Changes in Surface Water Quality of the El Salvador River in La Joya de los Sachas, Ecuadorian Amazon Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Site Selection
2.2. Data Collection
2.2.1. Physicochemical and Biological Analysis
2.2.2. Comparison with Water Quality Standards
2.2.3. Water Quality Index (WQI) Estimation
2.2.4. Data Analysis
3. Results
Physicochemical and Biological Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gorgoglione, A.; Gregorio, J.; Ríos, A.; Alonso, J.; Chreties, C.; Fossati, M. Influence of Land Use/Land Cover on Surface-Water Quality of Santa Lucía River, Uruguay. Sustainability 2020, 12, 4692. [Google Scholar] [CrossRef]
- Xu, G.; Li, P.; Lu, K.; Tantai, Z.; Zhang, J.; Ren, Z.; Wang, X.; Yu, K.; Shi, P.; Cheng, Y. Seasonal Changes in Water Quality and Its Main Influencing Factors in the Dan River Basin. Catena 2019, 173, 131–140. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of Land Use and Land Cover Patterns on Seasonal Water Quality at Multi-Spatial Scales. Catena 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Pettit, N.E.; Jardine, T.D.; Hamilton, S.K.; Sinnamon, V.; Valdez, D.; Davies, P.M.; Douglas, M.M.; Bunn, S.E. Seasonal Changes in Water Quality and Macrophytes and the Impact of Cattle on Tropical Floodplain Waterholes. Mar. Freshw. Res. 2012, 63, 788–800. [Google Scholar] [CrossRef]
- Rodrigues, V.; Estrany, J.; Ranzini, M.; de Cicco, V.; Martín-Benito, J.M.T.; Hedo, J.; Lucas-Borja, M.E. Effects of Land Use and Seasonality on Stream Water Quality in a Small Tropical Catchment: The Headwater of Córrego Água Limpa, São Paulo (Brazil). Sci. Total Environ. 2018, 622–623, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Gutiérrez, J.D.; Paz, J.O.; Tagert, M.L.M. Seasonal Water Quality Changes in On-Farm Water Storage Systems in a South-Central U.S. Agricultural Watershed. Agric. Water Manag. 2017, 187, 131–139. [Google Scholar] [CrossRef]
- Organización de las Naciones Unidas para la Agricultura y Alimentación Contaminación del agua por la Agricultura. Available online: https://www.fao.org/3/cb7654es/online/src/html/chapter-1-5.html (accessed on 19 February 2024).
- Tu, J. Spatial Variations in the Relationships between Land Use and Water Quality across an Urbanization Gradient in the Watersheds of Northern Georgia, USA. Environ. Manag. 2013, 51, 1–17. [Google Scholar] [CrossRef]
- Chen, Q.; Mei, K.; Dahlgren, R.A.; Wang, T.; Gong, J.; Zhang, M. Impacts of Land Use and Population Density on Seasonal Surface Water Quality Using a Modified Geographically Weighted Regression. Sci. Total Environ. 2016, 572, 450–466. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Casallas, D.M.; Castro-Fernández, M.F.; Bocos, E.; Montenegro-Marin, C.E.; González Crespo, R. 2008–2017 Bogota River Water Quality Assessment Based on the Water Quality Index. Sustainability 2019, 11, 1668. [Google Scholar] [CrossRef]
- Choque-Quispe, D.; Froehner, S.; Palomino-Rincón, H.; Peralta-Guevara, D.E.; Barboza-Palomino, G.I.; Kari-Ferro, A.; Zamalloa-Puma, L.M.; Mojo-Quisani, A.; Barboza-Palomino, E.E.; Zamalloa-Puma, M.M.; et al. Proposal of a Water-Quality Index for High Andean Basins: Application to the Chumbao River, Andahuaylas, Peru. Water 2022, 14, 654. [Google Scholar] [CrossRef]
- Chidiac, S.; El Najjar, P.; Ouaini, N.; El Rayess, Y.; El Azzi, D. A Comprehensive Review of Water Quality Indices (WQIs): History, Models, Attempts and Perspectives. Rev. Environ. Sci. Biotechnol. 2023, 22, 349–395. [Google Scholar] [CrossRef] [PubMed]
- Universidad Pamplona Índice de Calidad (ICAs) y de Cotaminación (ICOs) del agua de Importancia Mundial. Available online: https://www.unipamplona.edu.co/unipamplona/portalIG/home_1/recursos/01_general/18072016/google_busqueda.jsp (accessed on 15 February 2024).
