Geochemical Insights into Health Risks from Potentially Toxic Elements in Rural Aqueducts of Cocle, Panama: Unveiling Links to Local Geology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Preparation
2.4. Laboratory Analysis
2.4.1. Macroscopic Petrographic Description
2.4.2. Sediment Analysis
Mineralogical Analysis
Physicochemical Analysis
2.4.3. Water Analysis
Physicochemical Analysis
Microbiological Analysis of Water
2.5. Methods
2.5.1. Geocumulation Index
2.5.2. Hydrochemical Characterization
2.5.3. Water Quality Index
2.5.4. Human Health Risk Assessment
Symbol | Parameters | Point Estimate Values and Probability Distributions | References |
---|---|---|---|
EF | Exposure frequency—adults and children | Triangular 345 (180–365) days year−1 | [53] |
EDa | Exposure duration—adults | 30 years | [54,55] |
EDc | Exposure duration—children | 6 years | |
ET | Exposure time of adults and children | Uniform (0.12–0.28) h day−1 | [56] |
SAa | Skin surface area—adults | Normal (18,400 ± 2300) cm2 | [55,55] |
SAc | Skin surface area—children | Normal (6800 ± 600) cm2 | |
Bwa | Body weight—adults | Normal (72 ± 15.9) kg | [56] |
Bwc | Body weight—children | Normal (15.6 ± 3.7) kg | [57,58] |
IRa | Ingestion rate of water—adults | 2.04 L day−1 | [55] |
IRc | Ingestion rate of water—children | 1.28 L day−1 | |
ATnc | Averaging time—non-carcinogen | 365 × ED | [51] |
ATca | Averaging time—carcinogen | 365 × 70 | [51] |
Kp | Permeability constant (cm hour−1) | Al, As, Ba, Cu, Fe, Mn, Pb, Sr, and V = 0.001, Co = 0.0004, and Zn = 0.0006 | [59] |
RfD | Reference dose (mg kg−1 day−1) | Al = 1, As = 0.0003; Ba = 0.20, Fe = 0.7, Co = 0.0003, Cu = 0.04; Mn = 0.14, Pb = 0.0035; Sr = 0.60, V = 0.01, Zn = 0.3 | [59] |
SF | Slope factor (kg day mg−1) | As = 1.5, Pb = 0.0085 | [59] |
2.5.5. Data Processing
3. Results
3.1. Rocks
3.2. Sediments
3.2.1. Mineralogical Analysis
3.2.2. Physicochemical Analysis
3.2.3. Multi-Elemental Analysis
3.2.4. Geocumulation Index
3.3. Water
3.3.1. Physicochemical Analysis
3.3.2. Hydrochemical Characterization
3.3.3. Multi-Elemental Analysis
3.3.4. Microbiology Analyses
3.3.5. Water Quality Index
3.3.6. Probabilistic Human Health Risk Assessment
4. Discussion
4.1. Potential Health Effects of PTE Exposure
4.2. Origin of PTEs in the Study Area
4.3. Implications for Water Management and Public Policy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glazier, D.S. Springs. In Encyclopedia of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2009; pp. 734–755. [Google Scholar] [CrossRef]
- Los Huertos, M. The Stage: Typologies of Aquatic Systems. In Ecology and Management of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2020; pp. 225–256. [Google Scholar] [CrossRef]
- MINSA. Situación de Salud, Distrito de Antón; MINSA: Cocle, Panama, 2013.
- CSS. Análisis de Situación de La Prestación de La Salud y Económicas de La Caja de Seguro Social de La Provincia de Coclé; CSS: Panama City, Panama, 2021. [Google Scholar]
- MINSA. Análisis Del Cáncer En La República de Panamá 2015–2020; MINSA: Cocle, Panama, 2022.
