Impacts of Extreme Climate on the Water Resource System in Sichuan Province
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials
2.1.1. Study Area
2.1.2. The Index System
2.1.3. Sources of Data
2.2. Methodology
2.2.1. Statistical Method
2.2.2. Calculation of the Coupling Coordination Degree
Standardization of Data
Determination of Weights
- Calculation of subjective weights on IFAHP
- When or , .
- When or , .
- 2.
- Calculation of objective weights based on the improved CRITIC method
- 3.
- Calculation of composite weights
Modeling of the Coupling Coordination Degree
3. Results
3.1. Distributional Characteristics of Extreme Climate Events
3.1.1. Characteristics of the Temporal Distribution of Extreme Climate Events
3.1.2. Characteristics of the Spatial Distribution of Extreme Climate Events
3.2. Distributional Characteristics of Extreme Climate Events
3.3. Calculation of Coupling Coordination Degree of the Water Resource System
3.4. Impact of Climatic Factors on the Water Resource System
3.4.1. Impact of Precipitation on the Water Resource System
Effects of Extreme Precipitation Events on the Water Resource Systems
Effects of Extreme Drought Events on the Water Resource Systems
3.4.2. The Effect of Temperature on the Water Resource System
Impacts of Extreme High Temperature Events on the Water Resource Systems
Effects of Extreme Low Temperature Events on the Water Resource Systems
3.4.3. Comprehensive Effects of Precipitation and Temperature on the Water Resource System
3.5. Study Limitations
- (1)
- This paper considers only the case where is positive. By comparing the coupling coordination degree levels of the two systems, it is found that is negative in only a few areas. Through the analysis of these negative data, the main reason for this occurrence is caused by human activities and urbanization, so this part of data is not included in the analysis.
- (2)
- Due to the limited data acquisition, the conclusions obtained in this paper are suitable for short-term analysis, and it is not suitable to apply the conclusions to long-term future prediction.
4. Discussion
5. Conclusions
- (1)
- The five types of extreme events in Sichuan Province are listed in the order of frequency from large to small: extreme precipitation events > extreme drought events > extreme high temperature events = extreme low temperature events > comprehensive extreme climate events, and the extreme climate types of Sichuan Province in recent years have gradually transited from extreme drought to extreme precipitation, and from extreme low temperature to extreme high temperature.
- (2)
- In the past 15 years, Chengdu and Meishan are the cities with the most extreme climate events, while Deyang City and Tibetan Autonomous Prefecture of Garzê are the cities with the least extreme climate events. From 2015 to 2021, extreme precipitation events basically spread throughout Sichuan Province, extreme drought events mostly occurred in the northern and central parts of Sichuan Province, extreme high temperature events mostly occurred in the western, central and eastern parts of Sichuan Province, and extreme low temperature events only occurred in Guangyuan, Bazhong and Suining.
- (3)
- In recent 7 years, the coupling coordination degree of Sichuan Province was between serious imbalance and good coordination, among which the lowest coordination level occurred in Yibin City in 2016, and the highest coordination level occurred in Nanchong City in 2017, but most of the coupling coordination levels were between mild imbalance and intermediate coordination. The coupling coordination levels of the regions where extreme climate events occurred were all low, the lowest coordination level occurred in Yibin in 2016, where extreme precipitation events occurred, and the highest coordination level occurred in Bazhong in 2021, where the combined extreme climate events of extreme low temperature and extreme precipitation occurred, and most of the evaluation levels were between moderate imbalance and barely coordination.
