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Abstract: Water pipe failures result in real water losses in the form of water outflowing into the
porous medium, such as the surrounding soil. Such an outflow may result in the creation of suffosion
holes. The appropriate management of the water supply network may contribute to reducing the
number of failures, but due to their random nature, it is not possible to completely eliminate them.
Therefore, alternative solutions are being sought to reduce the effects of the failures. This article
presents a fragment of the results from a broader scope of the research, which attempted to determine
the outflow zone in relation to the fractal characteristics of water outflows. The research included
the analysis of the actual geometric structures created by the water outflows, which were simplified
into linear structures using isometric transformations. The structures were analyzed in terms of the
parameters characterizing them, including their fractal dimensions. As a result, it was found that
there was no relationship between the analyzed fractal parameters and the leakage area or hydraulic
pressure in the water pipe. However, the influence of the number of points forming each linear
structure on the analyzed parameters was shown. This allowed for the determination of further
research aimed at estimating the size of the water outflow zone after the unsealing of an underground
water supply pipe.

Keywords: water outflows; fractals; pipe failure; suffosion holes

1. Introduction

The outflow of a liquid from a pressure pipe into a porous medium is a common
phenomenon. It may occur during the failure of underground systems transporting liquids,
for example, water supply networks. Owing to the efficient management of the water
supply system and making of appropriate decisions and operational activities, the number
of failures can be reduced, but they cannot be completely eliminated. The main reason
that failures in water supply networks are inevitable is that they are very often random.
Unwanted outflows from water pipes not only cause water loss but may also pose a threat
to the safety of people and property. The cause of the threat is the possibility of water
washing out particles from the soil matrix during a buried pipe failure, which may lead to
the formation of empty spaces under the soil surface and the creation of land depressions
(suffosion phenomenon). The accidents resulting from suffosion in urbanized areas are
reported relatively often all over the world.

Among the proposals to limit the dangerous and costly effects of the suffosion phe-
nomenon after a possible water pipe failure is the determination of the so-called outflow
zones, within which water can flow to the soil surface after a leak occurs in a pipe. An
attempt to limit the effects of a possible failure related to soil suffosion by determining an
outflow zone is an alternative method to the methods aimed at preventing failures, but it
should be emphasized that both approaches complement each other. However, estimating
the dimensions of the outflow zones is a difficult task due to the complexity of the phe-
nomenon in question and its dependence on many factors. The analyses presented in this
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article are part of larger studies aimed at determining the range of the outflow zone. The
full scope of research is presented in the block diagram (Figure 1). The conducted research,
based on the statistical analyses and numerical simulations presented in the works [1–5],
did not give satisfactory results in the context of determining the range of the outflow zone;
therefore, an attempt was made to determine such a zone using fractal geometry elements.
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Figure 1. The research scope of the zone range determination of water outflows after a pipe failure.

One way to determine the outflow zone is through a geometrical analysis of the
distribution of points corresponding to the places of water outflow onto the soil surface.
As it was shown in previous research, these points create irregular sets that are difficult to
describe based on the concepts of classical Euclidean geometry [6]. Simultaneously, these
sets meet the conditions for random fractals [7], so it is possible to determine their fractal
dimensions. The aim of the article is to check the possibility of using a fractal dimension
to estimate the size of the water outflow zone on the soil surface as a result of leakage
from a water pipe. The obtained research will give direction to further analyses aimed at
determining the outflow zone. It is a very important issue in terms of the safe operation of
water supply systems.

2. Literature Review
2.1. The Phenomenon of Suffosion as a Result of Water Leakage from Buried Pipes

The undesirable flow of water from a buried water pipe into the soil is a common
example of liquid outflow from a pressure pipe into a porous medium. Leakages from
water pipes may pose a threat to the safety of people and property. The danger results from
the possibility of suffosion occurrence, which is caused by the flow of water in internally
unstable soil. As a result of this flow, small particles can be detached from the soil matrix
and moved by water in the soil pores, causing the formation of empty spaces under the soil
surface and land depressions [8].

Two conditions must be met simultaneously for the suffosion process to occur. The
first, called the geometric condition, concerns the physical characteristics of the soil, and
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the second, the hydraulic condition, concerns the water flow. The soil meets the geometric
condition of suffosion if it has granulation and pore sizes large enough to create channels
inside the soil along which small particles can move. Second, the hydraulic condition for
suffosion is met if the velocity of water flowing through internally unstable soil is high
enough to cause the detachment of particles from the soil matrix. A verification of the
hydraulic condition of suffosion requires determining the critical velocity of water flow in
the soil at which particles are washed out from the soil matrix [9].

