Fractal Characteristics of Water Outflows on the Soil Surface after a Pipe Failure
Abstract
:1. Introduction
2. Literature Review
2.1. The Phenomenon of Suffosion as a Result of Water Leakage from Buried Pipes
2.2. The Problem of Water Supply Network Failures Resulting in Leakages
2.3. Basic Information about Fractal Structures
3. Materials and Methods
3.1. Laboratory Tests
3.2. Simplifying the Real Structure
3.3. Specifying the Parameters Characterizing TSLs in Terms of the Zone Range Determination
4. Results and Discussion
4.1. Results of the Laboratory Tests
4.2. Results of Simplifying the Real Structure
- Approximate self-similarity: This feature has been improved for RSs by enlarging individual frames of the recordings of water outflow and the formation of a suffosion hole [7]. The stages of formation of the suffosion hole were the same regardless of the location of the hole, so it can be concluded that the self-similarity condition is also met by the TLS structure.
- Non-trivial structure: It is obvious that all TLS points lie on the x-axis, but the distances of these points from the place of water leakage from the pipe (the origin) are different and non-obvious (Figure 9). The number of points creating the TLS is also non-obvious; Therefore, each TLS has a non-trivial structure.
- Recursive construction procedure: Each RS was created in consecutive steps corresponding to successive repetitions of the experiment; The TLS can also be gradually constructed based on subsequent steps of the RS creation.
- Recursive dependencies in the analytical description: The process of creating TLSs can be described by the same recursive dependency as for an RS [7]:
- Difficulty of description using Euclidean geometry concepts: Geometric figures that constitute a subset of Euclidean space, after adopting a coordinate system, can be described using a set of classical equations or inequalities that relate the coordinates of points [84]; TLS cannot be described in this way due to the randomness of points corresponding to its RL and the non-obvious number of points, creating TLSs.
- Randomness occurring in successive iterations: This feature results from the improved randomness of RSs [6], which is the basis for the creation of TLSs.
- Limited number of iterations: The number of iterations is equal to the number of repetitions of the experiment; Thus, it is limited.
4.3. Analysis of Parameters Characterizing TLS with Regard to Determining the Water Outflow Zone
5. Summary and Conclusions
- —the length of the shortest segment along the x-axis completely covering a given structure, with one end being the origin of the coordinate system;
- —the product of the fractal dimension and , which, for a structure embedded in one-dimensional space, can be interpreted as the length of the segment , completely filled by the linear structure;
- nw—the number of points creating the structure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iwanek, M.; Kowalski, D.; Kowalska, B.; Hawryluk, E.; Kondraciuk, K. Experimental investigations of zones of leakage from damaged water network pipes. In Urban Water II. WIT Transactions on the Built Environment; Brebbia, C.A., Mambretti, S., Eds.; WIT Press: Southampton, UK, 2014; Volume 139, pp. 257–268. [Google Scholar] [CrossRef]
- Iwanek, M.; Kowalski, D.; Kwietniewski, M. Badania modelowe wypływu wody z podziemnego rurociągu podczas awarii. (Model studies of a water outflow from an underground pipeline upon its failure). Ochr. Sr. 2015, 37, 13–17. (In Polish) [Google Scholar]
- Suchorab, P.; Kowalska, B.; Kowalski, D. Numerical Investigations of Water Outflow After the Water Pipe Breakage. Annu. Set Environ. Prot.-Rocz. Ochr. Sr. 2016, 18, 416–427. [Google Scholar]
- Iwanek, M.; Kowalska, B.; Hawryluk, E.; Kondraciuk, K. Distance and time of water effluence on soil surface after failure of buried water pipe. Laboratory investigations and statistical analysis. Eksploat. i Niezawodn.-Maint. Reliab. 2016, 18, 278–284. [Google Scholar] [CrossRef]
- Iwanek, M.; Suchorab, P.; Sidorowicz, Ł. Analysis of the width of protection zone near a water supply network. Archit. Civ. Eng. Environ. 2019, 12, 123–128. [Google Scholar] [CrossRef]
- Iwanek, M. Application of Ripley’s K-function in research on protection of underground infrastructure against selected effects of suffosion. Int. J. Conserv. Sci. 2021, 12, 827–834. Available online: https://ijcs.ro/public/IJCS-21-62_Iwanek.pdf (accessed on 15 March 2024).
