The Use of Boosted Regression Trees to Predict the Occurrence and Quantity of Staphylococcus aureus in Recreational Marine Waterways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Detection and Quantitation of S. aureus in Marine Waterways
2.1.1. Field Collection and Laboratory Microbial Isolation and Analysis
2.1.2. Genetic Validation: DNA Extraction and PCR Amplification of Nuclease Gene
2.2. BRT Model
3. Results and Discussion
3.1. Detection and Quantitation of S. aureus in Tampa Bay Estuary
3.2. Testing of Trained BRT Model to Predict Occurrence of S. aureus in the Tampa Bay Estuary
3.3. The BRT Model Predicts the Influence of Temporal Variables on the Occurrence of S. aureus in the Tampa Bay Estuary
3.4. The BRT Model Predicts the Influence of Environmental Variables on the Occurrence of S. aureus in the Tampa Bay Estuary
3.5. The BRT Model Predicts the Influence of Spatial Variables on the Occurrence of S. aureus in the Tampa Bay Estuary
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lugo, J.L.; Lugo, E.R.; de la Puente, M. A systematic review of microorganisms as indicators of recreational water quality in natural and drinking water systems. J. Water Health 2020, 19, 20–28. [Google Scholar] [CrossRef]
- Goodwin, K.D.; McNay, M.; Cao, Y.; Ebentier, D.; Madison, M.; Griffith, J.F. A multi-beach study of Staphylococcus aureus, MRSA, and enterococci in seawater and beach sand. Water Res. 2012, 46, 4195–4207. [Google Scholar] [CrossRef] [PubMed]
- Hassard, F.; Gwyther, C.L.; Farkas, K.; Andrews, A.; Jones, V.; Cox, B.; Brett, H.; Jones, D.L.; McDonald, J.E.; Malham, S.K. Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments—A Review. Front. Microbiol. 2016, 7, 1692. [Google Scholar] [CrossRef] [PubMed]
- Viau, E.J.; Goodwin, K.D.; Yamahara, K.M.; Layton, B.A.; Sassoubre, L.M.; Burns, S.L.; Tong, H.-I.; Wong, S.H.C.; Lu, Y.; Boehm, A.B. Bacterial pathogens in Hawaiian coastal streams—Associations with fecal indicators, land cover, and water quality. Water Res. 2011, 45, 3279–3290. [Google Scholar] [CrossRef]
- Curiel-Ayala, F.; Quiñones-Ramírez, E.I.; Pless, R.C.; González-Jasso, E. Comparative studies on Enterococcus, Clostridium perfringens and Staphylococcus aureus as quality indicators in tropical seawater at a Pacific Mexican beach resort. Mar. Pollut. Bull. 2012, 64, 2193–2198. [Google Scholar] [CrossRef] [PubMed]
- Valeriani, F.; Giampaoli, S.; Buggiotti, L.; Gianfranceschi, G.; Romano Spica, V. Molecular enrichment for detection of S. aureus in recreational waters. Water Sci. Technol. 2012, 66, 2305–2310. [Google Scholar] [CrossRef]
- Kuehnert, M.J.; Kruszon-Moran, D.; Hill, H.A.; McQuillan, G.; McAllister, S.K.; Fosheim, G.; McDougal, L.K.; Chaitram, J.; Jensen, B.; Fridkin, S.K.; et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J. Infect. Dis. 2006, 193, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Froeschke, B.F.; Williams, A.; Seferian, R. Spatial distribution and antibiotic susceptibility of Staphylococcus aureus from discharge into the Hillsborough River, Tampa, FL. Fla. Sci. 2019, 82, 1–8. [Google Scholar]
- Topić, N.; Cenov, A.; Jozić, S.; Glad, M.; Mance, D.; Lušić, D.; Kapetanović, D.; Mance, D.; Vukić Lušić, D. Staphylococcus aureus—An Additional Parameter of Bathing Water Quality for Crowded Urban Beaches. Int. J. Environ. Res. Public Health 2021, 18, 5234. [Google Scholar] [CrossRef]
- Noble, R.T.; Weisberg, S.B.; Leecaster, M.K.; McGee, C.D.; Dorsey, J.H.; Vainik, P.; Orozco-Borbón, V. Storm effects on regional beach water quality along the southern California shoreline. J. Water Health 2003, 1, 23–31. [Google Scholar] [CrossRef]