The velocity of the water leaking from the pressure pipe may be sufficient to reach a
critical value. If the leakage is very intense, the changes in the soil structure characteristic
for suffosion become visible very quickly. An example may be the failure of a water main,
resulting in a sudden outflow of water, often visible almost immediately on the soil surface.
The effects of smaller leaks, e.g., from water connections, unless the failure is repaired, may
become visible on the soil surface in the form of depressions after some time (in Poland,
usually after over one hundred days [10]). These depressions are usually smaller than in
the case of main failures. However, situations where the flow of water from the pipe is
small, is difficult to detect, where no changes are visible on the soil surface, and where the
water can easily flow away, e.g., through a leak in the nearby sewage pipe, are dangerous.
Then, if the leakage from the water pipe does not stop, the water washes out more and
more soil particles, the empty space under the surface of the soil increases, and a dangerous
sinkhole may form. Such cases have occurred many times around the world and are still
being reported [11–13], so it is an important and current problem.

The phenomenon of suffosion is particularly dangerous in urbanized areas, because
these areas are characterized by a higher population density than non-urbanized areas, with
more compact and often higher buildings, as well as the presence of industrial infrastructure.
Sinkholes or depressions in the land surface resulting from suffosion may therefore lead
to construction disasters in these areas, posing not only a threat to human life, but also
causing significant economic losses.

2.2. The Problem of Water Supply Network Failures Resulting in Leakages

The risk of suffosion in urban areas is most often associated with the presence of
water supply and sewage infrastructures [11,13], because the operation of these systems
is accompanied by failures resulting in the outflow of water or sewage into the ground.
Leakages occur even in properly managed and maintained networks throughout all periods
of their operation, presenting a problem for water and wastewater utilities around the
world, in both in developing and developed countries, as shown in [14–17].

The phenomenon of water leaking from a damaged pipe into the soil is known and
widely presented in the literature. Especially in the last years, there has been an increased
interest in the problem of failure rates of water pipes and the need to reduce leaks. Attempts
are made to predict network failure rates using mathematical and numerical methods
(including machine learning, artificial neural networks, fuzzy sets, and genetic algorithms,
e.g., as shown in [18–25]). Increasingly better ways of detecting and locating leaks as well
as methods of limiting them are being investigated, e.g., as shown in [26–36]. Both direct,
using the latest technologies, and indirect methods, based on water loss coefficients, for
assessing the technical conditions of water pipes are constantly being improved, e.g., as
in [37–40]. Detecting a leak or the possibility of its occurrence early enough can prevent
dangerous changes in the soil structure resulting from the suffosion. The above-mentioned
activities are therefore very important in social, economic, and ecological terms. However,
they are not able to fully eliminate the problem of water supply network failures. Their
occurrence cannot be completely prevented, because they are caused by many factors,
which are not always human dependent and not always predictable; they are often of a
random nature [41–45]. Moreover, the limitations of the technical and financial capabilities
of many water supply companies mean that the latest methods of detecting and controlling
undesirable outflows are not available to every company, and the renovation or replacement
of pipes in unsatisfactory technical conditions cannot be carried out immediately. It can
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therefore be assumed that water leaks will continue to be a problem for many years, so it
is justified to take all measures to reduce their negative effects. One of the proposals is to
introduce the so-called outflow zones around places on the water pipeline where a failure
would pose a particular threat to the surrounding infrastructure [5]. This approach aims
to reduce the effects of soil suffosion after a possible failure, so it is a different approach
than failure prevention, but it should be emphasized that both approaches complement
each other.

The outflow of water onto the soil surface as a result of a water pipe failure is a complex
phenomenon influenced by many physical parameters, often variable in time or space,
independent or interconnected. An additional factor that increases the complexity of the
phenomenon is that the occurrence of suffosion is associated with simultaneous quantitative
changes in the solid, liquid, and gaseous phases of the soil medium, progressing over time.
Incessantly, using various scientific achievements (e.g., RNG k-ε model, Cam-clay model,
and lattice Boltzmann method), attempts are made to describe special cases of water flow
through a porous medium [46–49], but there is still no mathematical description of the
distance between the buried water pipe and the potential place of water outflow on the
soil surface after a possible pipe failure. The mathematical description would enable the
determination of outflow zones, within which a water pipe failure could result in suffosion.
One of the fields of knowledge in which possibilities in this area are still unexplored is
fractal geometry.

2.3. Basic Information about Fractal Structures

Fractal geometry is a relatively new field, initiated as a science in the second half of
the 20th century by the works of Benoit Mandelbrot [50,51]. It uses geometric objects called
fractals to describe the structures too irregular to be described using traditional Euclidean
geometry. The basic feature of fractals is self-similarity, which means that a fractal is an
object consisting of parts similar to the whole object (after enlarging the fragment, an
image similar to the whole is obtained). Almost every infinitesimal element of a fractal
consists of a very large number of other elements that are separated by spaces of variable
dimensions. Other features of fractals include non-trivial (intricate) structures at any scale,
recursive construction procedures (repeating the same activities in subsequent iterations),
difficulty of description using the concepts of classical geometry, and analytical descriptions
requiring the use of recursive relationships [52].

The fractals characterized by strict self-similarity are called classical or deterministic.
The process of their construction, which involves repeating the same actions based on a
carefully developed algorithm, lasts infinitely long (infinite number of iterations). However,
there are many fractals in nature that show self-similarity to some extent, i.e., they consist
of parts that resemble the whole, but there is no strict geometric similarity. Such fractals
are called random fractals [52–54]. The number of iterations (steps) in the process of
constructing a random fractal reflecting a real object is limited, and adding subsequent
elements to the set is random.