- Flores-Stulzer, E.; Villalobos-Sandí, N.; Piedra-Castro, L.; Scholz, C. Evaluación Breve de La Presencia de Diatomeas y Su Relación Con Algunos Parámetros Físico-Químicos En El Río Pirro, Heredia, Costa Rica. Uniciencia 2017, 31, 99. [Google Scholar] [CrossRef]
- Ortiz-Letechipia, J.; González-Trinidad, J.; Júnez-Ferreira, H.E.; Bautista-Capetillo, C.; Dávila-Hernández, S. Evaluation of Groundwater Quality for Human Consumption and Irrigation in Relation to Arsenic Concentration in Flow Systems in a Semi-Arid Mexican Region. Int. J. Environ. Res. Public Health 2021, 18, 8045. [Google Scholar] [CrossRef] [PubMed]
- Sabino, H.; Menezes, J.; de Lima, L.A. Indexing the Groundwater Quality Index for Human Consumption (GWQIHC) for Urban Coastal Aquifer Assessment. Environ. Earth Sci. 2020, 79, 1–14. [Google Scholar] [CrossRef]
- Verma, S.; Mukherjee, A.; Mahanta, C.; Choudhury, R.; Mitra, K. Influence of Geology on Groundwater–Sediment Interactions in Arsenic Enriched Tectono-Morphic Aquifers of the Himalayan Brahmaputra River Basin. J. Hydrol. (Amst.) 2016, 540, 176–195. [Google Scholar] [CrossRef]
- Rashid, A.; Ayub, M.; Ullah, Z.; Ali, A.; Sardar, T.; Iqbal, J.; Gao, X.; Bundschuh, J.; Li, C.; Khattak, S.A.; et al. Groundwater Quality, Health Risk Assessment, and Source Distribution of Heavy Metals Contamination around Chromite Mines: Application of GIS, Sustainable Groundwater Management, Geostatistics, PCAMLR, and PMF Receptor Model. Int. J. Environ. Res. Public Health 2023, 20, 2113. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.M.; Angeli, J.L.F.; Ferreira, P.A.L.; de Mahiques, M.M.; Figueira, R.C.L. Critical Evaluation of Different Methods to Calculate the Geoaccumulation Index for Environmental Studies: A New Approach for Baixada Santista—Southeastern Brazil. Mar. Pollut. Bull. 2018, 127, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Mestanza-Ramón, C.; Jiménez-Oyola, S.; Montoya, A.V.G.; Vizuete, D.D.C.; D’Orio, G.; Cedeño-Laje, J.; Straface, S. Assessment of Hg Pollution in Stream Waters and Human Health Risk in Areas Impacted by Mining Activities in the Ecuadorian Amazon. Environ. Geochem. Health 2023, 45, 7183–7197. [Google Scholar] [CrossRef]
- Lora-Ariza, B.; Piña, A.; Donado, L.D. Assessment of Groundwater Quality for Human Consumption and Its Health Risks in the Middle Magdalena Valley, Colombia. Sci. Rep. 2024, 14, 11346. [Google Scholar] [CrossRef] [PubMed]
- Thabit, H.; Haider, H.; Ghumman, A.R.; Alattyih, W.; Alodah, A.; Hu, G.; Shafiquzzaman, M. Fuzzy-Based Human Health Risk Assessment for Shallow Groundwater Well Users in Arid Regions. Sustainability 2023, 15, 15792. [Google Scholar] [CrossRef]
- Joshi, P.; Raju, N.J.; Siddaiah, N.S.; Karunanidhi, D. Environmental Pollution of Potentially Toxic Elements (PTEs) and Its Human Health Risk Assessment in Delhi Urban Environs, India. Urban. Clim. 2022, 46, 101309. [Google Scholar] [CrossRef]
- Lentini, P.; Zanoli, L.; Granata, A.; Signorelli, S.S.; Castellino, P.; Dell’Aquila, R. Kidney and Heavy Metals—The Role of Environmental Exposure (Review). Mol. Med. Rep. 2017, 15, 3413–3419. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.Y.; Lee, S.; Surenbaatar, U.; Lim, H.J.; Kim, B.G.; Eom, S.Y.; Cho, Y.M.; Kim, W.J.; Yu, B.C.; Lee, K.; et al. Association between Levels of Exposure to Heavy Metals and Renal Function Indicators of Residents in Environmentally Vulnerable Areas. Sci. Rep. 2023, 13, 2856. [Google Scholar] [CrossRef]
- Yuan, T.H.; Jhuang, M.J.; Yeh, Y.P.; Chen, Y.H.; Lu, S.; Chan, C.C. Relationship between Renal Function and Metal Exposure of Residents Living near the No. 6 Naphtha Cracking Complex: A Cross-Sectional Study. J. Formos. Med. Assoc. 2021, 120, 1845–1854. [Google Scholar] [CrossRef]
- Moody, E.C.; Coca, S.G.; Sanders, A.P. Toxic Metals and Chronic Kidney Disease: A Systematic Review of Recent Literature. Curr. Environ. Health Rep. 2018, 5, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Onan, E.; Ulu, S.; Güngör, Ö. Heavy Metals and Kidney. Turk. J. Nephrol. 2024, 33, 244–251. [Google Scholar] [CrossRef]
- Sabath, E.; Robles-Osorio, M.L. Medio Ambiente y Riñón: Nefrotoxicidad Por Metales Pesados. Nefrologia 2012, 32, 279–286. [Google Scholar]
- Speer, R.M.; Zhou, X.; Volk, L.B.; Liu, K.J.; Hudson, L.G. Arsenic and Cancer: Evidence and Mechanisms. Adv. Pharmacol. 2023, 96, 151–202. [Google Scholar] [CrossRef] [PubMed]
- Vagnoni, G.; Bortolotti, E.; Checchi, S.; Saieva, C.; Berti, G.; Doccioli, C.; Caini, S. Lead (Pb) in Biological Samples in Association with Cancer Risk and Mortality: A Systematic Literature Review. Cancer Epidemiol. 2024, 92, 102630. [Google Scholar] [CrossRef] [PubMed]
- Oyagbemi, A.A.; Akinrinde, A.S.; Adebiyi, O.E.; Jarikre, T.A.; Omobowale, T.O.; Ola-Davies, O.E.; Saba, A.B.; Emikpe, B.O.; Adedapo, A.A. Luteolin Supplementation Ameliorates Cobalt-Induced Oxidative Stress and Inflammation by Suppressing NF-KB/Kim-1 Signaling in the Heart and Kidney of Rats. Environ. Toxicol. Pharmacol. 2020, 80, 103488. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. ToxFAQsTM for Copper; ATSDR: Atlanta, GA, USA, 2024.