- Sakke, N.; Jafar, A.; Dollah, R.; Asis, A.H.B.; Mapa, M.T.; Abas, A. Water Quality Index (WQI) Analysis as an Indicator of Ecosystem Health in an Urban River Basin on Borneo Island. Water 2023, 15, 2717. [Google Scholar] [CrossRef]
- Masood, A.; Niazkar, M.; Zakwan, M.; Piraei, R. A Machine Learning-Based Framework for Water Quality Index Estimation in the Southern Bug River. Water 2023, 15, 3543. [Google Scholar] [CrossRef]
- Zhang, F.; Chan, N.W.; Liu, C.; Wang, X.; Shi, J.; Kung, H.-T.; Li, X.; Guo, T.; Wang, W.; Cao, N. Water Quality Index (WQI) as a Potential Proxy for Remote Sensing Evaluation of Water Quality in Arid Areas. Water 2021, 13, 3250. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Basirian, S. Evaluation of River Water Quality Index Using Remote Sensing and Artificial Intelligence Models. Remote Sens. 2023, 15, 2359. [Google Scholar] [CrossRef]
- Vargas-Tierras, T.; Suárez-Cedillo, S.; Morales-León, V.; Vargas-Tierras, Y.; Tinoco-Jaramillo, L.; Viera-Arroyo, W.; Vásquez-Castillo, W. Ecological River Water Quality Based on Macroinvertebrates Present in the Ecuadorian Amazon. Sustainability 2023, 15, 5790. [Google Scholar] [CrossRef]
- Gobierno Parroquial Tres de Noviembre Clima. Available online: https://www.tresdenoviembre.gob.ec/laparroquia/datos-generales/clima.html (accessed on 24 January 2024).
- Gobiernno Municipal La Joya de los Sachas Plan de Desarrollo y Ordenamiento Territorial 2019–2023. Available online: https://mega.nz/download (accessed on 23 December 2022).
- Gobierno Parroquial Tres de Noviembre Plan de Desarrollo y Ordenamiento Territorial Del Gobierno Autónomo Descentralizado Parroquial Rural Tres de Noviembre. Available online: https://tresdenoviembre.gob.ec/gad-parroquial/plan-de-desarrollo.html (accessed on 16 February 2024).
- Ministerio de Ambiente Acuerdo Ministerial 097-A, Anexos de Normativa, Reforma Libro vi del Texto Unificado de Legislacion Secundaria del Ministerio del Ambiente|Ecuador-Guía Oficial de Trámites y Servicios. Available online: https://www.gob.ec/regulaciones/acuerdo-ministerial-097-anexos-normativa-reforma-libro-vi-texto-unificado-legislacion-secundaria-ministerio-ambiente (accessed on 19 February 2024).
- Effendi, H. River Water Quality Preliminary Rapid Assessment Using Pollution Index. Procedia Environ. Sci. 2016, 33, 562–567. [Google Scholar] [CrossRef]
- Larrea, J.A.L.; Romeu, B.; Moya, D.L.; Rojas, M.M.R. Aspectos fundamentales del monitoreo de calidad de las aguas: El río almendares como caso de estudio. Rev. Cen. Cienc. Biol. 2022, 53, 148–159. [Google Scholar]
- Instituto Geográfico Militar del Ecuador Cartografía de Libre Acceso Escala 50 k—Geoportal Ecuador. Available online: https://www.geoportaligm.gob.ec/portal/index.php/cartografia-de-libre-acceso-escala-50k/ (accessed on 20 February 2024).