A very important parameter characterizing a fractal is its dimension. It determines
the extent to which a geometric set fills the space that bounds it and can be expressed as a
non-integer number [51]. When examining the flow of water in a porous medium, it is not
always necessary to reflect it using theoretical fractals. It is often enough to understand that
the geometric structure of the medium is a fractal set and determine its fractal dimension.
The research results described in the literature show that there are relationships between
the fractal dimension and the physical and hydraulic parameters of soil, e.g., grain size
composition and saturated and unsaturated conductivity coefficients [55–57].

Fractal geometry has become a very helpful tool used both for the characterization
of complex microstructures of porous media and in theoretical analyses to determine the
principles of liquid flow through these media. In recent years, the scope of interest in
fractal geometry has expanded to include issues related to the design and operation of
water supply networks [58]. These are not the only examples of the use of fractal geom-
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etry as a research tool. It is used in almost all fields, including computer graphics and
computer science, mechanics, electronics, architecture, urban planning, material science,
technology, astrophysics, agrophysics, statistics, geography, biology, medicine, psychology,
genetics, economics and management, film, and music, e.g., as shown in [59–62]. There are
also analyses of water flow in the ground (its physical and hydraulic parameters) in the
aspects of relationships between the fractal dimension and these parameters. For example,
Millán et al. [55] showed that in the soil samples they studied, with an increase in the
content of clay particles, the bulk fractal dimension also increased, while an increase in
the sand content in the soil was associated with a lower value of the fractal dimension.
Bayat et al. [56] proved that by treating the soil as a fractal structure and using the param-
eters characterizing it (e.g., fractal dimension) as input data for artificial neural network
models, the accuracy of the estimation of water retention curves increases significantly. The
fractal dimension of soil pores can be used not only to determine the porosity [63], but also
the permeability in the saturated or unsaturated state [57,64–69]. The fractal dimension
of the geometric structure can also be helpful in predicting easy flow paths [70,71] and
determining the erodibility of soils [72] or the degree of their degradation [73]. Attempts
to use fractal geometry to describe increasingly advanced and complicated phenomena
resulted in the distinction, apart from basic fractals, of objects referred to as multifractals
and superfractals, which were also used in aspects of water flow through porous media [74].
In recent years, we can also observe the introduction of a new type of fractal, which is better
used in the case of periodic or pseudo-periodic phenomena. The so-called “blinking frac-
tals” were originally introduced by Sergeyev [75], and their application in water-relevant
topics seems to be promising [76].

The multitude of applications of fractals, on the one hand, confirms the effectiveness
of fractal geometry as a research tool, but on the other hand, it may be assumed that this
field has yet untapped possibilities. This justifies an attempt to use fractal geometry to
determine the zone of water outflow onto the ground’s surface as a result of the leakage
from a buried water pipe.

3. Materials and Methods

As it was mentioned in the Introduction, the analyses presented in this article are part
of a larger scope of research aimed at determining the range of the zone of water outflow
on the soil surface after the breakage of a pipe. In order to obtain data for the analysis, it
was necessary to carry out a series of laboratory tests involving a physical simulation of
the failure of a buried water pipe, as a result of which water flowed onto the soil surface.
The construction of the laboratory setup was preceded by the selection of parameters that
have the strongest relation to the distance between the place of water outflow on the soil
surface and the place of leakage from the pipe, as well as the analysis of the similarity of
the phenomena (dimensional analysis) [6,77].

The water outflow locations obtained as a result of laboratory tests created real geo-
metric structures (RSs), which were analyzed in this article. Since it was previously shown
that RSs have fractal features [7], the analyses focused on their fractal dimensions (Db). To
simplify the research, an RS was reduced first to a plane form (Theoretical Planar Structure,
TPS) and then to a linear form (Theoretical Linear Structure, TLS) using isometric transfor-
mations. The next stage of the research was the analysis of the parameters characterizing
simplified TLSs, including Db. The full scope of research is presented in Figure 2.
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3.1. Laboratory Tests

Laboratory investigations of water outflow on the soil surface after an induced water
pipe failure were conducted on the research setup reflecting natural conditions at a scale
of 1:10. The 3D scheme of the laboratory setup is presented in Figure 3 and consisted of
a cuboid box (1) filled with medium sand (7), an intentionally damaged water pipe (2)
supplied with water through an elastic hose (4) from a container (3) located at the assumed
height. The pipe failure was presented as a bell-and-spigot joint (7) disconnection. The
cuboid box was additionally equipped with a drainage installation (5), drainage ball valves
(8), and supply ball valves (9).