- Guo, F.; Lin, Y.; Meng, L.; Peng, L.; Zhang, H.; Zhang, X.; Jin, M.; Wang, J.; Zhang, Y.; Tang, M.; et al. Association of Copper Exposure with Prevalence of Chronic Kidney Disease in Older Adults. Clin. Nutr. 2022, 41, 2720–2728. [Google Scholar] [CrossRef]
- Gembillo, G.; Labbozzetta, V.; Giuffrida, A.E.; Peritore, L.; Calabrese, V.; Spinella, C.; Stancanelli, M.R.; Spallino, E.; Visconti, L.; Santoro, D. Potential Role of Copper in Diabetes and Diabetic Kidney Disease. Metabolites 2022, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- INEC. Superficie, Población y Densidad de Población en la República de Panamá, Según Provincia, Comarca Indígena, Distrito y Corregimiento: Censos de 2000, 2010 y 2023; INEC: Panama City, Panama, 2023.
- Autoridad Nacional de Ambiente Atlas Ambiental de La República de Panamá. Available online: https://sinia.gob.pa/atlas-ambiental-de-la-republica-panama/ (accessed on 4 November 2024).
- González-González, A. Aplicación de Isótopos Ambientales Para Determinar Zonas de Recarga En El Complejo Sistema Acuífero de La Subcuenca Del Río Zaratí. In Proceedings of the XIX Congreso Nacional de Ciencia y Tecnología—APANAC 2023, Panama City, Panama, 26–29 September 2023; pp. 190–195. [Google Scholar]
- ETESA Nota Explicativa Del Mapa Hidrogeológico de Panamá; ETESA: Panama City, Panama, 1999.
- IMHPA Mapa Hidrogeológico de Panamá. Available online: https://www.imhpa.gob.pa/es/mapa-hidrogeologicopanama (accessed on 17 December 2024).
- American Chemical Society. Standard Methods For the Examination of Water and Wastewater, 22nd ed.; APHA, AWWA, WEF, Eds.; American Chemical Society: Washington, DC, USA, 2012. [Google Scholar]
- González-Valoys, A.C.; Esbrí, J.M.; Campos, J.A.; Arrocha, J.; García-Noguero, E.M.; Monteza-Destro, T.; Martínez, E.; Jiménez-Ballesta, R.; Gutiérrez, E.; Vargas-Lombardo, M.; et al. Ecological and Health Risk Assessments of an Abandoned Gold Mine (Remance, Panama): Complex Scenarios Need a Combination of Indices. Int. J. Environ. Res. Public Health 2021, 18, 9369. [Google Scholar] [CrossRef]
- ASTM D4972-19; Standard Test Methods for pH of Soils. American Society Testing of Materials: West Conshohocken, PA, USA, 2019.
- ASTM D2974—20E1; Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, and Organic Material of Peat and Other Organic Soils. American Society Testing of Materials: West Conshohocken, PA, USA, 2020.
- ASTM D7928—21E1; Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. American Society Testing of Materials: West Conshohocken, PA, USA, 2021.
- ASTM. ASTM D2434-22, Standard Test Methods for Measurement of Hydraulic Conductivity of Coarse-Grained Soils; American Society Testing of Materials: West Conshohocken, PA, USA, 2022. [Google Scholar]
- Higueras, P.; Esbrí, J.M.; García-Ordiales, E.; González-Corrochano, B.; López-Berdonces, M.A.; García-Noguero, E.M.; Alonso-Azcárate, J.; Martínez-Coronado, A. Potentially Harmful Elements in Soils and Holm-Oak Trees (Quercus ilex L.) Growing in Mining Sites at the Valle de Alcudia Pb-Zn District (Spain)–Some Clues on Plant Metal Uptake. J. Geochem. Explor. 2017, 182, 166–179. [Google Scholar] [CrossRef]
- Melaku, S.; Dams, R.; Moens, L. Determination of Trace Elements in Agricultural Soil Samples by Inductively Coupled Plasma-Mass Spectrometry: Microwave Acid Digestion versus Aqua Regia Extraction. Anal. Chim. Acta 2005, 543, 117–123. [Google Scholar] [CrossRef]
- González-Valoys, A.C.; Arrocha, J.; Monteza-Destro, T.; Vargas-Lombardo, M.; Esbrí, J.M.; Garcia-Ordiales, E.; Jiménez-Ballesta, R.; García-Navarro, F.J.; Higueras, P. Environmental Challenges Related to Cyanidation in Central American Gold Mining; the Remance Mine (Panama). J. Environ. Manag. 2022, 302, 113979. [Google Scholar] [CrossRef] [PubMed]
- USEPA. EPA Method 300.1, Revision 1.0: Determination of Inorganic Anions in Drinking Water by Ion Chromatography; USEPA: Washington, DC, USA, 1993.