- Ministerio de Ambiente, Agua y Transición Ecológica Mapa de Cobertura y Uso de La Tierra (CUT 2022). Available online: http://ide.ambiente.gob.ec:8080/mapainteractivo/ (accessed on 20 February 2024).
- Instituto Ecuatoriano de Normalización (INEN). NTE INEN 2169: Agua. Calidad Del Agua. Muestreo. Manejo y Conservación De Muestras; INEN: Quito, Ecuador, 1998. [Google Scholar]
- Pauta, G.; Velazco, M.; Gutierrez, D.; Vázquez, G.; Rivera, S.; Morales, O.; Abril, A. Evaluación de la calidad del agua de los ríos de la ciudad de Cuenca, Ecuador. Maskana 2019, 10, 76–88. [Google Scholar] [CrossRef]
- Instituto Ecuatoriano de Normalización (INEN). NTE INEN 2226: Agua. Calidad del Agua. Muestreo. Diseño de los Programas de Muestreo; INEN: Quito, Ecuador, 2000. [Google Scholar]
- Ann, M.; Franson, H. Métodos Normalizados Para el Análisis de Aguas Potables y Residuales APHA-AWWA-WPCF 978-84-7978-031-9, 17th ed.; Díaz de Santos, S.A.: Madrid, España, 1992. [Google Scholar]
- Shahady, T.; Montero-Ramírez, J.J. End-Point Predictors of Water Quality in Tropical Rivers. Pollutants 2023, 3, 461–476. [Google Scholar] [CrossRef]
- Akhtar, N.; Ishak, M.I.S.; Ahmad, M.I.; Umar, K.; Md Yusuff, M.S.; Anees, M.T.; Qadir, A.; Ali Almanasir, Y.K. Modification of the Water Quality Index (WQI) Process for Simple Calculation Using the Multi-Criteria Decision-Making (MCDM) Method: A Review. Water 2021, 13, 905. [Google Scholar] [CrossRef]
- Ewaid, S.H.; Abed, S.A.; Al-Ansari, N.; Salih, R.M. Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology 2020, 7, 67. [Google Scholar] [CrossRef]
- Gabriela Pérez Castillo, A.; Rodríguez, A. Indice fisicoquímico de la calidad de agua para el manejo de lagunas tropicales de inundación. RBT 2007, 56, 1905–1918. [Google Scholar] [CrossRef]
- Patel, D.D.; Mehta, D.J.; Azamathulla, H.M.; Shaikh, M.M.; Jha, S.; Rathnayake, U. Application of the Weighted Arithmetic Water Quality Index in Assessing Groundwater Quality: A Case Study of the South Gujarat Region. Water 2023, 15, 3512. [Google Scholar] [CrossRef]
- Silva, P.L.C.; Borges, A.C.; Lopes, L.S.; Rosa, A.P. Developing a Modified Online Water Quality Index: A Case Study for Brazilian Reservoirs. Hydrology 2023, 10, 115. [Google Scholar] [CrossRef]
- R Core Team R Core Team-CNET. Download. Available online: https://download.cnet.com/developer/r-core-team/i-6264363/ (accessed on 11 January 2023).
