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Abstract: Microbial monitoring in marine recreational waterways often overlooks environmental
variables associated with pathogen occurrence. This study employs a predictive boosted regression
trees (BRT) model to predict Staphylococcus aureus abundance in the Tampa Bay estuary and identify
related environmental variables associated with the microbial pathogen’s occurrence. We provide
evidence that the BRT model’s adaptability and ability to capture complex interactions among
predictors make it invaluable for research on microbial indicator research. Over 18 months, water
samples from 7 recreational sites underwent microbial quantitation and S. aureus isolation, followed
by genetic validation. BRT analysis of S. aureus occurrence and environmental variables revealed
month, precipitation, salinity, site, temperature, and year as relevant predictors. In addition, the
BRT model accurately predicted S. aureus occurrence, setting a precedent for pathogen–environment
research. The approach described here is novel and informs proactive management strategies and
community health initiatives in marine recreational waterways.

Keywords: boosted regression trees (BRT); S. aureus; monitoring; aquatic microbes; predictive models

1. Introduction

The accurate detection and prediction of the occurrence and quantity of pathogenic
microbes in marine recreational waterways requires a comprehensive understanding of the
interactions among environmental variables, temporal dynamics, and spatial dimensions.
Routine monitoring of microbial indicator species abundance (such enteric fecal indicators
enterococci and E. coli and non-fecal contaminants such as Staphylococcus aureus) contributes
to effective management strategies, with the goal of protecting both public health and the
ecological integrity of vital aquatic ecosystems [1–6]. These indicator species are important
as sentinel pathogens, bridging environmental science and human health. S. aureus micro-
bial pathogen in particular poses significant risks to both aquatic ecosystems and human
health by causing a range of infections from mild to severe [2,7]. S. aureus prevalence in
rivers, estuaries, and coastal waters underscores the importance of understanding its abun-
dance in these environments, which can serve as an indicator of potential health hazards
for both aquatic life and human populations relying on these ecosystems [2,8]. The main
sources of S. aureus in waterbodies is from human activity [9], stormwater [10–12], coastal
streams that drain to the coast [4], and wastewater [2,13]. Changes in the environment due
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to natural/seasonal or anthropomorphic activities influence the proliferation of S. aureus in
water bodies, potentially leading to waterborne disease outbreaks [2,3,8,14].

Current approaches for microbial monitoring involve the identification and quan-
tification of indicator species including S. aureus using real-time sampling and end-point
detection. This can be labor and time-intensive, expensive, and does not aim to contribute
to our understanding of the indicator microbe’s ecology [1,15,16]. In addition to monitoring,
predictive models are being utilized as proactive water quality management tools for target
microbial indicator species. Successful applications of predictive modeling in microbial
ecology include the prediction of harmful algal blooms [17] and the estimation of fecal
contamination in water bodies [18–20]. The integration of monitoring and predictive mod-
eling approaches can be achieved using statistical models such as the least-angle regression
(LARS–lasso) model, boosted regression trees (BRT), and others to increase accuracy and
efficacy in advisory efforts [21–25].

Predictive models have also been used to assess the complex interactions between
environmental variables and microbial abundance and to facilitate the identification of key
factors influencing microbial dynamics [18–20]. The use of predictive models therefore
aims at the integration of microbial quantification with user-defined variables that are
specific to the habitat under study. Variables include, but are not limited to, spatial,
temporal, and environmental variables such as precipitation, temperature, and salinity that
can be used to better elucidate the complex interactions within the microbiota of aquatic
ecosystems. These variables represent a subset of those that play a crucial role in shaping
microbial ecosystems; influencing the survival, proliferation, and transport mechanisms
of pathogenic bacterial species such as S. aureus [2,19]. Predictive models have been
successfully used in both freshwater and marine waterways for predicting the occurrence
of fecal microbes [18–21,24,25], suggesting that a modeling approach has the potential to
increase our predictive power for other aquatic microbial species as well. For example, using
BRT as the predictive model to understand the correlation between environmental variables
and S. aureus abundance can provide valuable insight into the occurrence and ecosystem
dynamics of these bacteria in marine recreational waterways [2,4,18]. Furthermore, these
models hold the potential for forecasting disease outbreaks in aquatic environments [26],
informing evidence-based decision making for water quality management and public
health protection [18].