Water 2024, 16, x FOR PEER REVIEW 7 of 21 
 

 

3.1. Laboratory Tests 
Laboratory investigations of water outflow on the soil surface after an induced water 

pipe failure were conducted on the research setup reflecting natural conditions at a scale 
of 1:10. The 3D scheme of the laboratory setup is presented in Figure 3 and consisted of a 
cuboid box (1) filled with medium sand (7), an intentionally damaged water pipe (2) sup-
plied with water through an elastic hose (4) from a container (3) located at the assumed 
height. The pipe failure was presented as a bell-and-spigot joint (7) disconnection. The 
cuboid box was additionally equipped with a drainage installation (5), drainage ball 
valves (8), and supply ball valves (9). 

 
Figure 3. A 3D scheme of the laboratory setup (1—cuboid box, 2—water pipe, 3—water contained, 
4—elastic hose, 5—drainage installation, 6—medium sand, 7—bell-and-spigot joint, 8—drainage 
ball valves, and 9—supply ball valves). 

The laboratory research was conducted in four test series (I–IV) for the variants that 
differed in hydraulic conditions in the water pipe (different values of hydraulic pressure). 
In every series, in accordance with the standard procedures of statistical calculations of 
the minimum number of samples [78], each experiment was repeated 7 times under the 
same pressure head conditions and leak area in a pipe. The width of the leak between the 
spigot and socket ends of the pipe diameter equaled 15 mm, while the inner pipe diame-
ters were DN6, DN10, DN20, DN32, and DN40 mm. Due to the loosening of the pipe con-
nection, experiments were conducted for 5 different leak areas: 2.83 cm2, 4.71 cm2, 9.42 
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Figure 3. A 3D scheme of the laboratory setup (1—cuboid box, 2—water pipe, 3—water contained,
4—elastic hose, 5—drainage installation, 6—medium sand, 7—bell-and-spigot joint, 8—drainage ball
valves, and 9—supply ball valves).

The laboratory research was conducted in four test series (I–IV) for the variants that
differed in hydraulic conditions in the water pipe (different values of hydraulic pressure).
In every series, in accordance with the standard procedures of statistical calculations of the
minimum number of samples [78], each experiment was repeated 7 times under the same
pressure head conditions and leak area in a pipe. The width of the leak between the spigot
and socket ends of the pipe diameter equaled 15 mm, while the inner pipe diameters were
DN6, DN10, DN20, DN32, and DN40 mm. Due to the loosening of the pipe connection,
experiments were conducted for 5 different leak areas: 2.83 cm2, 4.71 cm2, 9.42 cm2,
15.07 cm2, and 18.84 cm2. The internal water pressure head in the water pipe (2) varied in
the range 3.0÷6.0 m H2O every 0.5 m, depending on the height of the container and the
water level in it. The average medium sand parameters used in experiments were as follows:
compaction factor, 0.85; moisture content, 7.10% vol.; saturated hydraulic conductivity,
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2.16 × 10−4 m/s; and uniformity coefficient, 3.71. The mentioned soil parameters were
determined in the laboratory using standard procedures [79–82].

Each repetition of the laboratory experiment followed the same procedure. At the
beginning, all valves were closed, and water was poured into the container (3) above the
assumed level. Next, the supply valves (9) were opened until the water in the container
reached the assumed level after the deaeration process. Then, two parts of the pipe (2) were
disconnected (in the bell-and-spigot joint (7)) by pulling one end of the pipe (2), which
was sticking out of the cuboid box (1). After the water had appeared on the sand surface,
the valve (9) was closed, and the place of water outflow on the sand surface was localized.
After the deaeration process, the experiment was video recorded nonstop.

The obtained results of the physical failure simulation allowed for the creation of data
sets specifying the places of water outflow onto the ground surface. The location of the
so-called suffosion holes was measured in relation to the place on the ground’s surface
located directly above the leak in the pipe. The outermost outline point of a suffosion
hole was taken into account. The location of each point was determined using Cartesian
coordinates (x, y), with the origin (0, 0) assumed to be above the leak location in the water
pipe. The distances parallel (x) and perpendicular (y) to the test water pipe were measured
during the investigations. The distance (Rw) between the outermost outline point and origin
was calculated on the basis of x and y. The exemplary location of the suffosion hole in the
laboratory setup is presented in Figure 4. The distance Rw equaled 683.33 mm, while the x
distance was equal to 566.25 mm, and the y distance was equal to 382.50 mm. Additionally,
Figure 4 presents 4 main types of suffosion holes observed during the laboratory tests:
(a) compact hole, (b) point hole, (c) elongated hole, and (d) fissure hole.
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during the laboratory test: (a) compact hole, (b) point hole, (c) elongated hole, and (d) fissure hole.

The points representing the suffosion holes obtained from laboratory tests, described
by the x and y coordinates and the distance Rw, were grouped into sets according to the
leakage area and according to the hydraulic pressure in the water pipe, creating 12 geomet-
ric structures (called Real Structures, RSs). The points obtained from physical simulations
of water leaking through a hole with an area of 2.83 cm2 formed the structure F1, for a
leak area 4.71 cm2: F2, for 9.42 cm2: F3, for 15.07 cm2: F4, and for 15.07 cm2: F5. Similarly,
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structures named H1, H2, H3, H4, H5, H6, and H7 were created as sets of points obtained
as a result of water leaking from a pipe with a pressure head of 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
and 6.0 m H2O, respectively. Each structure was created iteratively by adding points in
subsequent repetitions of the experiment.