- Li, B.; Yang, G.; Wan, R. Multidecadal Water Quality Deterioration in the Largest Freshwater Lake in China (Poyang Lake): Implications on Eutrophication Management. Environ. Pollut. 2020, 260, 114033. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Griffin, T.S.; Kraner, D.; Schaffner, M.K.; Sharma, D.; Hazel, M.; Leitch, A.R.; Orians, C.M.; Han, W.; Stepp, J.R.; et al. Environmental Factors Variably Impact Tea Secondary Metabolites in the Context of Climate Change. Front. Plant Sci. 2019, 10, 939. [Google Scholar] [CrossRef] [PubMed]
- Rivas, Z.; Sánchez, J.; Troncone, F.; Márquez, R.; de Medina, H.L.; Colina, M. Nitrógeno y Fósforo Totales de los Ríos Tributarios al Sistema Lago de Maracaibo, Venezuela. Interciencia 2009, 34, 308–314. [Google Scholar]
- Xie, H.; Huang, C.; Li, J.; Zhang, Y.; Xu, X.; Liu, D.; Ouyang, Z. Strong Precipitation and Human Activity Spur Rapid Nitrate Deposition in Estuarine Delta: Multi-Isotope and Auxiliary Data Evidence. Int. J. Environ. Res. Public Health 2021, 18, 6221. [Google Scholar] [CrossRef]
- Montemurro, D.G. Balance de Nutrientes y Eutrofización en Ríos y Embalses de la Cuenca del Río Negro (Uruguay); Universidad Republica de Uruguay: Paso Bonito, Cuba, 2017. [Google Scholar]
- Zaresefat, M.; Hosseini, S.; Ahrari Roudi, M. Addressing Nitrate Contamination in Groundwater: The Importance of Spatial and Temporal Understandings and Interpolation Methods. Water 2023, 15, 4220. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Shi, P.; Bi, Z.; Shan, Z.; Ren, L. The Deep Challenge of Nitrate Pollution in River Water of China. Sci. Total Environ. 2021, 770, 144674. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, F.A.L.; Sanches Fernandes, L.F. Environmental Land Use Conflicts in Catchments: A Major Cause of Amplified Nitrate in River Water. Sci. Total Environ. 2016, 548–549, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Arciszewski, T.J.; Roberts, D.R. Analyzing Relationships of Conductivity and Alkalinity Using Historical Datasets from Streams in Northern Alberta, Canada. Water 2022, 14, 2503. [Google Scholar] [CrossRef]
- Beeton, A.M. Eutrophication of the St. Lawrence Great Lakes. Limnol. Oceanogr. 1965, 10, 240–254. [Google Scholar] [CrossRef]
- Shannon, E.E.; Brezonik, P.L. Euthrophication Analysis: A Multivariate Approach. J. Sanit. Eng. Div. 1972, 98, 37–57. [Google Scholar] [CrossRef]
- Chibinda, C.; Arada-Pérez, D.M.L.A.; Pérez-Pompa, N. Caracterización Por Métodos Físico-Químicos y Evaluación Del Impacto Cuantitativo de las Aguas del Pozo la Calera. Rev. Cuba. Quím. 2017, 29, 303–321. [Google Scholar]