- (4)
- The climatic factors of extreme drought, extreme high temperature and extreme low temperature are all related to quadratic polynomial, and only the rainfall of extreme precipitation events is related to cubic polynomial. When one climate factor is at the extreme end of the climate and the other is at the moderate end of the climate, a high coupling coordination level may be obtained, which explains the high coupling coordination level of Bazhong City where comprehensive extreme climate occurs in the previous conclusion.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.Q.; Ge, J.N.; Qi, J.Y.; Liu, H.P.; Zhang, X.L.; Marek, G.W.; Yuan, C.C.; Ding, B.B.; Feng, P.Y.; Liu, D.L.; et al. Evaluating the effects of single and integrated extreme climate events on hydrology in the Liao River Basin, China using a modified SWAT-BSR model. J. Hydrol. 2023, 623, 129772. [Google Scholar] [CrossRef]
- Xu, H.W.; Chen, H.P.; Wang, H.J. Future changes in precipitation extremes across China based on CMIP6 models. Int. J. Climatol. 2021, 42, 635–651. [Google Scholar] [CrossRef]
- Supari; Tangang, F.; Juneng, L.; Aldrian, E. Observed changes in extreme temperature and precipitation over Indonesia. Int. J. Climatol. A J. R. Meteorol. Soc. 2017, 37, 1979–1997. [Google Scholar] [CrossRef]
- Mo, C.X.; Zhu, H.L.; Ruan, Y.L.; Xie, Y.P.; Lei, X.B.; Lai, S.F.; Sun, G.K.; Xing, Z.X. Spatial and temporal variation characteristics and frequency analysis of extreme precipitation from 1959 to 2017: A case study of the Longtan watershed, southwest China. J. Water Clim. Chang. 2022, 13, 2610–2626. [Google Scholar] [CrossRef]
- Liu, D.J.; Zhang, C.; Ogaya, R.; Estiarte, M.; Penuelas, J. Effects of decadal experimental drought and climate extremes on vegetation growth in Mediterranean forests and shrublands. J. Veg. Sci. 2020, 31, 768–779. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Song, W. Influences of Extreme Precipitation on China’s Mining Industry. Sustainability 2019, 11, 6719. [Google Scholar] [CrossRef]
- Jacksom, G. Environmental subjectivities and experiences of climate extreme-driven loss and damage in northern Australia. Clim. Chang. 2023, 176, 93. [Google Scholar] [CrossRef]
- Wang, B.J.; Wei, W.; Yin, Z.J.; Xu, L.L. Using machine learning to analyze the changes in extreme precipitation in southern China. Atmos. Res. 2024, 302, 107307. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.N.; Wei, W.; Fang, G.H.; Duan, W.L. The increase in extreme precipitation and its proportion over global land. J. Hydrol. 2024, 628, 130456. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Miao, P.; Zhu, H.; Li, W.H.; Liang, X.Y.; Wang, L.; Chen, Z.J.; Zhou, J.B. Extreme precipitation accelerates nitrate leaching in the intensive agricultural region with thick unsaturated zones. Sci. Toyal Environ. 2024, 918, 170789. [Google Scholar] [CrossRef]
- Gao, M.X.; Chen, P.; Hu, Y.X.; Liu, W.X.; Ye, Y.Y.; Zheng, Y.; Chen, T.W. Composition and vertical distribution of agricultural soil Macrofauna community after an extreme high temperature event in the summer of 2022. Ecol. Indic. 2023, 153, 110439. [Google Scholar] [CrossRef]
- Yadav, N.; Rajendra, K.; Awasthi, A.; Singh, C.; Bhushan, B. Systematic exploration of heat wave impact on mortality and urban heat island: A review from 2000 to 2022. Urban Clim. 2023, 51, 101622. [Google Scholar] [CrossRef]