3.2. Simplifying the Real Structure

The simplification of the RS consisted in transforming a structure embedded in a
2D space into a structure embedded in a 1D space using isometric transformations. The
process included 2 stages: creating a Theoretical Plane Structure (TPS), located in the first
quadrant of the coordinate system, and transforming the TPS into a Theoretical Linear
Structure (TLS), located on the positive part of the x-axis. To create a TPS based on the RS,
the RS points located in the third quadrant of the system coordinates were subjected to
point inversion with respect to the origin, and the RS points from the fourth and second
quadrants were subjected to axial symmetry around the axes x and y, respectively. The
formation of the TPS corresponding to the RS is shown in Figure 5. All points forming the
TPS are described with the non-negative coordinates.

1 
 

 

Figure 5. TPS creation. O1–O5—points of SR; O1′–O5′—points of TPS.

For the purposes of this work, it was assumed that the outflow zone had the shape of
a circle as one of the basic centrally symmetric figures. This assumption made it possible to
consider only one distance Rw for the location of each point corresponding to the suffosion
holes—from the origin of the coordinate system, instead of two distances—from the x and
y axes. Moreover, the number of points within a certain arbitrary range of distances from
the origin was important in the research, whereas the position of the points relative to each
other was not important. Thus, the second stage of simplifying the SR was to transform the
TPS so that the points corresponding to the suffosion holes were located on the positive
half of the x-axis, including the origin, at an unchanged (the same as for the SR) distance
from the origin. For this purpose, each point was rotated by an appropriate angle around
the origin, as shown in Figure 6.
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The resulting structure, called a Theoretical Linear Structure (TLS), is a less complicated
geometric figure than the RS or TPS, and retains all the features of the RS that are important
in the study of the circular water outflow zone. All RSs obtained as a result of the laboratory
tests (F1, . . ., F5 and H1, . . ., H7) were transformed into TLSs. On the basis of F1, an TLSs
called F1′′ was created, and similarly, on the basis of the remaining 11 RSs, linear structures
F2′′, . . ., F5′′ and H1′′, . . ., H7′′ were created, respectively.

3.3. Specifying the Parameters Characterizing TSLs in Terms of the Zone Range Determination

An analysis of the nature of the distribution of suffosion holes on a plane was presented
in the work [6]. The analysis consisted of checking whether a given distribution of points
(suffosion holes) in a specific research area is an implementation of a uniform Poisson
process, meaning complete spatial randomness. Ripley’s K function was used as a tool
for analyzing the object location data. Comparing the estimator of the Ripley K function
determined on the basis of laboratory tests to the theoretical value of the Ripley K function
for a homogeneous Poisson point process allowed for the conclusion that the suffosion
holes were randomly distributed. Therefore, it was possible to assume that TLSs, like
RSs, are fractal structures, and the analysis of TLSs focused on the dimensionality of these
structures. In fractal geometry, there are variously defined dimensions, but the concept of
fractal dimension is often referred to the so-called box-counting dimension, the definition
of which can be presented in the form [52]:

Db(WN) = lim
δ→0

logNδ(WN)

−logδ
, (1)

where WN is a non-empty, bounded subset of a finite-dimensional Euclidean space (in
our investigations: WN = F2′′, . . ., F5′′, H1′′, . . ., H6′′ or H7′′), Db(WN) is the box-counting
dimension of the set WN , and Nδ(WN) is the smallest number of sets of diameter δ (in our
investigations: square of side δ) which can cover WN .

The box dimension of the Theoretical Linear Structure was determined using a graphi-
cal method. It consists in approximating, using a straight line, the graph of the function
log Nδ(WN) depending on −log δ. The slope of the obtained straight line corresponds
to the box-counting dimension [83]. In the analysis, it was assumed that the expression
Nδ(WN) in the definition of the box-counting dimension (Equation (1)) means the number
of meshes of side δ (“boxes”) intersecting or covering points of the TLS (set WN). It was also
assumed that the unit mesh (δ = 1) is a square with a side length of 10 cm. To create a graph
of the function log Nδ(WN) depending on −log δ, which is the essence of the method used
to determine Db, meshes with side δ were counted in the range from 0.1 to 0.9 every 0.1.
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Figure 7 shows how to determine the number of meshes Nδ(WN) depending on the value
of δ for an example TLS. The determined values of Nδ(WN) constituted data for the graph
of the relationship between log Nδ(WN) and −log δ, and thus, the basis for estimating the
box-counting dimension of TLS.
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The fractal dimension determines the extent to which a geometric structure fills the
area limiting it [51]. This feature allows for the assumption that the fractal dimension can be
used to determine the zone of water outflow onto the soil surface after a water pipe failure.
In the case of the TLS, the area bounding it is a segment, one end of which coincides with
the origin (the point on the soil surface located exactly above the place of water outflow
from the water pipe), and the other is the point corresponding to the point of water outflow
onto the soil surface, furthest from the leak in the pipe; in other words, it is a segment
⟨0, (Rw)max⟩, the length (Rw)max of which equals:

(Rw)max = max
1≤i≤nw

{(Rw)i|i ∈ N}, (2)

where Rw is the distance of the point creating the TLS from the origin, nw and the number
of points creating the TLS, and N is the set of natural numbers.