- Costa, A.P.T.; Schneck, F. Diatoms as Indicators in Running Waters: Trends of Studies on Biological Assessment and Monitoring. Environ. Monit. Assess. 2022, 194, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hernández González, S.E. Diatomeas Como Indicadoras de Calidad de Agua En La Laguna Acahualinca (Managua, Nicaragua). Rev. Cient. Agua Conoc. 2016, 2, 10–18. [Google Scholar]
- Autoridad del Canal de Panamá. Diatomeas del Canal de Panamá: Bioindicadores y Otros Estudios Pioneros; Autoridad del Canal de Panamá: Panama City, Panama, 2012. [Google Scholar]
- Ahamad, M.I.; Song, J.; Sun, H.; Wang, X.; Mehmood, M.S.; Sajid, M.; Su, P.; Khan, A.J. Contamination Level, Ecological Risk, and Source Identification of Heavy Metals in the Hyporheic Zone of the Weihe River, China. Int. J. Environ. Res. Public Health 2020, 17, 1070. [Google Scholar] [CrossRef] [PubMed]
- Water: Agua Potable En Español Estándares Del Reglamento Nacional Primario de Agua Potable. Available online: https://archive.epa.gov/water/archive/web/html/estandares.html (accessed on 10 September 2024).
- Tiwari, A.K.; Singh, A.K.; Singh, A.K.; Singh, M.P. Hydrogeochemical Analysis and Evaluation of Surface Water Quality of Pratapgarh District, Uttar Pradesh, India. Appl. Water Sci. 2017, 7, 1609–1623. [Google Scholar] [CrossRef]
- Nawaz, R.; Nasim, I.; Irfan, A.; Islam, A.; Naeem, A.; Ghani, N.; Irshad, M.A.; Latif, M.; Nisa, B.U.; Ullah, R. Water Quality Index and Human Health Risk Assessment of Drinking Water in Selected Urban Areas of a Mega City. Toxics 2023, 11, 577. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund, Vol. 3: Part A, Process for Conducting Probabilistic Risk Assessment; Office of Emergency and Remedial Response, USEPA: Washington, DC, USA, 2001.
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E). Supplemental Guidance for Dermal Risk Assessment; USEPA: Washington, DC, USA, 2004.
- USDoE RAIS: Risk Assessment Information System. Available online: https://rais.ornl.gov/ (accessed on 15 September 2024).
- USEPA. Proposed Guidelines for Carcinogen Risk Assessment, Environmental Protection Agency; USEPA: Washington, DC, USA, 1996.
- Israeli, M.; Nelson, C.B. Distribution and Expected Time of Residence for U.S. Households. Risk Anal. 1992, 12, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Spence, L.; Walden, T. RISC4 User’s Manual Version 4.0. 2001; Bp-Amoco Oil: Sunbury, UK, 2001. Available online: https://www.isprambiente.gov.it/contentfiles/00002500/2516-c2179-risc4-manual.pdf (accessed on 23 September 2024).
- Jiménez-Oyola, S.; Chavez, E.; García-Martínez, M.J.; Ortega, M.F.; Bolonio, D.; Guzmán-Martínez, F.; García-Garizabal, I.; Romero, P. Probabilistic Multi-Pathway Human Health Risk Assessment Due to Heavy Metal(Loid)s in a Traditional Gold Mining Area in Ecuador. Ecotoxicol. Environ. Saf. 2021, 224, 112629. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.; Browne, N.; Duletsky, S.; Raming, J.; Warn, T. Development of Statistical Distributions or Ranges of Standard Factors Used in Exposure Assessments. 1985. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/91007IEM.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1981+Thru+1985&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C81thru85%5CTxt%5C00000015%5C91007IEM.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 23 September 2024).
- Carr, C.J. American Industrial Health Council: Exposure Factors Sourcebook. Regul. Toxicol. Pharmacol. 1994, 20, 212. [Google Scholar] [CrossRef]
- RAIS Toxicity Profiles. Risk Assessment Information System. Available online: http://rais.ornl.gov (accessed on 2 March 2022).
- IRHE. Investigaciones Geofísicas en el Estudio de Prefactibilidad del Área del Valle de Antón: Informe Final; IRHE: Panama City, Panama, 1987. [Google Scholar]
- Ministry of Environment and Energy. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario; Ministry of Environment and Energy: Guelph, ON, Canada, 1993.
- Oses, E.; Navarro, X.; Villarreal, J. Evaluación de La Concentración de Metales Pesados En La Cuenca Del Río Santa María. Rev. Investig. Agropecu. 2023, 5, 98–112. [Google Scholar]
- Villarreal-Nuñez, J.; Santo-Pineda, A.; Villalaz-Pérez, J.; Ballesteros, N.; Ramos-Zachrisson, I. Metales Pesados En Suelos y Sedimentos En La Cuenca Del Río La Villa-Panamá. Cienc. Agropecu. 2018, 29, 41–64. [Google Scholar]
- Zhao, L.; Tian, W.; Liu, K.; Yang, B.; Guo, D.; Lian, B. An Empirical Relationship of Permeability Coefficient for Soil with Wide Range in Particle Size. J. Soils Sediments 2024, 24, 2926–2937. [Google Scholar] [CrossRef]
- Wang, S.; Fu, J.; Zhang, C.; Yang, J. Shield Machine Selection. In Shield Tunnel Engineering; Elsevier: Amsterdam, The Netherlands, 2021; pp. 115–171. [Google Scholar]
- Shchipalkina, N.V.; Pekov, I.V.; Britvin, S.N.; Koshlyakova, N.N.; Sidorov, E.G. Arsenic and Phosphorus in Feldspar Framework: Sanidine–Filatovite Solid Solution Series from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia. Phys. Chem. Miner. 2020, 47, 1. [Google Scholar] [CrossRef]
- Uribe-Mogollon, C.; Maher, K. White Mica Geochemistry of the Copper Cliff Porphyry Cu Deposit: Insights from a Vectoring Tool Applied to Exploration. Econ. Geol. 2018, 113, 1269–1295. [Google Scholar] [CrossRef]
- Haldar, S.K. Metamorphic Rocks. In Introduction to Mineralogy and Petrology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 269–289. [Google Scholar]
- Tully, J.; DeSantis, M.K.; Schock, M.R. Water Quality–Pipe Deposit Relationships in Midwestern Lead Pipes. AWWA Water Sci. 2019, 1, e1127. [Google Scholar] [CrossRef]
- Geology Science. Bowen’s Reaction Series. Available online: https://geologyscience.com/geology/bowens-reaction-series/ (accessed on 13 November 2024).