- Selvakumar, A.; Borst, M. Variation of microorganism concentrations in urban stormwater runoff with land use and seasons. J. Water Health 2006, 4, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, A.; O’Connor, T.P. Seasonal variation in indicator organisms infiltrating from permeable pavement parking lots at the Edison Environmental Center, New Jersey. Water Environ. Res. 2022, 94, e10791. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg Goldstein, R.E.; Micallef, S.A.; Gibbs, S.G.; Davis, J.A.; He, X.; George, A.; Kleinfelter, L.M.; Schreiber, N.A.; Mukherjee, S.; Sapkota, A.; et al. Methicillin-resistant Staphylococcus aureus (MRSA) detected at four U.S. wastewater treatment plants. Environ. Health Perspect. 2012, 120, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Tosic, M.; Restrepo, J.D.; Izquierdo, A.; Lonin, S.; Martins, F.; Escobar, R. An integrated approach for the assessment of land-based pollution loads in the coastal zone. Estuar. Coast. Shelf Sci. 2018, 211, 217–226. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Wu, J.; Coin, L.; O’Brien, J.; Hai, F.; Jiang, G. Molecular Methods for Pathogenic Bacteria Detection and Recent Advances in Wastewater Analysis. Water 2021, 13, 3551. [Google Scholar] [CrossRef]
- Wade, T.J.; Sams, E.; Brenner, K.P.; Haugland, R.; Chern, E.; Beach, M.; Wymer, L.; Rankin, C.C.; Love, D.; Li, Q.; et al. Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: A prospective cohort study. Environ. Health 2010, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Ann. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef] [PubMed]
- de Brauwere, A.; Gourgue, O.; de Brye, B.; Servais, P.; Ouattara, N.K.; Deleersnijder, E. Integrated modelling of faecal contamination in a densely populated river-sea continuum (Scheldt River and Estuary). Sci. Total Environ. 2014, 468–469, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Heasley, C.; Sanchez, J.J.; Tustin, J.; Young, I. Systematic review of predictive models of microbial water quality at freshwater recreational beaches. PLoS ONE 2021, 16, e0256785. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Z. Modeling and predicting fecal coliform bacteria levels in oyster harvest waters along Louisiana Gulf coast. Ecol. Indic. 2019, 101, 212–220. [Google Scholar] [CrossRef]
- Cyterski, M.; Shanks, O.C.; Wanjugi, P.; McMinn, B.; Korajkic, A.; Oshima, K.; Haugland, R. Bacterial and viral fecal indicator predictive modeling at three Great Lakes recreational beach sites. Water Res. 2022, 223, 118970. [Google Scholar] [CrossRef] [PubMed]
- Christensen, V.G.; Stelzer, E.A.; Eikenberry, B.C.; Olds, H.T.; LeDuc, J.F.; Maki, R.P.; Saley, A.M.; Norland, J.; Khan, E. Cyanotoxin mixture models: Relating environmental variables and toxin co-occurrence to human exposure risk. J. Hazard Mater. 2021, 415, 125560. [Google Scholar] [CrossRef] [PubMed]
- Francy, D.S.; Brady, A.M.G.; Stelzer, E.A.; Cicale, J.R.; Hackney, C.; Dalby, H.D.; Struffolino, P.; Dwyer, D.F. Predicting microcystin concentration action-level exceedances resulting from cyanobacterial blooms in selected lake sites in Ohio. Environ. Monit. Assess. 2020, 192, 513. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Liu, L.; Dorevitch, S. Hydrometeorological variables predict fecal indicator bacteria densities in freshwater: Data-driven methods for variable selection. Environ. Monit. Assess. 2013, 185, 2355–2366. [Google Scholar] [CrossRef]
- Whitman, R.L.; Nevers, M.B. Summer E. coli patterns and responses along 23 Chicago beaches. Environ. Sci. Technol. 2008, 42, 9217–9224. [Google Scholar] [CrossRef] [PubMed]
- Richiardi, L.; Pignata, C.; Fea, E.; Bonetta, S.; Carraro, E. Are Indicator Microorganisms Predictive of Pathogens in Water? Water 2023, 15, 2964. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J. Boosted Regression Trees for Ecological Modeling. 2011. Available online: https://www.semanticscholar.org/paper/Boosted-Regression-Trees-for-ecological-modeling-Elith-Leathwick/ac744d455dff6c7036e4ae5c6dfbf4b04d7f7e97 (accessed on 4 December 2023).