For a linear structure as an object embedded in a 1D space, using the fractal dimension,
it is relatively easy to determine the length of the “filled” part (marked with the symbol
R f r) in the segment ⟨0, (Rw)max⟩ as:

R f r = Db·(Rw)max. (3)

In the graphical interpretation, R f r is the length of the segment
〈

0, R f r

〉
, which can

be the basis for determining the radius of the water outflow zone on the ground surface
after a water supply failure. The methodology for determining Db shows that the value of
Db of the TLS is influenced by the distance of the points creating the TLS from the origin
(the distribution of points within the segment ⟨0, (Rw)max⟩), as well as the number of nw
points forming the TLS. If the distribution of points within the segment ⟨0, (Rw)max⟩ was
uniform, the number of nw would certainly be important. However, since the distribution
of points is random, the influence of nw on Db is ambiguous and requires analysis. The
box-counting dimension Db, length (Rw)max, Rfr parameter, and the number of nw were
therefore determined for each of the linear structures F1′′, . . ., F5′′, H1′′, . . ., H6′′ and H7′′

as parameters important in the aspect of testing the possibility of estimating the range of
water outflow zone.

4. Results and Discussion
4.1. Results of the Laboratory Tests

In 532 physical simulations of water supply failures carried out in the laboratory, a total
of 662 suffosion holes were obtained, which created 12 RSs. During a single experiment,
1–5 holes occurred. Of all the holes, 10 appeared on the x-axis (i.e., directly above the test
pipe) and 11 on the y-axis (on a straight line perpendicular to the pipe, passing through the
leak). Taking into account the remaining 641 holes, 153 were in the first quadrant of the
coordinate system, 167 in the second, 172 in the third, and 149 in the fourth. An example
of the distribution of points corresponding to the suffosion holes obtained as a result of
laboratory tests is shown in Figure 8. The results reflect the distribution of the suffosion
holes forming the F1 structure.
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On the basis of the location of the points corresponding to the suffosion holes obtained
during laboratory tests, it could be concluded that the probability of water outflow is almost
the same in each of the quadrants of the coordinate system: 23.1%, 25.2%, 26.0%, and 22.5%
in the subsequent quadrants, respectively. The similarity of probability values is related
to maintaining the repeatability of soil conditions in each quadrant at the laboratory site.
This meant that the origin of the coordinate system located directly above the leak in the
pipe could be treated as the center of the area, limiting the location of the suffosion holes as
well as the outflow zone, which was the subject of the research, which would be a centrally
symmetric figure with the point of inversion at the origin. Due to the random distribution
of points, as presented in the article [6], it was difficult to characterize RSs using classical
concepts of Euclidean geometry. However, the analyses performed showed that RSs have
the features of random fractals [7].

4.2. Results of Simplifying the Real Structure

In the aspect of the conducted research aimed at determining the range of the zone
of water outflow on the soil surface after a water pipe failure, the distance of the points
from the origin was important, whereas the distances between individual points and their
belonging to the quadrants of the coordinate system were irrelevant. Due to the proven
randomness of the location of the points [6] and the comparability of the water outflow
probabilities in individual quadrants of the system (Section 4.1), it was possible to simplify
the analyzed geometric structure of an RS from the form embedded in the 2D space to the
TLS form embedded in the 1D space. TLSs corresponding to all real structures F1, . . ., F5
and H1, . . ., H7 are shown in Figure 9.
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Only isometric transformations of points were used to build the TLSs, which means
that the distance of each point of the structure from the origin of the coordinate system
remained unchanged in relation to the corresponding distance for the real structure, created
based on the results of laboratory tests. A TLS as a structure created on the basis of a fractal
RS retained all the features characteristic of random fractals, such as the following:

• Approximate self-similarity: This feature has been improved for RSs by enlarging
individual frames of the recordings of water outflow and the formation of a suffosion
hole [7]. The stages of formation of the suffosion hole were the same regardless of the
location of the hole, so it can be concluded that the self-similarity condition is also met
by the TLS structure.

• Non-trivial structure: It is obvious that all TLS points lie on the x-axis, but the distances
of these points from the place of water leakage from the pipe (the origin) are different
and non-obvious (Figure 9). The number of points creating the TLS is also non-obvious;
Therefore, each TLS has a non-trivial structure.
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• Recursive construction procedure: Each RS was created in consecutive steps corre-
sponding to successive repetitions of the experiment; The TLS can also be gradually
constructed based on subsequent steps of the RS creation.