- Zhang, D.; Wang, P.; Cui, R.; Yang, H.; Li, G.; Chen, A.; Wang, H. Electrical Conductivity and Dissolved Oxygen as Predictors of Nitrate Concentrations in Shallow Groundwater in Erhai Lake Region. Sci. Total Environ. 2022, 802, 149879. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.; Fraile, J.; Reynolds Vargas, J. Conductividad, oxígeno disuelto, PH y temperatura en el rio Bermudez (Costa Rica) y su relación con el uso del suelo en la cuenca. Uniciencia 1996, 13, 27–34. [Google Scholar]
- Abril Saltos, R.V.; Rodríguez Badillo, L.M.; Sucoshañay Villalba, D.J.; Bucaram Visuma, E.M. Caracterización Preliminar de Calidad de Aguas En Subcuenca Media Del Río Puyo. Ing. Hidrául. Ambient. 2017, 38, 59–72. [Google Scholar]
- Adjovu, G.E.; Stephen, H.; Ahmad, S. A Machine Learning Approach for the Estimation of Total Dissolved Solids Concentration in Lake Mead Using Electrical Conductivity and Temperature. Water 2023, 15, 2439. [Google Scholar] [CrossRef]
- Dewangan, S.K.; Shrivastava, S.; Kadri, M.; Saruta, S.; Yadav, S.; Minj, N. Temperature effect on electrical conductivity (EC) & total dissolved solids (TDS) of water a riview. Int. J. Res. Anal. Rev. 2023, 10, 514–520. [Google Scholar]
- Sugiarti; Rohaningsih, D.; Aisyah, S. Study of Total Dissolved Solids (TDS) and Total Suspended Solids (TSS) in Estuaries in Banten Bay Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2023, 1201, 012045. [Google Scholar] [CrossRef]
- Kent, R.; Landon, M.K. Trends in Concentrations of Nitrate and Total Dissolved Solids in Public Supply Wells of the Bunker Hill, Lytle, Rialto, and Colton Groundwater Subbasins, San Bernardino County, California: Influence of Legacy Land Use. Sci. Total Environ. 2013, 452–453, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Burow, K.R.; Shelton, J.L.; Dubrovsky, N.M. Regional Nitrate and Pesticide Trends in Ground Water in the Eastern San Joaquin Valley, California. J. Environ. Qual. 2008, 37, S-249–S-263. [Google Scholar] [CrossRef] [PubMed]
- Armijos Muñoz, T.E.; Sánchez Vargas, K.A. Evaluación de la Calidad de Agua del Río Rumiyacu Mediante la Utilización de Bioindicadores en la Parroquia Dayuma Cantón Orellana Provincia de Orellana. Bachelor’s Thesis, Universidad Estatal Amazónica, Puyo, Ecuador, 2019. [Google Scholar]
- Tapia Lara, E.A. Calidad Fisicoquímica y Microbiológica del Agua del Río Suno Previo a su Ingreso en la Planta de Tratamiento Cantón Loreto; Universidad Central del Ecuador: Quito, Ecuador, 2021. [Google Scholar]
- Sucoshañay, D.; Gutiérrez, J.; García, A.; Ledesma, R.; Kuásquer, E.; Martínez, G. Evaluación de La Calidad de Las Aguas Superficiales de La Cuenca Del Río Puyo de La Amazonia Ecuatoriana a Partir de Un Índice Integrador (ICA_sp). Rev. Cien. Tierra Esp. 2015, 16, 225–236. [Google Scholar]
- Ribot, M.; Cochero, J.; Vaessen, T.N.; Bernal, S.; Bastias, E.; Gacia, E.; Sorolla, A.; Sabater, F.; Martí, E. Leachates from Helophyte Leaf-Litter Enhance Nitrogen Removal from Wastewater Treatment Plant Effluents. Environ. Sci. Technol. 2019, 53, 7613–7620. [Google Scholar] [CrossRef]