Of particular interest in this study is the use of the BRT model as it offers a practi-
cal methodological approach to gaining valuable insights into the complex interactions
between how environmental variables, pollution, and anthropogenic interventions exert
discernible impacts on the proliferation and persistence of S. aureus in marine recreational
waterways [2,4,27]. BRT epitomizes a robust and versatile modeling paradigm that accom-
modates a heterogeneous array of predictor variables, spanning physical measurements,
spatial attributes, and categorical descriptors; this endows the BRT approach with un-
paralleled versatility in capturing the multifaceted interrelationships between pathogenic
bacteria and their environment. Additionally, BRT demonstrates robustness in handling
missing data values and outliers, making it suitable for ecological studies where incomplete
or anomalous data are common [28–30]. By combining the strengths of regression trees
and boosting algorithms, BRT creates an ensemble modeling approach that outperforms
traditional single-tree methods in predictive accuracy [28–30]. This ensemble framework,
supported by cross-validation techniques, reduces the risk of overfitting, and improves the
model’s ability to generalize to new datasets [28–30].

This study aimed to utilize the temporal and spatial detection of S. aureus coupled
with known temporal, spatial, and environmental variables as an example to test how
a BRT model can be employed to predict levels of pathogenic bacteria in marine recre-
ational waterways. Firstly, the study sought to establish the viability of isolating and
identifying S. aureus at seven diverse recreational sites over a two-year period in the Tampa
Bay estuary, Florida. Second, the study aimed to predict levels of pathogenic Indicator
bacteria, leveraging temporal, spatial, and environmental variables, and S. aureus detection
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levels as inputs in a BRT model. The aim of the study was to advance our understanding
of the relationship between S. aureus, environmental parameters, and water quality, ulti-
mately contributing to the development of effective management strategies for protecting
human health and ecosystem integrity in marine recreational waterways like the Tampa
Bay estuary.

2. Materials and Methods
2.1. Detection and Quantitation of S. aureus in Marine Waterways
2.1.1. Field Collection and Laboratory Microbial Isolation and Analysis

Water samples for microbial analysis were systematically collected from the follow-
ing 7 recreational sites in Tampa Bay; Gandy Beach (GB) (−82.59566, 27.87459), Ben T.
Davis (BD) (−82.57884, 27.97045), Cypress Pt. Park (CP) (−82.54697, 27.95016), Picnic
Island (PI) (−82.55415, 27.85183), Davis Island (DI) (−82.44721, 27.902972), Bahia Beach
(BB) (−82.47657, 27.72894), and E. G. Simmons Park Beach (EGS) (−82.47278, 27.74772)
(Figure 1). The sampling sites, chosen for their extensive recreational usage, were strategi-
cally selected to capture the potential influence of human recreational activities on marine
water contamination. Eighteen sampling events were conducted from September 2019
to July 2021. All water samples were collected using sterilized bottles (Fisher Scientific,
Atlanta, GA, USA), adhering to EPA standards (https://www.epa.gov/sites/default/files/
2018-10/documents/quality-criteria-water-1986.pdf accessed on 8 April 2024). including
opening and closing the bottles beneath the water surface at knee-deep levels (0.5 m).
Notably, all water samples were collected and stored on ice and returned to the lab for
processing within three hours of collection. A Hydrolab (Sterling, VA, USA) was used to
measure salinity and temperature during each sampling event.
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Water processing methods followed the protocols outlined in the book “Standard
Methods for the Examination of Water and Wastewater” [31]. Filtration was executed using
a vacuum-operated manifold (Hach Company, Loveland, CO, USA), capturing bacteria on
0.45 µm membrane filters (Hach Company, Loveland, CO, USA). Subsequently, selective,
and differential mannitol salt agar (MSA) (Fisher, Waltham, MA, USA) fermentation was
used for isolation, followed by an incubation period at 37 ◦C for 24 h. The resulting yellow
colonies were enumerated as S. aureus. Overall, 10 random samples per site per sampling
event (n = 70) were preserved at 4 ◦C for further biochemical testing. All samples were
completed within a 24-h period of refrigeration. For verification purposes, all samples des-
ignated for biochemical testing were tested for hemolysis on blood agar (Fisher, Waltham,
MA, USA) and validated for the presence of coagulase.