- Iwanek, M. Set of Suffosion Holes Occurring After a Water Supply Failure as a Structure with Fractal Features. J. Ecol. Eng. 2022, 23, 164–171. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Huang, B.; Hu, T.; Ling, D. Review on Numerical Simulation of the Internal Soil Erosion Mechanisms Using the Discrete Element Method. Water 2021, 13, 169. [Google Scholar] [CrossRef]
- Kovács, G.; Ujfaludi, L. Movement of fine grains in the vicinity of well screens. Hydrol. Sci. J. 1983, 28, 247–260. [Google Scholar] [CrossRef]
- Piechurski, F. Wykorzystanie monitoringu sieci wodociągowej do obniżenia poziomu strat wody (Using monitoring of the water supply network to reduce the level of water losses). Napędy i Sterow. 2013, 2, 66–71. (In Polish) [Google Scholar]
- Ali, H.; Choi, J.-h. Risk Prediction of Sinkhole Occurrence for Different Subsurface Soil Profiles due to Leakage from Underground Sewer and Water Pipelines. Sustainability 2020, 12, 310. [Google Scholar] [CrossRef]
- Tufano, R.; Guerriero, L.; Annibali Corona, M.; Bausilio, G.; Di Martire, D.; Nisio, S.; Calcaterra, D. Anthropogenic sinkholes of the city of Naples, Italy: An update. Nat. Hazards 2022, 112, 2577–2608. [Google Scholar] [CrossRef]
- Dastpak, P.; Sousa, R.L.; Dias, D. Soil Erosion Due to Defective Pipes: A Hidden Hazard Beneath Our Feet. Sustainability 2023, 15, 8931. [Google Scholar] [CrossRef]
- Sala, D.; Kołakowski, P. Detection of leaks in a small-scale water distribution network based on pressure data—Experimental verification. Procedia Eng. 2014, 70, 1460–1469. [Google Scholar] [CrossRef]
- Liemberger, R.; Wyatt, A. Quantifying the global non-revenue water problem. Water Supply 2019, 19, 831–837. [Google Scholar] [CrossRef]
- Taha, A.W.; Sharma, S.; Lupoja, R.; Fadhl, A.N.; Haidera, M.; Kennedy, M. Assessment of water losses in distribution networks: Methods, applications, uncertainties, and implications in intermittent supply. Resour. Conserv. Recycl. 2020, 152, 104515. [Google Scholar] [CrossRef]
- Taiwo, R.; Shaban, I.A.; Zayed, T. Development of sustainable water infrastructure: A proper understanding of water pipe failure. J. Clean. Prod. 2023, 398, 136653. [Google Scholar] [CrossRef]
- Birek, L.; Petrovic, D.; Boylan, J. Water leakage forecasting: The application of a modified fuzzy evolving algorithm. Appl. Soft Comput. 2014, 14, 305–315. [Google Scholar] [CrossRef]
- Harvey, R.; McBean, E.A.; Gharabaghi, B. Predicting the timing of water main failure using artificial neural networks. J. Water Resour. Plan. Manag. 2014, 140, 425–434. [Google Scholar] [CrossRef]
- Kutyłowska, M. Neural network approach for failure rate prediction. Eng. Fail. Anal. 2015, 47, 41–48. [Google Scholar] [CrossRef]
- Kutyłowska, M. Neural network approach for availability indicator prediction. Periodoca Polytech.-Civ. Eng. 2017, 61, 873–881. [Google Scholar] [CrossRef]
- Scheidegger, A.; Leitão, J.P.; Scholten, L. Statistical failure models for water distribution pipes—A review from a unified perspective. Water Res. 2015, 83, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Boryczko, K.; Pasierb, A. Method for forecasting the failure rate index of water pipelines. In Environmental Engineering V; Pawłowska, M., Pawłowski, L., Eds.; Taylor & Francis Group: London, UK, 2017; pp. 15–24. [Google Scholar]
- Fan, X.; Wang, X.; Zhang, X.; Yu, X.B. Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors. Reliab. Eng. Syst. Saf. 2022, 219, 108185. [Google Scholar] [CrossRef]