- Stocks, R.; Verheyen, J.; Dievel, M.V.; Tuzun, N. Daily temperature variation and extreme high temperatures drive performance and biotic interactions in a warming world. Curr. Opin. Insect Sci. 2017, 10, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Raymond, C.; Suarez-Gutierrez, L.; Kornhuber, K.; Pascolini-Campbell, M.; Sillmann, J.; Waliser, E.D. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble. Environ. Res. Lett. 2022, 17, 035005. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Miao, C.; Sun, Y.; AghaKouchak, A.; Shen, C.; Fan, X. Global Observations and CMIP6 Simulations of Compound Extremes of Monthly Temperature and Precipitation. Geoheaith 2021, 5, e2021GH000390. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Sun, P.; Zhang, Q.; Luo, M.; Liu, R. Amplification of non-stationary drought to heatwave duration and intensity in eastern China: Spatiotemporal pattern and causes. J. Hydrol. 2022, 612, 128154. [Google Scholar] [CrossRef]
- Du, H.; Alexander, L.V.; Donat, M.G.; Lippmann, T.; Srivastava, A.; Salinger, J.; Wu, Z. Precipitation from persistent extremes is increasing in most regions and globally. Geophys. Res. Lett. 2019, 46, 6041–6049. [Google Scholar] [CrossRef]
- Sedlmeier, K.; Feldmann, H.; Schadler, G. Compound Summer Temperature and Precipitation Extremes over central Europe. Theor. Appl. Climatol. 2018, 131, 1493–1501. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G. Deadly Compound Heat Stress-Flooding Hazard Across the Central United States. Geophys. Res. Lett. 2020, 47, 15. [Google Scholar] [CrossRef]
- Sun, P.; Bian, Y.J.; Yu, S.F.; Yao, R.; Wang, Z.T.; Zhang, Q.; Chen, W.H.; Ge, C.H.; Du, W.Y. Are longer and more intense heatwaves more pron to extreme precipitation? Glob. Planet. 2024, 236, 104428. [Google Scholar] [CrossRef]
- Huang, F.X.; Liu, L.L.; Gao, J.B.; Yin, Z.Y.; Zhang, Y.B.; Jiang, Y.; Zuo, L.Y.; Fang, W.G. Effects of extreme drought events on vegetation activity from the perspectives of meteorological and soil droughts in southwestern China. Sci. Total Environ. 2023, 903, 166562. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Y.L.; Shu, L.C.; Fang, S.W.; Yao, J.; Cao, S.J.; Zeng, B.R.; Yang, Y. The influence of the 2022 extreme drought on groundwater hydrodynamics in the floodplain wetland of Poyang Lake using a modeling assessment. J. Hydrol. 2023, 626, 130194. [Google Scholar] [CrossRef]
- Wang, T.H.; Wang, X.F.; Zhang, S.L.; Song, X.Y.; Zhang, Y.; Tan, J.L.; Ren, Z.G.; Xu, Z.W.; Che, T.; Yang, Y.P.; et al. Extreme low air temperature and reduced moisture jointly inhibit respiration in alpine grassland on the Qinghai-Tibetan Plateau. Sci. Total Environ. 2024, 927, 172039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Liu, Y.J.; Ding, Y.H. Identification of winter long-lasting regional extreme low-temperature events in Eurasia and their variation during 1948–2017. Adv. Clim. Chang. Res. 2021, 12, 353–362. [Google Scholar] [CrossRef]
- Hekmatnia, M.; Isanezhad, A.; Ardakani, A.F.; Ghojghar, M.A.; Ghaleno, N.D. An attempt to develop a policy framework for the global sustainability of freshwater resources in the virtual water trade. Sustain. Prod. Consum. 2023, 39, 311–325. [Google Scholar] [CrossRef]
- Jing, P.R.; Sheng, J.B.; Hu, T.S.; Mahmoud, A.; Guo, L.D.; Liu, Y.; Wu, Y.T. Spatiotemporal evolution of sustainable utilization of water resources in the Yangtze River Economic Belt based on an integrated water ecological footprint model. J. Clean. Prod. 2022, 358, 132035. [Google Scholar] [CrossRef]
- Wang, L.T.; Zeng, W.H.; Cao, R.X.; Zhou, Y.; Fu, J.; Wang, J.P. Overloading risk assessment of water environment-water resources carrying capacity based on a novel Bayesian methodology. J. Hydrol. 2023, 622, 129697. [Google Scholar] [CrossRef]
- Rahaman, M.H.; Masroor, M.; Rehman, S.; Singh, R.; Ahemd, R.; Sahana, M.; Sajjad, H. State of Art of Review on Climate Variability and Water Resources: Bridging Knowledge Gaps and the Way Forward. Water Resour. 2022, 49, 699–710. [Google Scholar] [CrossRef]
- Moses, O.; Hambira, W.L. Effects of climate change on evapotranspiration over the Okavango Delta water resources. Phys. Chem. Earth Parts A/B/C 2018, 105, 98–103. [Google Scholar] [CrossRef]