2.1.2. Genetic Validation: DNA Extraction and PCR Amplification of Nuclease Gene

Individual bacterial colonies selected by MSA fermentation and coagulase positive
were isolated using a sterile technique and transferred to a 6% InstaGene Matrix (BioRad,
Hercules, CA, USA) in nuclease-free water (Fisher, Waltham, MA, USA). Samples were
temporarily stored at −20 ◦C. Thawed samples were vortexed to disperse the bacterial
colony and cells were lysed at 98 ◦C for 8 min. Prior to molecular verification by poly-
merase chain reaction (PCR), samples were vortexed a second time and centrifuged at
4 ◦C for 3 min at 12,000 rpm to separate supernatant containing DNA from the InstaGene
matrix. S. aureus specific thermonuclease gene (Nuc) was amplified using GoTaq Master
Mix chemistry (Promega, Madison, WI, USA) with forward primers (5′-GCG ATT GAT
GGT GAT ACG GTT-3′) and reverse primers (5′-AGC CAA GCC TTG ACG AAC TAA
AGC-3′) [32]. Specifically, nuclease primers used were designed from a 966 bp sequence of
the nuclease A gene from the S. aureus Foggi strain to amplify a 279 bp sequence [33,34].
The 279 bp amplicon reports 100% identity to NCBI Accession #CP150135.1. A random
sub-sampling of S. aureus nuclease PCR amplicons was sequenced to confirm the positive
identity of isolates as well as control S. aureus N315 strain amplicons (NCB1 Accession
# NC_002745.2).

Each 20 µL of reaction contained 12.5 µL 2X GoTaq Master Mix, 0.75 µL of forward
(10 mM) and 0.75 µL of reverse (10 mM) Nuc primers, 5 µL of template DNA, and 6 µL of
nuclease-free water. PCR thermocycling parameters were 94 ◦C for 10 min followed by
32 cycles of 94 ◦C for 60 s, 51 ◦C for 60 s, and 72 ◦C for 120 s with a final extension at 72 ◦C for
10 min. PCR reactions were stored at 4 ◦C until subjected to 1% agarose gel electrophoresis
to verify a 279 base pair Nuc gene-specific amplicon. Agarose gels were stained using
ethidium bromide (Biorad, Hercules, CA, USA) and imaged using a ChemiDoc (BioRad,
Hercules, CA, USA). S. aureus N315 strain was cultured, and DNA was extracted as above
and used as a positive control in PCR reactions. Samples without successful amplification of
the Nuc gene were further subjected to validation using amplification of the 16S gene using
forward primers (5′- AGA GTT TGA TCC TGG CTC AG -3′) and reverse primers (5′- GGT
TAC CTT GTT ACG ACT T -3′) [35]. Specifically, the 16S primers used to amplify a region
of the 16S sequence were used for phylogenetic analysis of a wide range of bacteria [35],
amplifying a 1465 bp sequence. Furthermore, internal 16S sequencing primers are used
for microbial identification and current data indicate when that the Staphylococcus genus is
detected they are not aureus species-specific (unpublished data). The GoTaq Master Mix
reactions, as detailed above, use the following thermocycling parameters: 94 ◦C for 5 min
followed by 35 cycles of 94 ◦C for 120 s, 42 ◦C for 30 s, and 72 ◦C for 120 s with a final
extension at 72 ◦C for 10 min.

2.2. BRT Model

This study aimed to explore the relationship between temporal, spatial, and environ-
mental variables, and the quantity of S. aureus in the Tampa Bay estuary, Florida. The
S. aureus quantity was logarithmically transformed using a base of 10 and the resulting
transformed data were employed as input for the BRT model. We employed a forward
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fit, stage-wise, Gaussian-boosted regression trees model [36]. These parameters included
setting the distribution as “Gaussian” to accommodate continuous outcome variables, a tree
complexity of 5 to control the complexity of each tree and permit modeling of interactions, a
learning rate of 0.005 to determine the weight applied to each tree, and a bag fraction of 0.60
to specify the proportion of the training data used to fit each tree. Unlike traditional regres-
sion methods, the BRT model harnesses the strength of both regression trees and boosting
algorithms by combining numerous simple tree models. Each of these models comprises
a rule-based classifier that groups observations based on predictor variables, allowing
for interactions between predictors [27]. To prevent overfitting, a 10-fold cross-validation
process was incorporated into the model fitting procedure [28–30]. Additionally, model
variability was assessed by refitting the BRT model using 1000 bootstrap iterations with the
replacement of the original dataset, ultimately determining mean predicted probabilities
and 95% confidence intervals within the study area.