- Taiwo, R.; Ben Seghier, M.E.A.; Zayed, T. Toward Sustainable Water Infrastructure: The State-Of-The-Art for Modeling the Failure Probability of Water Pipes. Water Resour. Res. 2023, 59, e2022WR033256. [Google Scholar] [CrossRef]
- Miszta-Kruk, K.; Kwietniewski, M.; Malesińska, A.; Chudzicki, J. Modern devices for detecting leakages in water supply networks. In Underground Infrastructure in Urban Areas 3; Madras, C., Kolonko, A., Nienartowicz, B., Szot, A., Eds.; CRC Press/Balkema Taylor&Francis Group: London, UK, 2015; pp. 149–161. [Google Scholar] [CrossRef]
- Okeya, I.; Hutton, C.; Kapelan, Z. Locating pipe bursts in a district metered area via online hydraulic modelling. Procedia Eng. 2015, 119, 101–110. [Google Scholar] [CrossRef]
- Karadirek, I.E. Urban water losses management in Turkey: The legislation and challenges. Anadolu Univ. J. Sci. Technol. A-Appl. Sci. Eng. 2016, 17, 572–584. Available online: https://dergipark.org.tr/tr/download/article-file/229193 (accessed on 15 March 2024). [CrossRef]
- Karathanasi, I.; Papageorgakopoulos, C. Development of a leakage control system at the water supply network of the city of Patras. Procedia Eng. 2016, 162, 553–558. [Google Scholar] [CrossRef]
- Chan, T.K.; Chin, C.S.; Zhong, X. Review of current technologies and proposed intelligent methodologies for water distributed network leakage detection. IEEE Access 2018, 6, 78846–78867. [Google Scholar] [CrossRef]
- Mohammed, E.G.; Zeleke, E.B.; Abebe, S.L. Water leakage detection and localization using hydraulic modeling and classification. J. Hydroinform. 2021, 23, 782–794. [Google Scholar] [CrossRef]
- Tariq, S.; Hu, Z.; Zayed, T. Micro-electromechanical systems-based technologies for leak detection and localization in water supply networks: A bibliometric and systematic review. J. Clean. Prod. 2021, 289, 125751. [Google Scholar] [CrossRef]
- Wu, Y.; Kang, C.; Nojumi, M.M.; Bayat, A.; Bontus, G. Current water main rehabilitation practice using trenchless technology. Water Pract. Technol. 2021, 16, 707–723. [Google Scholar] [CrossRef]
- Li, J.; Zheng, W.; Lu, C. An accurate leakage localization method for water supply network based on deep learning network. Water Resour. Manag. 2022, 36, 2309–2325. [Google Scholar] [CrossRef]
- Aslam, H.; Mortula, M.M.; Yehia, S.; Ali, T.; Kaur, M. Evaluation of the Factors Impacting the Water Pipe Leak Detection Ability of GPR, Infrared Cameras, and Spectrometers under Controlled Conditions. Appl. Sci. 2022, 12, 1683. [Google Scholar] [CrossRef]
- Rajasekaran, U.; Kothandaraman, M. A Survey and Study of Signal and Data-Driven Approaches for Pipeline Leak Detection and Localization. J. Pipeline Syst. Eng. Pract. 2024, 15, 03124001. [Google Scholar] [CrossRef]
- Maslak, V.; Nasonkina, N.; Sakhnovskaya, V.; Gutarova, M.; Antonenko, S.; Nemova, D. Evaluation of technical condition of water supply networks on undermined territories. Procedia Eng. 2015, 117, 980–989. [Google Scholar] [CrossRef]
- Gupta, A.; Kulat, K.D. A selective literature review on leak management techniques for water distribution system. Water Resour. Manag. 2018, 32, 3247–3269. [Google Scholar] [CrossRef]
- Serafeim, A.V.; Kokosalakis, G.; Deidda, R.; Karathanasi, I.; Langousis, A. Probabilistic Minimum Night Flow Estimation in Water Distribution Networks and Comparison with the Water Balance Approach: Large-Scale Application to the City Center of Patras in Western Greece. Water 2022, 14, 98. [Google Scholar] [CrossRef]
