. 2016, 9, 1–18. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar]
- Farrar, D.E.; Glauber, R.R. Multicollinearity in Regression Analysis: The Problem Revisited. Rev. Econ. Stat. 1967, 49, 92–107. [Google Scholar] [CrossRef]
- Mordelet, F.; Vert, J.P. A bagging SVM to learn from positive and unlabeled examples. Pattern Recogn. Lett. 2014, 37, 201–209. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Rudra, R.R.; Talukdar, S.; Das, P.C.; Nur, M.S.; Alam, E.; Islam, M.K.; Islam, A.R.M.T. Future groundwater potential mapping using machine learning algorithms and climate change scenarios in Bangladesh. Sci. Rep. 2024, 14, 10328. [Google Scholar] [CrossRef]
- Huang, P.; Hou, M.; Sun, T.; Xu, H.; Ma, C.; Zhou, A. Sustainable groundwater management in coastal cities: Insights from groundwater potential and vulnerability using ensemble learning and knowledge-driven models. J. Clean. Prod. 2024, 442, 141152. [Google Scholar] [CrossRef]
- Hanshika, V.G.; Preethi, S.; Sreemathy, S.P.; Ezhillin Freeda, S. Flood Prediction Using Logistic Regression. In Proceedings of the 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT), Kollam, India, 10–11 August 2023; pp. 1174–1179. [Google Scholar]
- Guo, Z.; Shi, Y.; Huang, F.; Fan, X.; Huang, J. Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management. Geosci. Front. 2021, 12, 101249. [Google Scholar] [CrossRef]
- Mosavi, A.; Sajedi Hosseini, F.; Choubin, B.; Goodarzi, M.; Dineva, A.A.; Rafiei Sardooi, E. Ensemble Boosting and Bagging Based Machine Learning Models for Groundwater Potential Prediction. Water Resour. Manag. 2021, 35, 23–37. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Zhang, J.; Sun, D.; Zhou, X.; Mi, C.; Wen, H. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J. Environ. Manag. 2023, 332, 117357. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zuo, R.; Xiong, Y.; Xu, Y.; Nie, J.; Zhang, G. Dual-Branch Convolutional Neural Network and Its Post Hoc Interpretability for Mapping Mineral Prospectivity. Math. Geosci. 2024, 56, 1487–1515. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1135–1144. [Google Scholar]
- Lundberg, S.M.; Lee, S. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 4768–4777. [Google Scholar]
- Bakalowicz, M. Karst groundwater: A challenge for new resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Salvadori, M.; Pennisi, M.; Masciale, R.; Fidelibus, M.D.; Frollini, E.; Ghergo, S.; Parrone, D.; Preziosi, E.; Passarella, G. Isotopic study for evaluating complex groundwater circulation patterns, hydrogeological zoning, and water-rock interaction in a Mediterranean coastal karst environment. Sci. Total Environ. 2024, 955, 176850. [Google Scholar] [CrossRef]
- Xiong, Y.; Zuo, R. A positive and unlabeled learning algorithm for mineral prospectivity mapping. Comput. Geosci. 2021, 147, 104667. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, H.; Dong, J.; Wu, X.; Xu, H.; Niu, R. A Comparative Study of Landslide Susceptibility Mapping Using Bagging PU Learning in Class-Prior Probability Shift Datasets. Remote Sens. 2023, 15, 5547. [Google Scholar] [CrossRef]
Conditional Factors | Data Layers | Database Name | Data Source |
---|---|---|---|
Topographical factors | Elevation, slope, STI, MRVBF | ASTER-digital elevation model (spatial resolution 30 m) | https://search.earthdata.nasa.gov (accessed on 12 September 2024) |
Hydrological factors | TWI, MRN | ASTER-digital elevation model (spatial resolution 30 m) | https://search.earthdata.nasa.gov (accessed on 12 September 2024) |
DTR | National 1:250,000 Basic Geographic Database | https://www.webmap.cn (accessed on 10 October 2024) | |
Geological factors | Lithology, DTF | National 1:200,000 Geological Map | http://www.ngac.org.cn (accessed on 10 October 2024) |
CaO | Geochemical Series Maps of China’s Terrestrial Land Area (1:2,500,000) | https://geocloud.cgs.gov.cn (accessed on 10 October 2024) | |