Rstudio software (R version 4.2.3, R Development Core Team) with the ‘gbm’ library
supplemented by functions from Elith et al. (2008) [29] was utilized for the analyses.
Predictor variables included temporal variables (month and year), site location, and envi-
ronmental variables as well as precipitation levels in inches within 24 h of sampling, salinity
(ppt), and water temperature (◦C). Model parameters such as tree complexity, learning rate,
and bag fraction were adjusted to optimize model performance while minimizing overfit-
ting. The selection of predictor variables and tuning parameters was based on performance
metrics and explained deviance on cross-validated data. BRT model validation involved
testing the null hypothesis and utilizing a least-squares linear regression to determine the
accuracy of the predicted quantity of S. aureus versus the actual calculated quantity.

3. Results and Discussion
3.1. Detection and Quantitation of S. aureus in Tampa Bay Estuary

The Tampa Bay estuary, situated in west central Florida, is the largest open water estu-
ary in Florida, encompassing 5698 km2 [37]. Understanding the occurrence and ecological
role of pathogenic bacteria in the Tampa Bay estuary requires consideration of the estuary’s
unique hydrology and recreational use [3,12,13,38]. Four main rivers on the eastern side,
the Alafia River, the Hillsborough River, the Little Manatee River, and the Manatee River
(Figure 1), contribute freshwater to the Tampa Bay estuary. This freshwater input, partic-
ularly notable in northern Tampa Bay, significantly influences water flow patterns [38],
(https://tbep.org/ accessed on 8 April 2024), salinity [39], and potentially the distribution
of pathogenic bacteria [3,8].

Fixed sampling sites were strategically selected to represent various regions within
the Tampa Bay estuary (Figure 1). These fixed sites served as reliable benchmarks for
monitoring changes in water quality over time and were integral to understanding the
overall health of the Tampa Bay estuary aquatic environment amidst recreational usage.
Bi-monthly water sampling at each site spanned from June 2019 to May 2021 (totaling
18 events). The summary statistics for log10 abundance of S. aureus revealed a wide range
of values (0.78–5.31), with a positively skewed distribution (Figure 2A).

When examining S. aureus levels by site, distinct patterns emerged (Figure 2B). PI
exhibited the highest mean log value at 3.11, indicating elevated S. aureus levels compared
to other sites. PI is positioned between the Port of Tampa and MacDill Airforce Base at
the intersection of Hillsborough Bay and Old Tampa Bay (Figure 1). Elevated levels of
S. aureus detected at PI compared to other sites are likely due to increased public access
and designated swimming areas as well as PI’s unique position in the Tampa Bay estuary
relative to commercial and recreational use (Figure 1). Conversely, BB had the lowest mean
log value at 2.65. BB is in a less densely populated region of Tampa Bay, has restricted access,
and is surrounded by Cockroach Bay Aquatic Preserve and areas with lower population
density and higher agricultural development (https://tbep.org accessed on 8 April 2024)
(Figure 1). BB is north of the Little Manatee River, which contributes to a rich estuary

https://tbep.org/
https://tbep.org
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habitat. The ecological significance of the estuary environment (BB) vs. port environment
(PI) could be a contributing factor to the differing microbial ecology at these two sites.
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Standard deviations calculated across all seven sites varied, with site EG displaying
the lowest variability (0.93) and GB exhibiting the highest variability (1.11) with respect to
detected S. aureus (Figure 2B). The range of S. aureus log values was also site-dependent,
with PI having the widest range from 1.38 to 5.12 and DI having the narrowest range
from 1.18 to 4.12 (Figure 2B). These site-specific statistics underscored the heterogeneity in
S. aureus levels between sampling locations, emphasizing the importance of site-specific
monitoring and management strategies. Being that each of the seven sites has unique
positions in the Tampa Bay estuary and unique seasonal recreational uses, further experi-
ments are needed to elucidate microbial dynamics at each site. Successful detection and
quantitation of S. aureus across this large marine waterway provides a novel monitoring
strategy both spatially and temporarily.