- Ramos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Pienika, R.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129. [Google Scholar] [CrossRef]
- Laucelli, D.; Rajani, B.; Kleiner, Y.; Giustolisi, O. Study on relationships between climate-related covariates and pipe bursts using evolutionary-based modeling. J. Hydroinformatics 2014, 16, 743–757. [Google Scholar] [CrossRef]
- Wols, B.A.; Van Daal, K.; Van Thienen, P. Effects of climate change on drinking water distribution network integrity: Predicting pipe failure resulting from differential soil settlement. Procedia Eng. 2014, 70, 1726–1734. [Google Scholar] [CrossRef]
- Rezaei, H.; Ryan, B.; Stoianov, I. Pipe failure analysis and impact of dynamic hydraulic conditions in water supply networks. Procedia Eng. 2015, 119, 253–262. [Google Scholar] [CrossRef]
- Barton, N.A.; Farewell, T.S.; Hallett, S.H.; Acland, T.F. Improving pipe failure predictions: Factors affecting pipe failure in drinking water networks. Water Res. 2019, 164, 114926. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Shaban, I.A.; Zayed, T. A review of climatic impacts on water main deterioration. Urban Clim. 2023, 49, 101552. [Google Scholar] [CrossRef]
- Kissi, B.; Parron Vera, M.A.; Rubio Cintas, M.D.; Dubujet, P.; Khamlichi, A.; Bezzazi, M.; El Bakkali, L. Predicting initial erosion during the hole erosion test by using turbulent flow CFD simulation. Appl. Math. Model. 2012, 36, 3359–3370. [Google Scholar] [CrossRef]
- Wang, G.; Takahashi, A. A modified subloading Cam-clay model for granular soils subjected to suffusion. Geomech. Geoengin. 2022, 17, 1294–1308. [Google Scholar] [CrossRef]
- Abdelhamid, Y.; El Shamy, U. Pore-Scale Modeling of Fine-Particle Migration in Granular Filters. Int. J. Geomech. 2015, 16, 04015086. [Google Scholar] [CrossRef]
- Wang, M.; Feng, Y.T.; Pande, G.N.; Chan, A.H.C.; Zuo, W.X. Numerical modelling of fluid-induced soil erosion in granular filters using a coupled bonded particle lattice Boltzmann method. Comput. Geotech. 2017, 82, 134–143. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Fractals: Form, Chance and Dimension; W.H. Freeman and Co.: New York, NY, USA, 1977. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman and Co.: New York, NY, USA, 1982. [Google Scholar]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
- Hassan, M.K.; Kurths, J. Can randomness alone tune the fractal dimension? Phys. A Stat. Mech. Its Appl. 2002, 315, 342–352. [Google Scholar]
- Barnsley, M.; Hutchinson, J.; Stenflo, Ö. A fractal valued random iteration algorithm and fractal hierarchy. Fractals 2005, 13, 111–146. [Google Scholar] [CrossRef]
- Millán, H.; González-Posada, M.; Aguilar, M.; Domínguez, J.; Céspedes, L. On the fractal scaling of soil data. Particle-size distributions. Geoderma 2003, 117, 117–128. [Google Scholar]
- Bayat, H.; Neyshaburi, M.R.; Mohammadi, K.; Nariman-Zadeh, N.; Irannejad, M.; Gregory, A.S. Combination of artificial neural networks and fractal theory to predict soil water retention curve. Comput. Electron. Agric. 2013, 92, 92–103. [Google Scholar] [CrossRef]
- Li, B.; Liu, R.; Jiang, Y. A multiple fractal model for estimating permeability of dual-porosity media. J. Hydrol. 2016, 540, 659–669. [Google Scholar] [CrossRef]