- Lipps, W.C.; Braun-Howland, E.B.; Baxter, T.E. Standard Methods for the Examination of Water and Wastewater, 24th ed.; APHA Press: Washington, DC, USA, 2023; ISBN 0-87553-299-3. [Google Scholar]
- Fang, H.; Hedin, G. Rapid screening and identification of methicillin-resistant Staphylococcus aureus from clinical samples by selective-broth and real-time PCR assay. J. Clin. Microbiol. 2003, 41, 2894–2899. [Google Scholar] [CrossRef]
- Shortle, D. A genetic system for analysis of staphylococcal nuclease. Gene 1983, 22, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Brakstad, O.G.; Aasbakk, K.; Maeland, J.A. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 1992, 30, 1654–1660. [Google Scholar] [CrossRef] [PubMed]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed]
- De’ath, G.; Lough, J.M.; Fabricius, K.E. Declining Coral Calcification on the Great Barrier Reef. Science 2009, 323, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Yates, K.K.; Greening, H.; Morrison, G. Integrating Science and Resource Management in Tampa Bay, Florida; USGS: St. Petersburg, FL, USA; p. 280, Federal 1348. Available online: https://pubs.usgs.gov/circ/1348/ (accessed on 8 April 2024).
- Geurink, J.; Water, T.; Basso, R.; Tara, P.; Trout, K.; Ross, M. Improvements to Integrated Hydrologic Modeling in the Tampa Bay, Florida Region: Hydrologic Similarity and Calibration Metrics. In Proceedings of the Joint Federal Interagency Conference 2006, Reno, NV, USA, 2–6 April 2006. [Google Scholar]
- Zhu, J.; Weisberg, R.H.; Zheng, L.; Qi, H. On the salt balance of Tampa Bay. Cont. Shelf Res. 2015, 107, 115–131. [Google Scholar] [CrossRef]
- Whitman, R.L.; Harwood, V.J.; Edge, T.A.; Nevers, M.B.; Byappanahalli, M.; Vijayavel, K.; Brandão, J.; Sadowsky, M.J.; Alm, E.W.; Crowe, A.; et al. Microbes in beach sands: Integrating environment, ecology and public health. Rev. Environ. Sci. Bio/Technol. 2014, 13, 329–368. [Google Scholar] [CrossRef] [PubMed]
- Arandia-Gorostidi, N.; Krabberød, A.K.; Logares, R.; Deutschmann, I.M.; Scharek, R.; Morán, X.A.G.; González, F.; Alonso-Sáez, L. Novel Interactions between Phytoplankton and Bacteria Shape Microbial Seasonal Dynamics in Coastal Ocean Waters. Front. Mar. Sci. 2022, 9, 901201. [Google Scholar] [CrossRef]
- Seymour, J.R.; Amin, S.A.; Raina, J.-B.; Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2017, 2, 17065. [Google Scholar] [CrossRef] [PubMed]
- Sipler, R.E.; McGuinness, L.R.; Kirkpatrick, G.J.; Kerkhof, L.J.; Schofield, O.M. Bacteriocidal effects of brevetoxin on natural microbial communities. Harmful Algae 2014, 38, 101–109. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, H.; Huang, R.; Zhai, W. Exploring the plankton bacteria diversity and distribution patterns in the surface water of northwest pacific ocean by metagenomic methods. Front. Mar. Sci. 2023, 10, 1177401. [Google Scholar] [CrossRef]