- EPA 815-F-00-007; National Primary Drinking Water Regulation Standards. USEPA: Washington, DC, USA. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 23 November 2024).
- Ministerio de Comerio e Industrias (MICI). Reglamento Técnico DGNTI-COPANIT 23-395-99, Agua. Agua Potable. Definiciones y Requisitos Generales; Ministerio de Comerio e Industrias (MICI): Panama City, Panama, 1999.
- Ministerio de Economía y Finanzas (MEF). Decreto Ejecutivo No. 75, Por el Cual Se Dicta la Norma Primaria de Calidad Ambiental y Niveles de Calidad Para las Aguas Continentales de Uso Recreativo Con y Sin Contacto Directo; Ministerio de Economía y Finanzas (MEF): Panama City, Panama, 2008.
- Ministerio de Comerio e Industrias (MICI). Reglamento Técnico DGNTI-COPANIT 24-99, Agua. Calidad. Reutilización de Las Aguas Residuales Tratadas; Ministerio de Comerio e Industrias (MICI): Panama City, Panama, 2000.
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 2nd ed.; Recommendations; WHO: Geneva, Switzerland, 1993; Volume 1. [Google Scholar]
- Holmes, M.; Campbell, E.E.; de Wit, M.; Taylor, J.C. Can Diatoms Be Used as a Biomonitoring Tool for Surface and Groundwater? Towards a Baseline for Karoo Water. S. Afr. J. Bot. 2023, 161, 211–221. [Google Scholar] [CrossRef]
- Cantonati, M.; Casoria, C.; Gerecke, R.; Bilous, O.P.; Maisto, G.; Segadelli, S.; Spitale, D.; Steinbauer, A.; Vogel, S.; Saber, A.A. Diatom Indicators of Fluctuating/Intermittent Discharge from Springs in Two Bavarian Nature Conservation Areas. Diversity 2023, 15, 915. [Google Scholar] [CrossRef]
- Kurttio, P.; Pukkala, E.; Kahelin, H.; Auvinen, A.; Pekkanen, J. Arsenic Concentrations in Well Water and Risk of Bladder and Kidney Cancer in Finland. Environ. Health Perspect. 1999, 107, 705–710. [Google Scholar] [CrossRef]
- Liao, C.M.; Shen, H.H.; Chen, C.L.; Hsu, L.I.; Lin, T.L.; Chen, S.C.; Chen, C.J. Risk Assessment of Arsenic-Induced Internal Cancer at Long-Term Low Dose Exposure. J. Hazard. Mater. 2009, 165, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Roh, T.; Lynch, C.F.; Weyer, P.; Wang, K.; Kelly, K.M.; Ludewig, G. Low-Level Arsenic Exposure from Drinking Water Is Associated with Prostate Cancer in Iowa. Environ. Res. 2017, 159, 338–343. [Google Scholar] [CrossRef]
- Shokoohi, R.; Khazaei, M.; Karami, M.; Seidmohammadi, A.; Berijani, N.; Khotanlou, H.; Torkshavand, Z. The Relationship between Chronic Exposure to Arsenic through Drinking Water and Hearing Function in Exposed Population Aged 10–49 Years: A Cross-Sectional Study. Ecotoxicol. Environ. Saf. 2021, 211, 111939. [Google Scholar] [CrossRef] [PubMed]
- Bundschuh, J.; Litter, M.I.; Parvez, F.; Román-Ross, G.; Nicolli, H.B.; Jean, J.S.; Liu, C.W.; López, D.; Armienta, M.A.; Guilherme, L.R.G.; et al. One Century of Arsenic Exposure in Latin America: A Review of History and Occurrence from 14 Countries. Sci. Total Environ. 2012, 429, 2–35. [Google Scholar] [CrossRef] [PubMed]
- Moreno Velásquez, I.; Castro, F.; Gómez, B.; Cuero, C.; Motta, J. Chronic Kidney Disease in Panama: Results From the PREFREC Study and National Mortality Trends. Kidney Int. Rep. 2017, 2, 1032–1041. [Google Scholar] [CrossRef]
- Courville, K.; Bustamante, N.; Hurtado, B.; Pecchio, M.; Rodríguez, C.; Núñez-Samudio, V.; Landires, I. Mesoamerican Nephropathy in Central Panama. medRxiv 2022. [Google Scholar] [CrossRef]
- MINSA. Resultados de Análisis Bacteriológicos Por Distrito, Penonomé, 2019–2023, Para Los Corregimientos de Pajonal, San Juan de Dios y Caballero; MINSA: Cocle, Panama, 2024.