- Iwanek, M.; Kowalski, D.; Kowalska, B.; Suchorab, P. Fractal geometry in designing and operating water networks. J. Ecol. Eng. 2020, 21, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Pothiyodath, N.; Murkoth, U.K. Fractals and music. Momentum Phys. Educ. J. 2022, 6, 119–128. [Google Scholar] [CrossRef]
- Bisht, N.; Malik, P.K.; Das, S.; Islam, T.; Asha, S.; Alathbah, M. Design of a Modified MIMO Antenna Based on Tweaked Spherical Fractal Geometry for 5G New Radio (NR) Band N258 (24.25–27.25 GHz) Applications. Fractal Fract. 2023, 7, 718. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A.; Anukool, W. Modeling thermal diffusion flames with fractal dimensions. Therm. Sci. Eng. Prog. 2023, 45, 102145. [Google Scholar] [CrossRef]
- Jeong, D.P.; Montes, D.; Chang, H.C.; Hanjaya-Putra, D. Fractal dimension to characterize interactions between blood and lymphatic endothelial cells. Phys. Biol. 2023, 20, 045004. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yu, B. A fractal resistance model for flow through porous media. Int. J. Heat Mass Transf. 2007, 50, 3925–3932. [Google Scholar] [CrossRef]
- Xiao, B.; Fan, J.; Ding, F. Prediction of relative permeability of unsaturated porous media based on fractal theory and Monte Carlo simulation. Energy Fuel 2012, 26, 6971–6978. [Google Scholar] [CrossRef]
- Tan, X.H.; Li, X.P.; Liu, J.Y.; Zhang, G.D.; Zhang, L.H. Analysis of permeability for transient two-phase flow in fractal porous media. J. Appl. Phys. 2014, 115, 113502. [Google Scholar] [CrossRef]
- Tan, X.H.; Li, X.P.; Liu, J.Y.; Zhang, L.H.; Fan, Z. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media. Phys. Lett. A 2015, 379, 2458–2465. [Google Scholar] [CrossRef]
- Wang, S.; Wu, T.; Qi, H.; Zheng, Q.; Zheng, Q. A permeability model for power-law fluids in fractal porous media composed of arbitrary cross-section capillaries. Phys. A Stat. Mech. Its Appl. 2015, 437, 12–20. [Google Scholar] [CrossRef]
- Miao, T.; Yu, B.; Duan, Y.; Fang, Q. A fractal model for spherical seepage in porous media. Int. Commun. Heat Mass Transf. 2014, 58, 71–78. [Google Scholar] [CrossRef]
- Miao, T.; Yang, S.; Long, Z.; Yu, B. Fractal analysis of permeability of dual-porosity media embedded with random fractures. Int. J. Heat Mass Transf. 2015, 88, 814–821. [Google Scholar] [CrossRef]
- Hatano, R.; Booltink, H.W.G. Using fractal dimensions of stained flow patterns in a clay soil to predict bypass flow. J. Hydrol. 1992, 135, 121–131. [Google Scholar]
- Baveye, P.; Boast, C.W.; Ogawa, S.; Parlange, J.Y.; Steenhuis, T. Influence of image resolution and thresholding on the apparent mass fractal characteristics of preferential flow patterns in field soils. Water Resour. Res. 1998, 34, 2783–2796. [Google Scholar] [CrossRef]
- Ahmadi, A.; Neyshabouri, M.R.; Rouhipour, H.; Asadi, H. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 2011, 400, 305–311. [Google Scholar] [CrossRef]
- Xu, G.; Li, Z.; Li, P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. Catena 2013, 101, 17–23. [Google Scholar] [CrossRef]
- Veneziano, D.; Essiam, A.K. Flow through porous media with multifractal hydraulic conductivity. Water Resour. Res. 2003, 39, 1166. [Google Scholar] [CrossRef]
- Sergeyev, Y. Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos Solitions Fractals 2007, 33, 50–75. [Google Scholar] [CrossRef]
- Caldarola, F.; Maiolo, M. On the topological convergence of multi-rule sequences of sets and fractal patterns. Sofl. Comput. 2020, 24, 17737–17749. [Google Scholar] [CrossRef]