• Recursive dependencies in the analytical description: The process of creating TLSs can
be described by the same recursive dependency as for an RS [7]:

W1 =
q⋃

i=1
w1i, q ∈ {1, 2, 3, 4, 5}

Wn = Wn−1 ∪
r⋃

j=1
wnj, r ∈ {1, 2, 3, 4, 5}, n ∈ N, n ≥ 2

(4)

where W1, Wn is a set of suffosion holes obtained during the first and n-th step of the
structure formation, respectively, w1i is one of the points (i-th) forming the structure in the
first step, wnj is one of the points (j-th) added to the structure in the last n-th step, and n is
the number of steps corresponding to the number of the experiments repetitions.

• Difficulty of description using Euclidean geometry concepts: Geometric figures that
constitute a subset of Euclidean space, after adopting a coordinate system, can be
described using a set of classical equations or inequalities that relate the coordinates
of points [84]; TLS cannot be described in this way due to the randomness of points
corresponding to its RL and the non-obvious number of points, creating TLSs.

• Randomness occurring in successive iterations: This feature results from the improved
randomness of RSs [6], which is the basis for the creation of TLSs.

• Limited number of iterations: The number of iterations is equal to the number of
repetitions of the experiment; Thus, it is limited.

4.3. Analysis of Parameters Characterizing TLS with Regard to Determining the Water
Outflow Zone

Since the TLS turned out to be a fractal set, it was possible to determine its dimen-
sion Db (Figure 10) and then the distance Rfr. The values of all parameters selected for
characterizing TLSs (Db, (Rw)max, Rfr, and nw) are summarized in Tables 1 and 2.
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Table 1. Characterization of TLSs for data obtained from laboratory research, divided according to
the leak area.

TLS Leakage
Area, cm2 Db R2 for Db (Rw)max, cm Rfr, cm nw

F1′′ 2.83 0.7737 0.9931 44.90 34.74 86
F2′′ 4.71 0.7987 0.9970 57.45 45.89 135
F3′′ 9.42 0.8902 0.9858 48.90 43.53 109
F4′′ 15.07 0.8227 0.9944 56.35 46.36 91
F5′′ 18.84 0.8307 0.9967 56.32 46.78 240

Table 2. Characterization of TLSs for data obtained in laboratory research, divided according to
hydraulic pressure height.

Data Set Leakage
Area, cm2 Db R2 for Db (Rw)max, cm Rfr, cm nw

H1′′ 3.0 0.7524 0.9856 48.90 36.79 56
H2′′ 3.5 0.6911 0.9858 49.38 34.12 57
H3′′ 4.0 0.9193 0.9990 57.45 52.81 333
H4′′ 4.5 0.7333 0.9877 47.64 34.94 62
H5′′ 5.0 0.8423 0.9858 43.23 36.41 50
H6′′ 5.5 0.8246 0.9927 50.35 41.52 57
H7′′ 6.0 0.6746 0.9793 54.80 36.97 47

When analyzing the TLSs created based on the size of the leaks in the water pipe
(Table 1), the structure F3′′ corresponding to leaks with an area of 9.42 cm2 showed the
highest Db value. The structure with the smallest dimension was F1′′, corresponding to
leaks with the smallest area: 2.83 cm2. The structure F5′′ corresponding to the largest
leak (18.84 cm2) had a Db dimension of 0.8307, which was a relatively large value but not
the highest. Therefore, no correlation was observed between the leak area in the water
pipe and Db. The average dimension value for all TLSs divided according to the leak area
was 0.8232. The largest value differed from it by 8.1%, while the smallest, by 6.0%. The
structure F4′′ had the dimension closest to the average value. In Table 1, a high coefficient
of determination R2, close to 1, is notable, indicating a very good fit of the trend line
(straight line), with which the box dimension is determined, to the data obtained from
the experiment, simultaneously confirming the correctness of the graphical method for
determining this dimension.

Analyzing the length (Rw)max of the segment bounding the linear structure (Table 1),
as in the case of Db, there seems to be no correlation between this parameter and the
leak area in the water pipe. The structure F2′′ is characterized by the largest value of
(Rw)max, while the smallest value belongs to the structure F1′′, with a relatively large
difference between them: 12.55 cm, which is 23.78% of the mean value of (Rw)max for
structures F1′′ to F5′′, which equals 52.78 cm. Regarding Rfr, the structure F1 has the smallest
value (34.74 cm). The values of Rfr for the other structures in Table 1 are approximately
10 cm larger and comparable to each other. The average value of Rfr for all structures
F1′′ to F5′′ equals 43.46 cm, with a range of 12.04 cm (27.70% of the mean).