Meteorological factor | Rainfall | WorldClim 2 (spatial resolution 1 km) | https://worldclim.org (accessed on 12 October 2024) |
Land cover factor | LC | The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019 | https://doi.org/10.5281/zenodo.4417810 (accessed on 12 October 2024) |
Category Number | Carbonate Rock Type | Stratigraphic Unit | Area Proportion |
---|---|---|---|
Group1 | Pure carbonates | Tangjiawan, Rongxian, Baqi, Guilin, Yaoyunling | 22.20% |
Group2 | Subpure carbonates | Baidong, Huangjin, E’toucun | 2.92% |
Group3 | Impure carbonates | Donggangling, Liujiang, Yingtang, Wuzhishan, Baping | 9.20% |
Group4 | Covering carbonates | Guiping, Wanggao, Baisha, Lingui | 11.90% |
Group5 | Clasolites | Bianxi, Huang’ai, Xindu, Qingxi, Doushantuo, Laobao, Fulu, Lijiapo, Chang’an, Gongdong, Lianhuashan, Shengping, Tianlinkou, Luzhai, Chuanbutou, Hexian, Luofu, Yongning, Folong’ao | 49.76% |
Group6 | Magmatites | \ | 4.02% |
Evaluation Index | Formula | Optimum Value | Meaning | |
---|---|---|---|---|
Name | Abbreviation | |||
Mean Square Error | MSE | 0 | The mean square of the difference between predicted and true values. | |
Root Mean Square Error | RMSE | 0 | The root mean square of the difference between predicted and true values. | |
Accuracy | A | 1 | The proportion of correctly predicted samples (including positive and negative samples) among all samples. | |
F-Score | F | 1 | A weighted average of recall and accuracy. |
Factor | Original Factor | New Factor | ||
---|---|---|---|---|
TOL | VIF | TOL | VIF | |
Elevation | 0.180 | 5.546 | 0.200 | 4.988 |
Slope | 0.112 | 8.924 | 0.211 | 4.748 |
STI | 0.140 | 7.164 | / | / |
MRVBF | 0.454 | 2.205 | 0.537 | 1.863 |
TWI | 1.000 | 1.000 | 1.000 | 1.000 |
MRN | 0.179 | 5.597 | / | / |
DTR | 0.476 | 2.103 | 0.476 | 2.102 |
Lithology | 0.867 | 1.153 | 0.867 | 1.153 |
CaO | 0.506 | 1.976 | 0.506 | 1.976 |
DTF | 0.562 | 1.779 | 0.562 | 1.779 |
Rafall | 0.957 | 1.045 | 0.958 | 1.043 |
LC | 0.565 | 1.770 | 0.565 | 1.770 |
Model Name | Common Hyper-Parameter | Hyper-Parameter of the Base Learner |
---|---|---|
LR-BPUL | n_estimators = 30, n_jobs = −1, max_samples = sum(y) | penalty = ‘l2’, C = 0.2, random_state = None, solver = ‘lbfgs’ |
KNN-BPUL | n_neighbors = 12, leaf_size = 10, metric = ‘minkowski’, p = 2 | |
RF-BPUL | n_estimators = 40, random_state = 0 | |
LightGBM-BPUL | Boosting = ‘gbdt’, colsample_bytree = 0.9, max_depth = 8, metric = ‘auc’, min_child_samples = 10, n_estimators = 40, num_leaves = 17, objective = ‘binary’, reg_lambda = 0.3, subsample = 0.9, verbose = −1 |
NO. | Model | A | F | MSE | RMSE | SRC_AUC | PRC_AUC |
---|---|---|---|---|---|---|---|
1 | LR-BPUL | 0.769 | 0.870 | 0.202 | 0.450 | 0.716 | 0.711 |
2 | KNN-BPUL | 0.827 | 0.905 | 0.189 | 0.434 | 0.784 | 0.735 |
3 | RF-BPUL | 0.914 | 0.955 | 0.105 | 0.324 | 0.927 | 0.836 |
4 | LightGBM-BPUL | 0.923 | 0.960 | 0.104 | 0.323 | 0.887 | 0.833 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, B.; Li, J.; Luo, T.; Wang, B.; Yang, C.; Shen, L. Positive–Unlabeled Learning-Based Hybrid Models and Interpretability for Groundwater Potential Mapping in Karst Areas. Water 2025, 17, 1422. https://doi.org/10.3390/w17101422
Bi B, Li J, Luo T, Wang B, Yang C, Shen L. Positive–Unlabeled Learning-Based Hybrid Models and Interpretability for Groundwater Potential Mapping in Karst Areas. Water. 2025; 17(10):1422. https://doi.org/10.3390/w17101422
Chicago/Turabian StyleBi, Benteng, Jingwen Li, Tianyu Luo, Bo Wang, Chen Yang, and Lina Shen. 2025. "Positive–Unlabeled Learning-Based Hybrid Models and Interpretability for Groundwater Potential Mapping in Karst Areas" Water 17, no. 10: 1422. https://doi.org/10.3390/w17101422
APA StyleBi, B., Li, J., Luo, T., Wang, B., Yang, C., & Shen, L. (2025). Positive–Unlabeled Learning-Based Hybrid Models and Interpretability for Groundwater Potential Mapping in Karst Areas. Water, 17(10), 1422. https://doi.org/10.3390/w17101422