3.2. Testing of Trained BRT Model to Predict Occurrence of S. aureus in the Tampa Bay Estuary

The BRT model employed in this study to predict the occurrence of S. aureus was
configured with specific parameters to optimize its predictive performance. The resulting
regression model provided good predictive accuracy (R-squared value of 0.67; Figure 3).
This level of explanatory power provides substantial predictive modeling of ecological data.
Additionally, the linear equation derived from the regression model (y = 1.77 + 0.37 × x)
provided a concise representation of the relationship between the predictor and response
variables, offering valuable insights into the underlying dynamics of S. aureus bacterial
abundance (Figure 3). Overall, the BRT model with an R-squared value of 0.67 represents a
highly effective tool for predicting S. aureus bacteria levels in aquatic environments, facili-
tating informed decision-making and management strategies for water quality assessment
and public health protection.

Our study demonstrated a robust predictive capability in estimating S. aureus bacterial
levels in a marine recreational waterway. These findings underscore the effectiveness
of the BRT model in capturing the complex interplay between environmental variables
and S. aureus bacterial abundance. Furthermore, our study contributes to the growing
body of literature on predictive modeling in microbial ecology [18], emphasizing the
importance of integrating advanced statistical techniques with ecological principles to
enhance our understanding of microbial dynamics in aquatic systems [18,27]. By leveraging
predictive modeling, our research offered valuable insights into the factors driving bacterial
abundance in marine waters (discussed below), facilitating evidence-based decision making
for water quality management and public health protection.
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3.3. The BRT Model Predicts the Influence of Temporal Variables on the Occurrence of S. aureus in
the Tampa Bay Estuary

Month, as a temporal variable, emerged with the highest relative importance (36.59%,
Figure 4), indicating a discernible seasonal pattern in the abundance of S. aureus in marine
waters (Figure 5A). Throughout the year, predicted levels of S. aureus remained consistently
high (Figure 5A), exhibiting a gradual increase from January, followed by declines in May,
July, and September (Figure 5A). Notably, September marked a significant decline, while
October and November witnessed a sharp increase in S. aureus abundance (Figure 5A). The
temporal variable, year of collection, had a lower relative importance of 6.97% (Figure 5B)
in predicting the occurrence of S. aureus in the Tampa Bay estuary (Figure 5B). The model
predicted an exponential increase in the occurrence of S. aureus in 2020 and an exponential
decrease in 2021 (Figure 5B).

Taken together, there are temporal patterns in occurrence and abundance of S. aureus
over short-term (month) and long-term (year) scales (Figure 5). The distinct short-term sea-
sonal fluctuations in S. aureus abundance, typically peaking during warmer months (June
and August), are characterized by elevated water temperatures, and increased recreational
activities. These trends coincide with periods of heightened human activity and environ-
mental disturbances, such as storm runoff and nutrient inputs, which can foster bacterial
growth and persistence in marine ecosystems [2,40]. Conversely, colder months often see
reduced S. aureus levels (January–May) due to decreased microbial activity and limited
opportunities for bacterial dissemination. Understanding these seasonal patterns is vital
for implementing targeted monitoring and management strategies to mitigate potential
health risks associated with S. aureus contamination in marine recreational waterways.