- MINSA. Morbilidades Relacionadas al Consumo Del Agua, en Los Lugares Poblados de Los Corregimientos: Caballero, Pajonal y San Juan de Dios, Año: 2019, 2020, 2021, 2022, 2023; MINSA: Cocle, Panama, 2024. [Google Scholar]
- Tosca, N.J.; McLennan, S.M.; Dyar, M.D.; Sklute, E.C.; Michel, F.M. Fe Oxidation Processes at Meridiani Planum and Implications for Secondary Fe Mineralogy on Mars. J. Geophys. Res. Planets 2008, 113, E05005. [Google Scholar] [CrossRef]
- Verplanck, P.L.; Nordstrom, D.K.; Bove, D.J.; Plumlee, G.S.; Runkel, R.L. Naturally Acidic Surface and Ground Waters Draining Porphyry-Related Mineralized Areas of the Southern Rocky Mountains, Colorado and New Mexico. Appl. Geochem. 2009, 24, 255–267. [Google Scholar] [CrossRef]
- USEPA. Region 4 Regional Human Health Risk Assessment Supplemental Guidance. Available online: https://www.epa.gov/risk/regional-human-health-risk-assessment-supplemental-guidance (accessed on 21 December 2024).
- USEPA. Risk Assessment Forum White Paper: Probabilistic Risk Assessment Methods and Case Studies. Available online: https://www.epa.gov/scientific-leadership/risk-assessment-forum-white-paper-probabilistic-risk-assessment-methods-and (accessed on 21 December 2024).
Igeo | Class | Sediment Quality |
---|---|---|
<0 | 0 | Uncontaminated |
0–1 | 1 | Uncontaminated to moderately contaminated |
1–2 | 2 | Moderately contaminated |
2–3 | 3 | Moderate to heavily contaminated |
3–4 | 4 | Heavily contaminated |
4–5 | 5 | Heavily to extremely contaminated |
>5 | 6 | Extremely contaminated |
WQI Value | Water Quality Ratings | Usages |
---|---|---|
0–25 | Excellent | Drinking, irrigation, and industrial |
26–50 | Good | Domestic, irrigation, and industrial |
51–75 | Poor | Irrigation |
76–100 | Very Poor | Restricted use for irrigation |
>100 | Unfit, unsuitable for drinking | Proper treatment required before use |
Sample | Municipality, Site | Rock Type | Macroscopic Description |
---|---|---|---|
5 R | Caballero, Las Claritas | Tuff | It is an igneous rock, color N8 (very light gray); clastic structure, pyroclastic texture, with pumice fragments, little magnetite and minerals such as mica (biotite) and quartz. It has a hardness of 3 and is slightly weathered. |
15 R | San Juan de Dios, La India | Dacite | Rock of volcanic origin, color 10R 6/2 (pale red); clastic structure, texture, presents mica and plagioclase. It has a hardness of 3 and a degree of weathering. |
27 R | Pajonal, La Mina | Tuff | It is an igneous rock, color 10YR 8/2 (very pale orange); clastic structure, pomiseous scoriaceous texture, with presence of pumice, hematitic oxidations and minerals such as mica and quartz. It has a hardness of 1 and is moderately weathered. |
34 R1 | Caballero, Campana | Andesite | Igneous rock, color N8 (very light gray); clastic structure, texture, made up of plagioclase crystals, hornblende and biotite. It has a hardness of 6 and is slightly to moderately weathered. |
34 R2 | Caballero, Campana | Dacite | Rock of volcanic origin, color 5R 8/2 (grayish pink); fine-grained structure, porphyritic texture, with quartz, hornblende and plagioclase. It has a hardness of 3 and a degree of weathering. |
pH | EC | OM | CaCO3 | SO4 | Al | As | Ba | Ca | Cd | Co | Cr | Cu | Fe | Hg | Mn | Ni | Pb | Sb | Se | V | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dS m−1 | % | % | % | % | mg kg−1 | % | mg kg−1 | % | mg kg−1 | |||||||||||||