Variable | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 |
---|---|---|---|---|---|---|---|
DO mean (mg L−1) | 2.6 | 2.9 | 3.1 | 3.1 | 3 | 3.1 | 3 |
Min | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 |
Max | 4.3 | 5 | 5.3 | 5.4 | 5.4 | 5.1 | 5.1 |
SD | 1.2 | 1.5 | 1.6 | 1.6 | 1.4 | 1.5 | 1.5 |
Confidence Interval | 0.5–5.4 | 0.2–6.5 | 0.14–6.9 | 0.1–7.0 | 0.3–6.7 | −0.4–7.24 | 0.2–6.5 |
Nitrates mean (NO3) (mg L−1) | 20.3 | 25.9 | 23.6 | 30.1 | 31.1 | 37.5 | 44.3 |
Min | 15.3 | 15.3 | 16.6 | 15.2 | 20.9 | 20 | 16.2 |
Max | 26.5 | 43.4 | 27.6 | 56.7 | 57 | 83.7 | 103.3 |
SD | 4.6 | 12.3 | 4.8 | 18.6 | 17.2 | 30.9 | 40.7 |
Confidence Interval | 10.8–31.1 | 3.3–55.4 | 11.8–32.4 | −3.14–74.9 | 3.9–73.8 | −22.6–143.2 | −23.6–143.2 |
TDS mean (mg L−1) | 94.5 | 93.8 | 94 | 87 | 94.7 | 95 | 95.4 |
Min | 89.6 | 88.2 | 88.2 | 66.5 | 88.9 | 88.9 | 90.3 |
Max | 98 | 98 | 97.3 | 96.6 | 98.7 | 98.7 | 98.7 |
SD | 3.7 | 4.1 | 4 | 14.1 | 4.1 | 4.3 | 3.4 |
Confidence Interval | 85.9–101.0 | 84.2–102 | 84.3–101 | 52.7–110 | 84.9–102 | 83.0–104 | 86.8–102 |
Total coliforms mean (col 100 mL−1) | 155 | 112 | 141 | 133 | 138.5 | 138 | 148 |
Min | 90 | 70 | 60 | 50 | 30 | 70 | 70 |
Max | 218 | 188 | 238 | 240 | 240 | 200 | 230 |
SD | 69.4 | 53.4 | 89.5 | 97.8 | 79.6 | 53.7 | 65.5 |
Confidence Interval | 21.9–286.0 | 17.6–240.4 | −27.7–325.7 | −45.8–335.9 | −48.1–318.1 | −4.41–274.4 | 5.7–294.2 |
Fecal coliforms mean (col 100 mL−1) | 30.5 | 20 | 27.8 | 18.8 | 47.8 | 41.5 | 39 |
Min | 18 | 4 | 10 | 5 | 5 | 16 | 10 |
Max | 60 | 34 | 44 | 30 | 120 | 90 | 66 |
SD | 19.8 | 15.2 | 14.2 | 10.3 | 47.8 | 33.9 | 28.1 |
Confidence Interval | −1.4–79.4 | −10.9–48.9 | −3.91–57.9 | −5.10–40.1 | −45.0–170.0 | −31.1–137.1 | −17.6–93.6 |
pH mean | 7.3 | 7.1 | 6.8 | 6.9 | 7.1 | 7.3 | 7.1 |
Min | 6.5 | 6.5 | 6.2 | 5.9 | 6.7 | 7 | 6.6 |
Max | 7.9 | 7.4 | 7.4 | 7.6 | 7.6 | 7.7 | 7.8 |
SD | 0.6 | 0.4 | 0.5 | 0.8 | 0.4 | 0.4 | 0.5 |
Confidence Interval | 5.8–8.5 | 6.1–7.8 | 5.8–7.9 | 5.1–8.4 | 6.3–8.1 | 6.4–8.2 | 6.1–8.2 |
Conductivity mean (µS cm−1) | 134.5 | 134 | 134.3 | 124.3 | 135.25 | 135.3 | 136.3 |
Min | 128 | 126 | 126 | 95 | 127 | 127 | 129 |
Max | 138 | 139 | 139 | 138 | 141 | 141 | 141 |
SD | 4.7 | 5.8 | 5.7 | 20.1 | 5.9 | 6.1 | 5.1 |
Confidence Interval | 123.4–142.6 | 120.2–145.7 | 120.4–144.6 | 75.3–157.7 | 121.2–146.8 | 118.6–149.4 | 123.9–146.0 |
Flow velocity mean (m s−1) | 0.5 | 0.3 | 10.8 | 8 | 0.7 | 0.5 | 0.6 |
Min | 0.2 | 0.1 | 9 | 7 | 0.5 | 0.1 | 0.5 |
Max | 0.7 | 0.6 | 12 | 9 | 12 | 0.8 | 0.6 |
SD | 0.3 | 0.3 | 1.5 | 1.2 | 0.2 | 0.4 | 0.1 |
Confidence Interval | 0.1–0.9 | 0.1–0.9 | 7.5–13.5 | 5.9–10.1 | 0.3–12.2 | 0.1–1.4 | 0.4–0.7 |
Depth mean (m) | 0.6 | 0.7 | 1.6 | 0.7 | 1.7 | 0.8 | 0.8 |
Min | 0.3 | 0.6 | 0.3 | 0.5 | 0.2 | 0.6 | 0.7 |