Similarly, when analyzing the parameters characterizing the structures corresponding
to hydraulic pressure heights in the water pipe (Table 2), no dependencies were found
between the analyzed parameters (Db, (Rw)max, and Rfr) and the pressure in the water pipe.
A coefficient of determination R2 close to 1 also was observed for Db. However, the mean
values of the individual parameters for all structures H1′′ to H7′′ are smaller than those for
the parameters in Table 1, with a greater range. The mean value of Db is 0.7768. The largest
value (for the set H3′′) differs from the mean by 18.3%, and the smallest (for the set H7′′),
by 13.2%. The average value of (Rw)max equals 50.25 cm, with a range of 14.22 cm (28.30%
of the average). For Rfr, these statistics equal 39.08 cm and 18.69 cm (47.82%), respectively.
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The number of points nw creating individual TLSs varied, both for the structures
presented in Tables 1 and 2. The next step of the research was to examine whether
this number affects the values of Db, (Rw)max, and Rfr, considering all structures from
Tables 1 and 2 (Figure 11). While analyzing the scatter plot presented in Figure 11a, a slight
upward trend in the relationship Db–nw can be noticed, but it is not confirmed using regres-
sion analysis. None of the analyzed trend lines (exponential, linear, logarithmic, or power)
showed a satisfactory fit to the empirical points (R2 < 0.5; the best fit for the logarithmic line,
R2 = 0.44, is presented in Figure 11a). Very similar results were obtained when examining
the relationship (Rw)max as a function of nw (Figure 11b). Among the analyzed lines, the
logarithmic trend line also showed the best fit, and the coefficient of determination for this
line also did not exceed 0.5 (R2 = 0.42). The low value of R2 results from the number of
points forming TLSs. Based on laboratory tests, the obtained structures mainly consisted of
several dozen points; only two structures consisted of over 150 points. As a result, there
was an accumulation of points in the left part of the trend line, hence the low R2 value, even
though visually, the fit seems to be good. The detailed R2 values for Db were as follows in
descending order: logarithmic, 0.4443 (best fit); power, 0.4326; polynomial, 0.4194; linear,
0.4053; and exponential, 0.3854. Analogically, the detailed R2 values for (Rw)max were as
follows: logarithmic, 0.4234 (best fit); linear, 0.4225; exponential, 0.4216; polynomial, 0.4060;
and power, 0.4052.
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A significantly better fit of the trend line to the empirical data was achieved for the
relationship Rfr–nw, i.e., analyzing the influence of the number of holes nw on the product of
previously considered values (Figure 11c). A clear upward trend was observed. The highest
coefficient of determination was obtained for the logarithmic trend line (as expected), and
since this value clearly exceeded 0.6 (R2 = 0.78), the fit of this line to the empirical data can
be considered satisfactory. On the basis of the considerations above, it can be concluded
that the number of points forming the linear structure can have a significant impact on
the analyzed parameters, especially on the value of Rfr. To assess the magnitude of this
impact, it would be necessary to repeat the analysis for a larger number of different linear
structures, especially those constructed from a large number of points.

5. Summary and Conclusions

To sum up, the points obtained from laboratory research corresponding to the suffosion
holes were used to construct 12 Theoretical Linear Structures. Five of them were created
from points divided into five groups according to the leak area in the test pipe (points
belonging to one group resulted from water leakage from the pipe through a leak of the
same area; all points within one group formed a single structure). Similarly, the remaining
seven structures were created from points divided into seven groups according to the
hydraulic pressure height in the test pipe. All constructed linear structures constituted
fractal sets, so the fractal dimension (box-counting dimension) Db of each of them was
determined. Additionally, the structures were characterized by three additional parameters:

• (Rw)max—the length of the shortest segment along the x-axis completely covering a
given structure, with one end being the origin of the coordinate system;

• R f r—the product of the fractal dimension and (Rw)max, which, for a structure em-
bedded in one-dimensional space, can be interpreted as the length of the segment
⟨0, (Rw)max⟩, completely filled by the linear structure;

• nw—the number of points creating the structure.

The values of the determined dimensions Db for individual structures ranged from
0.67 to 0.92; for (Rw)max, from 43.23 cm to 57.45 cm; and for R f r, from 34.12 cm to 52.81 cm.
None of the parameters showed a dependence on the area of the leak in the test pipe or on
the hydraulic pressure height in this pipe. However, the influence of the number of points
forming each of the linear structures on the analyzed parameters, especially on the value
of R f r, was observed. To assess the significance of this influence, it would be necessary to
repeat the analysis for a larger number of different linear structures, especially those built
from a large number of points. Conducting empirical research under laboratory conditions
is not only time consuming but also labor intensive and costly, for example, due to the
necessity of multiple replacements of compacted soil around the damaged pipe as a result
of repeated experimentation. Model studies also contain certain simplifications that require
special attention when generalizing the obtained research results to real conditions. In the
case of the proposed physical model of water pipe failure, the limitation is the assumption of
homogeneous and isotropic soil, as well as the constant leakage surface area in the pipe: in
real conditions, the leakage may have a various shape and may increase during the failure.
An alternative to empirical research is numerical simulations. Both the heterogeneity of the
soil medium and the instability of the leak surface were taken into account in simulation
studies [2,3]. In the case of points corresponding to water outflow locations on the soil
surface after a water pipe failure, the distribution of which is characterized by randomness,
the simulations utilizing statistical such methods as the Monte Carlo method seem most
appropriate. This is the direction of the further research aimed at estimating the range of
the water outflow zone after the leakage of a buried water pipe.
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