Mean | 6.87 | 0.036 | 1.70 | 0.47 | <0.05 | 1.33 | 0.31 | 63.30 | 0.41 | <0.10 | 7.74 | 9.65 | 23.83 | 3.82 | 0.01 | 355.45 | 8.94 | 1.88 | <0.10 | 0.93 | 82.35 | 62.65 |
Min | 5.78 | 0.009 | 0.20 | <0.02 | <0.05 | 0.64 | <0.50 | 33.00 | 0.20 | <0.10 | 1.70 | 2.00 | 12.40 | 0.96 | 0.01 | 124.00 | 2.10 | 1.00 | <0.10 | 0.70 | 15.00 | 20.00 |
p95 | 7.59 | 0.082 | 4.78 | 1.37 | <0.05 | 2.61 | 0.62 | 96.30 | 0.62 | <0.10 | 15.29 | 22.6 | 38.25 | 8.38 | 0.02 | 578.50 | 21.34 | 3.14 | <0.10 | 1.10 | 203.15 | 137.10 |
Max | 9.12 | 0.196 | 7.60 | 1.82 | <0.05 | 3.72 | 1.00 | 178.00 | 0.65 | <0.10 | 30.30 | 34.0 | 41.0 | 16.9 | 0.03 | 1120.0 | 39.10 | 3.90 | 0.10 | 1.10 | 415.00 | 234.00 |
SD | 0.65 | 0.038 | 1.79 | 0.54 | 0.00 | 0.76 | 0.18 | 31.52 | 0.14 | <0.10 | 6.33 | 7.60 | 8.26 | 3.53 | 0.01 | 221.20 | 8.53 | 0.72 | 0.01 | 0.12 | 90.37 | 49.06 |
LQ | 0.01 | 0.001 | 0.01 | 0.02 | 0.05 | 0.01 | 0.50 | 1.00 | 0.01 | 0.10 | 0.10 | 1.00 | 0.20 | 0.01 | 0.01 | 1.00 | 0.10 | 0.10 | 0.10 | 0.50 | 2.00 | 1.00 |
Parameter | Canada Standard [61] | Santamaría River [62] | La Villa River [63] |
---|---|---|---|
mg kg−1 | |||
As | 6 | - | 8.01 |
Cd | 0.6 | - | 0.34 |
Co | - | - | - |
Cr | 26 | - | 78.5 |
Cu | 16 | 46.16 | 26.4 |
Fe | 2 | - | 1.73 |
Mn | 460 | - | 46.1 |
Ni | 16 | 13.8 | 2.44 |
Pb | 31 | 4.57 | 1.78 |
Zn | 120 | 114.24 | 59.8 |
Sand | Silt | Clay | k | |
---|---|---|---|---|
% | % | % | cm seg−1 | |
Mean | 73.90 | 19.24 | 1.82 | 8.47 × 10−2 |
Min | 55.30 | 12.90 | 0.10 | 3.95 × 10−3 |
p95 | 85.70 | 30.78 | 9.82 | 3.07 × 10−1 |
Max | 85.70 | 33.50 | 15.20 | 3.79 × 10−1 |
SD | 10.33 | 5.59 | 3.66 | 1.64 × 10−1 |
Variable | PC1 | PC2 |
---|---|---|
Quartz | 0.197 | −0.238 |
Plagioclase | −0.286 | 0.064 |
Feldspar | 0.052 | −0.085 |
Amphibole | −0.259 | −0.067 |
Mica | 0.098 | 0.300 |
Serpentine | 0.115 | 0.031 |
Magnetite | −0.072 | −0.359 |
Amorphous | 0.254 | 0.097 |
pH | −0.035 | 0.218 |
EC | 0.027 | 0.272 |
OM | 0.285 | −0.003 |
Texture | 0.000 | 0.000 |
CaCO3 | 0.265 | 0.050 |
SO4 | 0.000 | 0.000 |
Al | 0.289 | 0.011 |
As | 0.071 | −0.162 |
Ba | 0.267 | 0.082 |
Ca | −0.111 | 0.325 |
Cd | 0.000 | 0.000 |
Co | 0.159 | 0.041 |
Cr | 0.240 | −0.055 |
Cu | 0.085 | 0.333 |
Fe | 0.082 | −0.348 |
Hg | 0.285 | −0.035 |
Mn | 0.203 | 0.162 |
Ni | 0.021 | 0.163 |
Pb | 0.271 | 0.049 |
Sb | 0.000 | 0.000 |
Se | 0.184 | 0.001 |
V | 0.067 | −0.357 |
Zn | 0.245 | −0.121 |
pH | TDSs | OD | Na | Ca | Mg | K | Cl | NO3 | SO4 | CO3 | HCO3 | Al | V | Mn | Fe | Cu | Co | Zn | Sr | As | Sb | Ba | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg L−1 | μg L−1 | |||||||||||||||||||||||
Min | 6.03 | 60.50 | 2.83 | 6.08 | 4.60 | 0.82 | 0.79 | 3.01 | 0.02 | 0.08 | <1.00 | 43.00 | 6.00 | 0.80 | < 0.10 | < 10.00 | 1.10 | <0.01 | 1.70 | 90.90 | <0.03 | 0.02 | 4.60 | 0.03 |
p50 | 6.45 | 85.63 | 6.11 | 11.85 | 8.75 | 2.10 | 3.14 | 3.92 | 0.15 | 0.38 | <1.00 | 58.50 | 21.50 | 1.75 | 1.70 | 20.00 | 2.10 | 0.02 | 5.05 | 190.50 | 0.10 | 0.03 | 48.70 | 0.25 |
p95 | 7.34 | 111.50 | 8.76 | 14.75 | 12.93 | 3.75 | 4.19 | 5.50 | 0.36 | 0.70 | <1.00 | 74.30 | 88.75 | 2.75 | 10.65 | 197.50 | 9.08 | 0.07 | 16.30 | 272.50 | 0.18 | 0.06 | 79.55 | 1.42 |
Max | 8.08 | 325.00 | 9.30 | 15.60 | 14.60 | 4.03 | 4.49 | 5.51 | 0.45 | 0.75 | <1.00 | 77.00 | 214.00 | 5.00 | 22.20 | 470.00 | 17.70 | 0.24 | 90.20 | 307.00 | 0.22 | 0.09 | 100.00 | 5.04 |