- Iwanek, M.; Malesińska, A. Zastosowanie teorii podobieństwa w modelowaniu awarii sieci wodociągowych (Use similitude in modeling water supply failure). Gaz Woda i Tech. Sanit. 2015, 3, 82–86. (In Polish) [Google Scholar]
- Tucker, H.G. An Introduction to Probability and Mathematical Statistics; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- American Society for Testing and Materials. ASTM D698 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)); American Society for Testing and Materials (ASTM International): West Conshohocken, PA, USA, 2021. [Google Scholar]
- American Society for Testing and Materials. ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass; American Society for Testing and Materials (ASTM International): West Conshohocken, PA, USA, 2019. [Google Scholar]
- American Society for Testing and Materials. ASTM D3385 Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer; American Society for Testing and Materials (ASTM International): West Conshohocken, PA, USA, 2018. [Google Scholar]
- American Society for Testing and Materials. ASTM E11 Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves; American Society for Testing and Materials (ASTM International): West Conshohocken, PA, USA, 2022. [Google Scholar]
- Milošević, N.T.; Elston, G.N.; Krstonošić, B.; Rajković, N. Box-count analysis of two dimensional images: Methodology, analysis and classification. In 19th International Conference on Control Systems and Computer Science; Dumitrache, I., Florea, A.M., Pop, F., Eds.; IEEE Computer Society: Los Alamitos, CA, USA, 2013; pp. 306–312. [Google Scholar] [CrossRef]
- Empacher, A.B.; Sęp, Z.; Żakowska, A.; Żakowski, W. Short Dictionary of Mathematics; Wiedza Powszechna: Warsaw, Poland, 1975. (In Polish) [Google Scholar]
TLS | Leakage Area, cm2 | Db | R2 for Db | (Rw)max, cm | Rfr, cm | nw |
---|---|---|---|---|---|---|
F1″ | 2.83 | 0.7737 | 0.9931 | 44.90 | 34.74 | 86 |
F2″ | 4.71 | 0.7987 | 0.9970 | 57.45 | 45.89 | 135 |
F3″ | 9.42 | 0.8902 | 0.9858 | 48.90 | 43.53 | 109 |
F4″ | 15.07 | 0.8227 | 0.9944 | 56.35 | 46.36 | 91 |
F5″ | 18.84 | 0.8307 | 0.9967 | 56.32 | 46.78 | 240 |
Data Set | Leakage Area, cm2 | Db | R2 for Db | (Rw)max, cm | Rfr, cm | nw |
---|---|---|---|---|---|---|
H1″ | 3.0 | 0.7524 | 0.9856 | 48.90 | 36.79 | 56 |
H2″ | 3.5 | 0.6911 | 0.9858 | 49.38 | 34.12 | 57 |
H3″ | 4.0 | 0.9193 | 0.9990 | 57.45 | 52.81 | 333 |
H4″ | 4.5 | 0.7333 | 0.9877 | 47.64 | 34.94 | 62 |
H5″ | 5.0 | 0.8423 | 0.9858 | 43.23 | 36.41 | 50 |
H6″ | 5.5 | 0.8246 | 0.9927 | 50.35 | 41.52 | 57 |
H7″ | 6.0 | 0.6746 | 0.9793 | 54.80 | 36.97 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwanek, M.; Suchorab, P. Fractal Characteristics of Water Outflows on the Soil Surface after a Pipe Failure. Water 2024, 16, 1222. https://doi.org/10.3390/w16091222
Iwanek M, Suchorab P. Fractal Characteristics of Water Outflows on the Soil Surface after a Pipe Failure. Water. 2024; 16(9):1222. https://doi.org/10.3390/w16091222
Chicago/Turabian StyleIwanek, Małgorzata, and Paweł Suchorab. 2024. "Fractal Characteristics of Water Outflows on the Soil Surface after a Pipe Failure" Water 16, no. 9: 1222. https://doi.org/10.3390/w16091222
APA StyleIwanek, M., & Suchorab, P. (2024). Fractal Characteristics of Water Outflows on the Soil Surface after a Pipe Failure. Water, 16(9), 1222. https://doi.org/10.3390/w16091222