- Clifton, C.F.; Ddy, K.T.; Luce, C.H.; Grant, G.E.; Safeeq, M.; Halofsky, J.E.; Staab, B.P. Effects of climate change on hydrology and water resources in the Blue Mountains, Oregon, USA. Clim. Serv. 2018, 10, 9–19. [Google Scholar] [CrossRef]
- Anik, A.H.; Sultan, M.B.; Alam, M.; Parvin, F.; Ali, M.M.; Tareq, S.M. The impact of climate change on water resources and associated health risks in Bangladesh: A review. Water Secur. 2023, 18, 100133. [Google Scholar] [CrossRef]
- Wang, A.Q.; Tao, H.; Ding, G.; Zhang, B.L.; Huang, J.L.; Wu, Q.Y. Global cropland exposure to extreme compound drought heatwave events under future climate change. Weather. Clim. Extrem. 2023, 40, 100559. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, N. Future projections of compound temperature and precipitation extremes and corresponding population exposure over global land. Glob. Planet. Chang. 2024, 236, 104427. [Google Scholar] [CrossRef]
- Yuan, D.H.; Du, M.R.; Yan, C.L.; Wang, J.Z.; Wang, C.; Zhu, Y.Y.; Wang, H.; Kou, Y.Y. Coupling coordination degree analysis and spatiotemporal heterogeneity between water ecosystem service value and water system in Yellow River Basin cities. Ecol. Inform. 2024, 79, 102440. [Google Scholar] [CrossRef]
- Liu, X.L.; Vu, D.; Perera, S.C.; Wang, G.F.; Xiong, R. Nexus between water-energy-carbon footprint network: Multiregional input-output and coupling coordination degree analysis. J. Clean. Prod. 2023, 430, 130639. [Google Scholar] [CrossRef]
- Song, S.R.; Chen, X.; Liu, T.; Zan, C.J.; Hu, Z.Y.; Huang, S.Y.; Maeyer, P.D.; Wang, M.; Sun, Y. Indicator-based assessments of the coupling coordination degree and correlations of water-energy-food-ecology nexus in Uzbekistan. J. Environ. Manag. 2023, 345, 118674. [Google Scholar] [CrossRef]
- Wang, Y.H.; Song, C.Q.; Cheng, C.X.; Wang, H.Y.; Wang, X.Y.; Cao, P.C. Modelling and evaluating the economy-resource-ecological environment system of a third-polar city using system dynamics and ranked weights-based coupling coordination degree model. Cities 2023, 12, 133. [Google Scholar] [CrossRef]
- Bian, D.H.; Yang, X.H.; Xiang, W.Q.; Sun, B.Y.; Chen, Y.J.; Babuna, P.; Li, M.H.; Yuan, Z.X. A new model to evaluate water resource spatial equilibrium based on the game theory coupling weight method and the coupling coordination degree. J. Clean. Prod. 2022, 366, 132907. [Google Scholar] [CrossRef]
- Zhang, J.T.; Dong, Z.C. Assessment of coupling coordination degree and water resources carrying capacity of Hebei Province (China) based on WRESP2D2P framework and GTWR approach. Sustain. Cities Soc. 2022, 82, 103862. [Google Scholar] [CrossRef]
- Cheng, G.; Li, G.Y.; Pu, X.J.; Chen, C.; He, Y. Advancing coupling coordination simulation in the social-human-ecological system of the Three Gorges Reservoir Area: A multi-scenario system dynamics approach. Ecol. Indic. 2024, 158, 111504. [Google Scholar] [CrossRef]
- Xu, S.S.; He, W.J.; Shen, J.Q.; Degefu, D.M.; Yuan, L.; Kong, Y. Coupling and Coordination Degrees of the Core Water–Energy–Food Nexus in China. Int. J. Environ. Res. Public Health 2019, 16, 1648. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Xie, Y.J.; Zhou, H.Y.; Xu, Y.Q.; Zhao, G.S. Cross-County Characteristics of Water–Ecology–Economy Coupling Coordination in the Wuding River Watershed, China. Land 2022, 11, 2283. [Google Scholar] [CrossRef]
- Xu, L.T.; Chen, S.S. Coupling coordination degree between social-economic development and water environment: A case study of Taihu lake basin, China. Ecol. Indic. 2023, 148, 110118. [Google Scholar] [CrossRef]
- Sichuan Provincial Bureau of Statistics. Sichuan Survey Team of the National Bureau of Statistics. Sichuan Statistical Yearbook; China Statistics Press: Beijing, China, 2021; pp. 1–511. [Google Scholar]
- Sichuan Provincial Climate Center. Sichuan Climate Bulletin; Sichuan Provincial Climate Center: Chengdu, China, 2021. [Google Scholar]