It is possible that the long-term temporal patterns seen are due to the increase in
recreational uses during the COVID-19 pandemic. Specifically, a rapid increase in the
occurrence of S. aureus in February 2020 (Figure 5, month 2) was followed by sustained high
levels of S. aureus in March and April 2020 (Figure 5, months three and four). Additionally,
a decrease in S. aureus follows in May 2020, coinciding with the reopening of Florida.
(Figure 5, month five). To our knowledge, the data presented here are the first reporting
monitoring S. aureus in the Tampa Bay estuary during the pandemic. Further studies to
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assess the model’s accuracy over long temporal scales and over a wider range of recreational
sites would lend additional support to the strength of the BRT model approach.
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Furthermore, we hypothesize that the rapid decline in S. aureus occurrence in 2021
(Figure 5B) as well as the monthly overall decline in July and September (Figure 5A)
were potentially due to an increase in the presence of Karenia brevis (the dinoflagellates
responsible for red tide) in the Tampa Bay estuary. According to Florida Fish and Wildlife
Harmful Algal Bloom (FWC-HAB) monitoring in 2019 and 2020, K. brevis was not present or
present at very low levels; however, from 2021 June through to October FWC-HAB, medium
to high levels of K. brevis in the Tampa Bay estuary and surrounding marine waterways
were reported (https://myfwc.com/research/redtide/statewide/ accessed on 8 April
2024). Although little is known from the field regarding interactions between S. aureus
and K. brevis, the research in bacterioplankton ecology provides evidence that microbial
communities are significantly impacted by plankton bloom dynamics [41–45]. Recent
studies off the west coast of Florida focused on the influence of K. brevis abundance and
chemical metabolites on microbial communities [46], providing evidence for the importance
of further studying dynamic interactions within the bacterioplankton community, especially
known pathogens such as S. aureus.

https://myfwc.com/research/redtide/statewide/
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3.4. The BRT Model Predicts the Influence of Environmental Variables on the Occurrence of
S. aureus in the Tampa Bay Estuary

The environmental variable, precipitation, had the second-highest relative impor-
tance (19.18%; Figure 4) in predicting S. aureus levels in the Tampa Bay estuary. The BRT
model indicated that the highest occurrence of S. aureus was predicted when precipita-
tion exceeded 1 inch within a 24-h period of sampling in Tampa Bay (Figure 6A). This
finding aligns with previous research suggesting that stormwater could serve as a source
of human pathogenic bacteria in recreational water bodies [2,8,14] Notably, results from
Froeschke et al. (2019) [8], focusing on the Hillsborough River that discharges into the
Tampa Bay estuary, reported higher levels of S. aureus during wet weather events, indicat-
ing potential contamination correlating with high precipitation levels. Studies conducted
at selected beaches in California also reported a higher detection rate of S. aureus in water
discharge samples during wet weather events, suggesting increased contamination [2].
Overall, these findings underscore the potential impact of stormwater on bacterial contami-
nation levels in marine waters and highlight the need for effective stormwater management
strategies to mitigate public health risks associated with waterborne pathogens.
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Salinity was the environmental variable that had the third highest relative influence
on the occurrence of S. aureus in the Tampa Bay estuary (14.35%; Figure 4). Within the
salinity range of 20 to 25 ppt, the BRT model revealed the lowest occurrence of S. aureus,
followed by an exponential increase at 25 ppt and stabilization at 29 ppt (Figure 6B). These
findings underscore the significant impact of salinity on the abundance and distribution
of this pathogen in aquatic environments. In estuarine bays, freshwater inflow acts as
a critical regulator of salinity levels, profoundly influencing the equilibrium of marine
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ecosystems [47]. Adequate freshwater input is essential for maintaining optimal salinity
levels, which are vital for sustaining diverse habitats and aquatic life.

Freshwater inputs create fluctuations in salinities within estuary environments that
affect microbial communities, especially at the marine-freshwater boundaries and in large
coastal bays [48–50]. According to the Tampa Bay Estuary program (https://tbep.org/
accessed on 8 April 2024), the salinity between the lower and northern regions of the Tampa
Bay estuary ranges from 25–38 ppt and 18–32 ppt, respectively, with the lowest salinities
seen in Hillsborough Bay (15–30 ppt) (see Figure 1). The salinity gradients throughout
the Tampa Bay estuary are regularly monitored by The Tampa Bay Estuary Program
(https://tbep.org/ accessed on 8 April 2024) and the salt balance in the bay can be modeled
both horizontally and vertically [39]. The wide breadth of data available regarding salinity
as an environmental variable could be harnessed in future studies, using BRT to accurately
predict microbial community occurrence related to tidal flux, freshwater input, and storm
runoff and provide valuable information for public health and microbial ecology.