Max | 0.9 | 0.8 | 2.2 | 0.8 | 3.2 | 1.2 | 0.9 |
SD | 0.4 | 0.1 | 0.9 | 0.2 | 1.7 | 0.3 | 0.2 |
Confidence Interval | 0.01–1.3 | 0.5–0.9 | 0.01–3.1 | 0.3–1.0 | 0.01–4.9 | 0.2–1.7 | 0.5–1.2 |
Water temperature mean (°C) | 24.7 | 24.9 | 25 | 25.1 | 25.1 | 25.7 | 25.7 |
Min | 24.5 | 24.7 | 24.7 | 24.8 | 24.9 | 25.1 | 25.1 |
Max | 24.9 | 25.1 | 25.3 | 25.3 | 25.4 | 26.3 | 26.4 |
SD | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.9 | 0.9 |
Confidence Interval | 24.2–25.1 | 24.3–25.4 | 24.3–25.7 | 24.5–26.0 | 24.6–26.0 | 23.9–28.0 | 24.3–27.2 |
Description | Units | Q Value | Subtotal Quality Index | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
DO | mg L−1 | 92.2 | 91.3 | 90.7 | 90.7 | 91.0 | 90.7 | 91.0 | 19.0 | 18.8 | 18.7 | 18.7 | 18.7 | 18.7 | 18.7 |
N-NO3 | mg L−1 | 87.82 | 84.5 | 85.8 | 81.9 | 81.3 | 77.5 | 73.4 | 11.9 | 11.5 | 11.7 | 11.1 | 11.1 | 10.5 | 10.0 |
BOD5 | mgO2 L−1 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 |
TDS | mg L−1 | 81.1 | 81.2 | 81.2 | 82.6 | 81.1 | 81.0 | 80.9 | 9.4 | 9.4 | 9.4 | 9.6 | 9.4 | 9.4 | 9.4 |
Fecal Coliforms | MPN 100 mL−1 | 99.11 | 99.4 | 99.2 | 99.5 | 98.6 | 98.8 | 98.9 | 13.3 | 13.3 | 13.3 | 13.3 | 13.2 | 13.2 | 13.2 |
pH | - | 53.5 | 54.5 | 56.0 | 55.0 | 54.5 | 53.5 | 54.5 | 8.3 | 8.5 | 8.7 | 8.6 | 8.5 | 8.3 | 8.5 |
Turbidity | NTU | 100.0 | 100.0 | 100.0 | 95.5 | 92.7 | 92.3 | 88.3 | 11.6 | 11.6 | 11.6 | 11.1 | 10.8 | 10.7 | 10.2 |
Sum index | 87 | 87 | 87 | 86 | 85 | 85 | 84 | ||||||||
Average index | 86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Tierras, T.; Jiménez-Gutiérrez, M.; Pastrano, S.; Chávez, G.; Morales-León, V.; Morales-León, M.; Paredes, F.; Vásquez-Castillo, W. Changes in Surface Water Quality of the El Salvador River in La Joya de los Sachas, Ecuadorian Amazon Region. Water 2024, 16, 1259. https://doi.org/10.3390/w16091259
Vargas-Tierras T, Jiménez-Gutiérrez M, Pastrano S, Chávez G, Morales-León V, Morales-León M, Paredes F, Vásquez-Castillo W. Changes in Surface Water Quality of the El Salvador River in La Joya de los Sachas, Ecuadorian Amazon Region. Water. 2024; 16(9):1259. https://doi.org/10.3390/w16091259
Chicago/Turabian StyleVargas-Tierras, Tannia, Mirian Jiménez-Gutiérrez, Sandra Pastrano, Gino Chávez, Vanessa Morales-León, María Morales-León, Fernando Paredes, and Wilson Vásquez-Castillo. 2024. "Changes in Surface Water Quality of the El Salvador River in La Joya de los Sachas, Ecuadorian Amazon Region" Water 16, no. 9: 1259. https://doi.org/10.3390/w16091259
APA StyleVargas-Tierras, T., Jiménez-Gutiérrez, M., Pastrano, S., Chávez, G., Morales-León, V., Morales-León, M., Paredes, F., & Vásquez-Castillo, W. (2024). Changes in Surface Water Quality of the El Salvador River in La Joya de los Sachas, Ecuadorian Amazon Region. Water, 16(9), 1259. https://doi.org/10.3390/w16091259