- Jones, K.L.; Mikulski, C.M.; Barnhorst, A.; Doucette, G.J. Comparative analysis of bacterioplankton assemblages from Karenia brevis bloom and nonbloom water on the west Florida shelf (Gulf of Mexico, USA) using 16S rRNA gene clone libraries. FEMS Microbiol. Ecol. 2010, 73, 468–485. [Google Scholar] [CrossRef] [PubMed]
- Patin, N.V.; Brown, E.; Chebli, G.; Garfield, C.; Kubanek, J.; Stewart, F.J. Microbial and chemical dynamics of a toxic dinoflagellate bloom. PeerJ 2020, 8, e9493. [Google Scholar] [CrossRef] [PubMed]
- Possamai, B.; Hoeinghaus, D.J.; Odebrecht, C.; Abreu, P.C.; Moraes, L.E.; Santos, A.C.A.; Garcia, A.M. Freshwater Inflow Variability Affects the Relative Importance of Allochthonous Sources for Estuarine Fishes. Estuaries Coasts 2020, 43, 880–893. [Google Scholar] [CrossRef]
- Izabel-Shen, D. Understanding response of microbial communities to saltwater intrusion through microcosms. Comput. Struct. Biotechnol. J. 2021, 19, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Crump, B.C.; Bowen, J.L. The Microbial Ecology of Estuarine Ecosystems. Annu. Rev. Mar. Sci. 2024, 16, 335–360. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, F.; Zhang, C.; Wang, M.; Kan, J. Estuarine gradients dictate spatiotemporal variations of microbiome networks in the Chesapeake Bay. Environ. Microbiome 2021, 16, 22. [Google Scholar] [CrossRef]
- Philippot, L.; Griffiths, B.S.; Langenheder, S. Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiol. Mol. Biol. Rev. 2021, 85, e00026-20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Froeschke, B.F.; Roux-Osovitz, M.; Baker, M.L.; Hampson, E.G.; Nau, S.L.; Thomas, A. The Use of Boosted Regression Trees to Predict the Occurrence and Quantity of Staphylococcus aureus in Recreational Marine Waterways. Water 2024, 16, 1283. https://doi.org/10.3390/w16091283
Froeschke BF, Roux-Osovitz M, Baker ML, Hampson EG, Nau SL, Thomas A. The Use of Boosted Regression Trees to Predict the Occurrence and Quantity of Staphylococcus aureus in Recreational Marine Waterways. Water. 2024; 16(9):1283. https://doi.org/10.3390/w16091283
Chicago/Turabian StyleFroeschke, Bridgette F., Michelle Roux-Osovitz, Margaret L. Baker, Ella G. Hampson, Stella L. Nau, and Ashley Thomas. 2024. "The Use of Boosted Regression Trees to Predict the Occurrence and Quantity of Staphylococcus aureus in Recreational Marine Waterways" Water 16, no. 9: 1283. https://doi.org/10.3390/w16091283
APA StyleFroeschke, B. F., Roux-Osovitz, M., Baker, M. L., Hampson, E. G., Nau, S. L., & Thomas, A. (2024). The Use of Boosted Regression Trees to Predict the Occurrence and Quantity of Staphylococcus aureus in Recreational Marine Waterways. Water, 16(9), 1283. https://doi.org/10.3390/w16091283