Temperature also influenced the occurrence of S. aureus in the Tampa Bay estuary
(11.29%, Figure 4). According to the BRT model, there was an exponential increase in
S. aureus occurrence within temperature ranges of 21 ◦C to 25 ◦C, followed by a substantial
decrease at 26 ◦C (Figure 6C). This underscores the critical role of temperature in shap-
ing the dynamics of S. aureus populations in marine waterways. Temperature affects the
growth, survival, and activity of bacteria, including S. aureus, with optimal ranges pro-
moting proliferation and potentially higher contamination levels. Understanding these
temperature preferences is crucial for assessing the risk of S. aureus contamination in
marine environments and implementing targeted mitigation strategies. Additionally, tem-
perature fluctuations could influence microbial community composition and ecosystem
dynamics [51], further highlighting the importance of considering temperature dynamics
in monitoring and managing water quality in coastal regions.

3.5. The BRT Model Predicts the Influence of Spatial Variables on the Occurrence of S. aureus in
the Tampa Bay Estuary

The spatial variable, site, had a relative importance value of 11.62% (Figure 4). The BRT
model successfully predicted the occurrence of S. aureus (Figure 2) and reflected the patterns
observed in the data (Figure 7). Specifically, the BRT model indicated that the highest levels
of S. aureus were present at PI, EGS, and GB (Figure 7), while BD, CP, DI, and BB clustered
together with the lowest levels of S. aureus (Figure 7). The BRT model indicates variation in
S. aureus across different sites, underscoring the unique characteristics of grouped locations
(Figure 7). For example, high levels of S. aureus occur at sites where there is increased
recreational use by ease of water access and designated swim areas with increased sandy
beach vs. rocky shoreline (PI, EGS, and GB) whereas lower levels of S. aureus occur at sites
that have restricted or private access and rocky shoreline vs. sandy beach (BD, CP, DI,
and BB). The areas of lower S. aureus are likely frequented by fishermen and recreational
boaters and the areas of higher S. aureus are likely to have more foot traffic, swimmers, and
beach use. It is worth noting that spatial variability detected by the BRT model in S. aureus
abundance might also be attributed to differences in environmental factors such as nutrient
availability and water circulation patterns in addition to human activities, which can vary
significantly between sites and influence bacterial growth and distribution. Understanding
these site-specific patterns is crucial for targeted monitoring and management efforts to
mitigate the risk of S. aureus contamination in marine recreational waterways.

The results for each variable aligned with the biology of S. aureus, reflecting known
ecological patterns of this bacterial species. The success in predicting log abundance, as
evidenced by high prediction accuracy and comparisons with linear regression, represents a
notable advancement in environmental monitoring and public health considerations. These
findings, anchored in the biological significance of each variable, provide valuable insights
for future research, and contribute to a deeper understanding of microbial dynamics in
complex ecosystems. Moreover, elucidating the factors driving S. aureus abundance can

https://tbep.org/
https://tbep.org/
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inform targeted interventions and management strategies to mitigate potential health
risks associated with this pathogen, underscoring the importance of integrating ecological
knowledge into public health initiatives.
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4. Conclusions

Our study developed a BRT model of predictive levels of S. aureus in the Tampa Bay
estuary, Florida. The model demonstrated good predictive performance and provided
insight into the environmental and human-use factors influencing the observed patterns.
Specifically, the BRT model identified the relative contributions of temporal, environmental,
and spatial variables on the abundance of S. aureus. Month, precipitation, and salinity
emerged as primary contributors to S. aureus occurrence, with distinct seasonal patterns
observed throughout the year. Stormwater from precipitation events was identified as
a potential source of bacterial contamination, highlighting the importance of effective
stormwater management strategies. Additionally, salinity levels played a crucial role in
shaping S. aureus abundance, with optimal ranges influencing bacterial growth and dis-
tribution. Furthermore, spatial variability in S. aureus abundance underscored the unique
characteristics of different sites within the Tampa Bay estuary, emphasizing the need for
site-specific monitoring and management efforts. By providing a robust framework for un-
derstanding how environmental factors influence pathogen abundance, this methodology
contributes to the advancement in our knowledge of pathogen occurrence and abundance
and provides insights into understanding marine microbial ecology and epidemiology.
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