- Sichuan Provincial Hydrology and Water Resources Survey Center. Sichuan Province Water Resources Bulletin; Sichuan Provincial Hydrology and Water Resources Survey Center: Chengdu, China, 2021. [Google Scholar]
- Department of Ecology and Environment Sichuan Province. Sichuan Ecology and Environment Statement 2021; Department of Ecology and Environment Sichuan Province: Chengdu, China, 2021. [Google Scholar]
- Kuswanto, H.; Andari, S.; Permatasari, E.O. Identification of Extreme Events in Climate Data from Multiple Sites. Procedia Eng. 2015, 125, 304–310. [Google Scholar] [CrossRef]
- Zhao, Q.K.; Gao, L.; Meng, Q.Y.; Zhu, M.M.; Xiong, M.Y. Nonlinear causal relationships between urbanization and extreme climate events in China. J. Clean. Prod. 2024, 434, 139889. [Google Scholar] [CrossRef]
- limate Change (IPCC). Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Yang, R.X.; Hong, M.; Gao, Y.Y.; Wang, H.R.; Yu, S.; Yuan, H.H. Evaluation of Intensive and Safe Utilisation of Regional Water Resources—A Case Study of Beijing Municipality. J. Beijing Norm. Univ. (Nat. Sci.) 2024, 60, 1012202. [Google Scholar]
- Sadiq, R.; Tesfamariam, S. Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stoch. Environ. Recearch Risk Assess. 2009, 23, 75–91. [Google Scholar] [CrossRef]
- Peng, S.Q.; Lv, C.; Huang, D.R.; Cheng, Y.J.; Zhao, L. Fault Mode and Effectiveness Analysis Based on Intuitionistic Fuzzy AHP and Fuzzy MAIRTIC. Control Theory Appl. 2023, 107641. [Google Scholar]
- Papageorgiou, E.I.; Lakovidis, D.K. Intuitionistic fuzzy cognitive maps. IEEE Trans. Fuzzy Syst. 2012, 21, 342–354. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The critic method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Wen, X.X.; Nie, Y.; Du, Z.X.; Huang, L.K. Operational Safety Assessment of Straddle-Type Monorail Vehicle System Based on Cloud Model and Improved Critic Method. Eng. Fail. Anal. 2022, 139, 106463. [Google Scholar] [CrossRef]
- Wu, B.; Jin, X.Z.; Li, D.; Wang, B.J. Spatial–Temporal Evolution of Coupling Coordination Development between Regional Highway Transportation and New Urbanization: A Case Study of Heilongjiang, China. Sustainability 2023, 15, 16365. [Google Scholar] [CrossRef]
- Mishra, V.; Thirumalai, K.; Singh, D.; Aadhar, S. Future exacerbation of hot and dry summer monsoon extremes in India. Npj Clim. Atmos. Sci. 2020, 3, 10. [Google Scholar] [CrossRef]
- Wang, R.; Lu, G.N.; Ning, L.; Yuan, L.W.; Li, L.H. Likelihood of compound dry and hot extremes increased with stronger dependence during warm seasons. Atmos. Res. 2021, 260, 105692. [Google Scholar] [CrossRef]
- Pongracz, R.; Bartholy, J.; Szabo, P.; Gelybo, G. A comparison of the observed trends and simulated changes in extreme climate indices in the Carpathian Basin by the end of this century. Int. J. Glob. Warm. 2016, 1, 336–355. [Google Scholar] [CrossRef]
- Wang, C.X.; Chen, C.; Zhang, S.Q.; Zhang, Z.F.; Pang, Y.M. Variation characteristics of extreme climate events in Southwest China from 1961 to 2017. Heliyon 2023, 9, e19648. [Google Scholar] [CrossRef]
- Rush, W.D.; Kiehl, J.T.; Shields, C.A.; Zachos, J.C. Increased frequency of extreme precipitation events in the North Atlantic during the PETM: Observations and theory. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 568, 110289. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Song, F.W.; Guo, D. Interdecadal changes in the frequency of winter extreme cold events in North China during 1989–2021. Atmos. Ocean. Sci. Lett. 2024, 2, 5. [Google Scholar] [CrossRef]
- Xu, X.L. Multi-Year Data on the Boundaries of Provincial Administrative Divisions in China; Resource Environmental Science Data Center and Publishing System; 2023. Available online: https://www.resdc.cn/Datalist1.aspx?FieldTyepID=%20,33 (accessed on 18 April 2024).