SD | 0.46 | 42.48 | 1.81 | 2.11 | 2.38 | 0.88 | 0.98 | 0.91 | 0.13 | 0.24 | 0.00 | 10.70 | 38.85 | 0.73 | 4.47 | 94.10 | 3.23 | 0.04 | 14.55 | 54.97 | 0.04 | 0.01 | 23.31 | 0.87 |
LQ | 0.01 | 0.01 | 0.01 | 0.01 | 0.70 | 0.01 | 0.03 | 0.03 | 0.01 | 0.03 | 1.00 | 1.00 | 2.00 | 0.10 | 0.10 | 10.00 | 0.20 | 0.01 | 0.50 | 0.04 | 0.03 | 0.01 | 0.10 | 0.01 |
Parameter | Drinking Water [72] | Recreational Use (Direct Contact) [73] | Irrigation Water [74] | Aquaculture Water [74] | Drinking Water According to the WHO [75] | Drinking Water According to the USEPA [71] |
---|---|---|---|---|---|---|
mg L−1 | ||||||
pH | 6.5–8.5 | 6.5–8.5 | 6.0–9.0 | 6.0–9.0 | - | - |
TDS | 500 | <500 | - | - | - | - |
OD | - | >7.0 | - | >5.0 | - | - |
NO3 | 10 | - | - | - | 50 | 10 |
SO4 | 250 | - | 350 | - | 500 | - |
Na | 200 | - | 35% | - | 200 | - |
K | - | - | - | - | 3000 | - |
Cl | 250 | - | 200 | - | 250 | - |
Al | 0.2 | - | 5.0 | 0.1 | 0.1–0.2 | - |
V | - | - | 0.1 | - | - | - |
Mn | 0.1 | - | 0.2 | - | 0.4 | - |
Fe | 0.3 | - | 5.0 | 0.3 | 2.0 | - |
Cu | 1.0 | - | 0.002 | 0.002 | 2.0 | 1.3 |
Co | - | - | 0.05 | - | - | - |
Zn | 5.0 | - | 2.0 | 0.03 | 3.0 | - |
As | 0.01 | <0.1 | 0.1 | 0.05 | 0.01 | 0.05 |
Sb | 0.05 | - | - | - | 0.02 | 0.006 |
Ba | 0.7 | - | 4.0 | - | 1.3 | 2.0 |
Pb | 0.01 | <0.05 | 5.0 | 0.002 | 0.01 | 0.0 |
Variable | PC1 | PC2 |
---|---|---|
pH | −0.119 | 0.535 |
TDS | 0.336 | 0.196 |
DO | −0.203 | 0.339 |
Al | 0.303 | 0.145 |
As | 0.126 | −0.330 |
Ba | 0.198 | −0.377 |
Cu | 0.150 | −0.081 |
Co | 0.354 | 0.178 |
Fe | 0.322 | 0.172 |
Mn | 0.314 | 0.202 |
Na | 0.230 | −0.293 |
Pb | 0.317 | 0.090 |
Sb | 0.162 | −0.140 |
Sr | 0.216 | 0.002 |
V | 0.320 | 0.146 |
Zn | 0.077 | −0.210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez, A.; Segundo, F.; Arrocha, J.; Miranda, L.; Chong, T.; Sandoval, H.; Martínez, E.; Gutiérrez, E.; Rodríguez, R.; Nieto, C.; et al. Geochemical Insights into Health Risks from Potentially Toxic Elements in Rural Aqueducts of Cocle, Panama: Unveiling Links to Local Geology. Water 2025, 17, 110. https://doi.org/10.3390/w17010110
Domínguez A, Segundo F, Arrocha J, Miranda L, Chong T, Sandoval H, Martínez E, Gutiérrez E, Rodríguez R, Nieto C, et al. Geochemical Insights into Health Risks from Potentially Toxic Elements in Rural Aqueducts of Cocle, Panama: Unveiling Links to Local Geology. Water. 2025; 17(1):110. https://doi.org/10.3390/w17010110
Chicago/Turabian StyleDomínguez, Anmary, Felipe Segundo, Jonatha Arrocha, Laura Miranda, Tamir Chong, Hillary Sandoval, Ernesto Martínez, Eric Gutiérrez, Rita Rodríguez, Carlos Nieto, and et al. 2025. "Geochemical Insights into Health Risks from Potentially Toxic Elements in Rural Aqueducts of Cocle, Panama: Unveiling Links to Local Geology" Water 17, no. 1: 110. https://doi.org/10.3390/w17010110
APA StyleDomínguez, A., Segundo, F., Arrocha, J., Miranda, L., Chong, T., Sandoval, H., Martínez, E., Gutiérrez, E., Rodríguez, R., Nieto, C., Franco, C., Aponte-González, L., Vergara-Chen, C., Olmos, J., Vargas-Lombardo, M., Moreno-Chavez, J., Jiménez-Oyola, S., & González-Valoys, A. C. (2025). Geochemical Insights into Health Risks from Potentially Toxic Elements in Rural Aqueducts of Cocle, Panama: Unveiling Links to Local Geology. Water, 17(1), 110. https://doi.org/10.3390/w17010110