- Srinivasan, G.; Agarwal, A.; Bandara, U. Chapter 2—Climate change impacts on water resources and agriculture in Southeast Asia with a focus on Thailand, Myanmar, and Cambodia. In The Rolr of Toropics in Climate Change; Elsevier: Amsterdam, The Netherlands, 2024; pp. 17–32. [Google Scholar]
- Aparicio, J.S.; Penafiel, L.L.; Alcala, F.J.; Saez, P.J.; Sanchez, J.P. Climate change impacts on renewable groundwater resources in the andosol-dominated Andean highlands, Ecuador. Catena 2021, 236, 107766. [Google Scholar] [CrossRef]
- Zhu, X.P.; Liu, J.; Gao, X.R.; Zhao, X.H.; Zhu, B.W. Future changes and distribution of water resources in China under global warming levels of 1.5–4.5 °C. J. Hydrol. Reg. Stud. 2024, 53, 101781. [Google Scholar] [CrossRef]
- Zhang, G.L.; Chen, X.; Zhou, Y.; Jiang, L.; Jin, Y.L.; Wei, Y.K.; Li, Y.P.; Pan, Z.H.; An, P.L. Aridification in a farming-pastoral ecotone of northern China from 2 perspectives: Climate and soil. J. Environ. Manag. 2022, 302, 114070. [Google Scholar] [CrossRef] [PubMed]
- Wubneh, M.A.; Workku, T.A.; Chekol, B.Z. Climate change impact on water resources availability in the kiltie watershed, Lake Tana sub-basin, Ethiopia. Heliyon 2023, 9, e13941. [Google Scholar] [CrossRef] [PubMed]
- Sharan, A.; Lal, A.; Datta, B. Evaluating the impacts of climate change and water over-abstraction on groundwater resources in Pacific island country of Tonga. Groundw. Sustain. Dev. 2023, 20, 100890. [Google Scholar] [CrossRef]
- Rankoana, S.A. Climate change impacts on water resources in a rural community in Limpopo province, South Africa: A community-based adaptation to water insecurity. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 587–598. [Google Scholar] [CrossRef]
- Kibria, A.S.; Seekamp, E.; Xiao, X.; Dalyander, S.; Eaton, M. Multi-criteria decision approach for climate adaptation of cultural resources along the Atlantic coast of the southeastern United States: Application of AHP method. Clim. Risk Manag. 2024, 43, 100587. [Google Scholar] [CrossRef]
- Ilham, N.I.; Dahlan, N.Y.; Hussin, M.Z. Optimizing solar PV investments: A comprehensive decision-making index using CRITIC and TOPSIS. Renew. Energy Focus 2024, 49, 100551. [Google Scholar] [CrossRef]
System Layer | Element Layer | Indicator Layer | Unit | Nature |
---|---|---|---|---|
Water resource–climate system | water quantity subsystem | surface water resources | 108 m3 | + |
underground water resources | 108 m3 | + | ||
total water resources | 108 m3 | + | ||
water supply subsystem | surface water supply | 108 m3 | + | |
groundwater supply | 108 m3 | + | ||
water supply from other water resources | 108 m3 | + | ||
water quality subsystem | sewage discharge | 104 m3 | − | |
sewage treatment rate | % | + | ||
precipitation pH | - | + | ||
climate subsystem | rainfall | mm | − | |
temperature | °C | − | ||
relative humidity | % | − |
Range of Coupling Coordination Degree | Serial Number | Coordination Level |
---|---|---|
[0.0, 0.1) | 1 | extreme imbalance |
[0.1, 0.2) | 2 | serious imbalance |
[0.2, 0.3) | 3 | moderate imbalance |
[0.3, 0.4) | 4 | mild imbalance |
[0.4, 0.5) | 5 | imminent imbalance |
[0.5, 0.6) | 6 | barely coordination |
[0.6, 0.7) | 7 | primary coordination |
[0.7, 0.8) | 8 | intermediate coordination |
[0.8, 0.9) | 9 | good coordination |
[0.9, 1.0] | 10 | quality coordination |
City | Rainfall (mm) | Temperature (°C) | ||||
---|---|---|---|---|---|---|
Maximum | Minimum | Average | Maximum | Minimum | Average | |
Aba Tibetan and Qiang Autonomous Prefecture | 1074.4 | 588.8 | 858.3 | 9.9 | 8.9 | 9.4 |
Bazhong | 1728.7 | 863.1 | 1204.6 | 17.9 | 16.3 | 17.1 |
Chengdu | 1343.3 | 610.9 | 972.2 | 16.9 | 15.9 | 16.5 |
Dazhou | 1638.1 | 976.1 | 1271.4 | 18.6 | 17.3 | 17.9 |
Deyang | 1650.6 | 711.0 | 963.2 | 17.9 | 16.0 | 16.9 |
Tibetan Autonomous Prefecture of Garzê | 994.9 | 712.9 | 847.1 | 8.4 | 7.1 | 7.9 |
Guang’an | 1538.6 | 837.6 | 1144.7 | 18.3 | 17.2 | 17.6 |
Guangyuan | 1485.1 | 895.4 | 1036.2 | 17.3 | 17.1 | 16.5 |
Leshan | 1555.3 | 768.9 | 1226.7 | 18.8 | 17.2 | 18.1 |
Yi Autonomous Prefecture of Liangshan | 1284.3 | 558.2 | 1015.3 | 19.2 | 17.3 | 17.8 |
Luzhou | 1443.7 | 765.0 | 1149.5 | 18.6 | 17.2 | 18.1 |
Meishan | 1310.5 | 754.9 | 999.2 | 18.4 | 17.1 | 17.8 |
Mianyang | 1367.0 | 545.5 | 911.7 | 18.1 | 16.5 | 17.3 |
Nanchong | 1262.8 | 863.6 | 1095.4 | 18.9 | 17.4 | 17.9 |
Neijiang | 1246.3 | 646.5 | 1000.9 | 18.6 | 17.1 | 17.9 |
Panzhihua | 1053.4 | 537.7 | 759.7 | 22.6 | 20.5 | 21.3 |
Suining | 1311.0 | 795.6 | 1024.5 | 18.2 | 16.8 | 17.6 |
Ya’an | 2161.3 | 1833.6 | 1729.5 | 17.5 | 15.9 | 16.8 |
Yibin | 1746.0 | 644.2 | 1078.8 | 19.3 | 17.5 | 18.4 |
Ziyang | 1203.3 | 633.3 | 918.3 | 18.6 | 17.0 | 17.8 |
Zigong | 1223.2 | 605.2 | 970.4 | 19.3 | 17.8 | 18.6 |
Time | City | γ | Time | City | γ | Time | City | γ |
---|---|---|---|---|---|---|---|---|
2021 | Panzhihua | 1.24 | 2015 | Suining | 1.47 | 2015 | Yibin | 1.30 |
2013 | Zigong | 1.54 | Leshan | 1.29 | 2016 | Dazhou | 1.40 | |
Guangyuan | 2.39 | Nanchong | 2.27 | Bazhong | 1.57 | |||
Neijiang | 1.63 | Meishan | 1.39 | 2019 | Panzhihua | 2.11 | ||
Nanchong | 2.27 | Bazhong | 1.38 | Yi Autonomous Prefecture of Liangshan | 2.69 | |||
Yibin | 1.46 | Ziyang | 1.70 | 2021 | Aba Tibetan and Qiang Autonomous Prefecture | 1.83 | ||
2015 | Mianyang | 1.42 | Dazhou | 1.26 | Yi Autonomous Prefecture of Liangshan | 1.38 |
Time | City | γ | Time | City | γ | Time | City | γ |
---|---|---|---|---|---|---|---|---|
2007 | Dazhou | 1.25 | 2016 | Yibin | 2.30 | 2020 | Meishan | 1.78 |
2010 | Ya’an | 1.45 | 2017 | Tibetan Autonomous Prefecture of Garzê | 1.33 | Leshan | 1.32 | |
2012 | Yi Autonomous Prefecture of Liangshan | 1.53 | Guang’an | 1.62 | Yibin | 2.30 | ||
Neijiang | 1.21 | 2018 | Mianyang | 2.10 | 2021 | Mianyang | 1.53 | |
2013 | Chengdu | 1.75 | Deyang | 2.89 | Guangyuan | 2.38 | ||
Zigong | 1.41 | Chengdu | 1.31 | Dazhou | 1.65 | |||
Luzhou | 1.41 | Ya’an | 1.73 | Guang’an | 1.82 | |||
Suining | 2.01 | Meishan | 1.89 | Nanchong | 1.33 | |||
2014 | Dazhou | 1.37 | Ziyang | 1.74 | Ya’an | 1.42 | ||
Yi Autonomous Prefecture of Liangshan | 1.79 | 2019 | Aba Tibetan and Qiang Autonomous Prefecture | 1.59 | Neijiang | 1.27 | ||
2015 | Panzhihua | 2.22 | Bazhong | 2.05 | Zigong | 1.51 | ||
Tibetan Autonomous Prefecture of Garzê | 1.31 | Ziyang | 1.65 | Bazhong | 2.00 | |||
2016 | Panzhihua | 1.48 | 2020 | Aba Tibetan and Qiang Autonomous Prefecture | 1.34 | / | ||
Luzhou | 1.30 | Chengdu | 1.21 |
Time | City | γ | Time | City | γ | Time | City | γ |
---|---|---|---|---|---|---|---|---|
2007 | Panzhihua | −1.34 | 2010 | Suining | −1.49 | 2012 | Luzhou | −2.20 |
Yi Autonomous Prefecture of Liangshan | −1.21 | Meishan | −1.22 | 2013 | Panzhihua | −1.51 | ||
2008 | Zigong | −1.24 | 2011 | Deyang | −1.76 | 2014 | Chengdu | −1.28 |
Neijiang | −1.29 | Mianyang | −1.60 | Ziyang | −1.78 | |||
Dazhou | −1.35 | Meishan | −1.46 | 2019 | Guangyuan | −1.26 | ||
2010 | Chengdu | −1.28 | Ya’an | −1.34 | Yibin | −1.90 | ||
Zigong | −1.59 | 2012 | Chengdu | −1.63 | Bazhong | −1.37 | ||
Mianyang | −1.22 | Luzhou | −2.20 | 2021 | Bazhong | −1.20 |
Time | City | γ | Time | City | γ | Time | City | γ |
---|---|---|---|---|---|---|---|---|
2007 | Chengdu | −1.46 | 2010 | Luzhou | −1.56 | 2016 | Mianyang | −1.69 |
Leshan | −1.24 | Deyang | −1.51 | Guangyuan | −1.34 | |||
Meishan | −1.48 | 2011 | Zigong | −2.18 | Nanchong | −1.47 | ||
Ziyang | −1.74 | Panzhihua | −1.68 | Bazhong | −1.33 | |||
2008 | Chengdu | −1.46 | Neijiang | −1.83 | 2017 | Leshan | −1.52 | |
Leshan | −1.24 | Leshan | −1.84 | Neijiang | −1.71 | |||
2009 | Meishan | −1.48 | 2012 | Chengdu | −1.70 | Ziyang | −1.53 | |
Ziyang | −1.74 | Guang’an | −1.99 | Suining | −1.61 | |||
Chengdu | −1.46 | Guangyuan | −1.31 | 2018 | Dazhou | −1.33 | ||
2010 | Leshan | −1.24 | 2015 | Ya’an | −1.36 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, F.; Li, Z. Impacts of Extreme Climate on the Water Resource System in Sichuan Province. Water 2024, 16, 1217. https://doi.org/10.3390/w16091217
Ma F, Li Z. Impacts of Extreme Climate on the Water Resource System in Sichuan Province. Water. 2024; 16(9):1217. https://doi.org/10.3390/w16091217
Chicago/Turabian StyleMa, Fang, and Zhijun Li. 2024. "Impacts of Extreme Climate on the Water Resource System in Sichuan Province" Water 16, no. 9: 1217. https://doi.org/10.3390/w16091217
APA StyleMa, F., & Li, Z. (2024). Impacts of Extreme Climate on the Water Resource System in Sichuan Province. Water, 16(9), 1217. https://doi.org/10.3390/w16091217