Proposal of a Reflector-Enhanced Solar Still Concept and Its Comparison with Conventional Solar Stills
Abstract
:1. Introduction
2. The Fundamental Working of Solar Stills
3. Climate of Iran
4. Mathematical Calculation
4.1. Energy Analysis
4.2. Thermal Equations
5. Description of the Proposed System
Proposed Solar Energy Collection
6. Mathematical Model Verification
7. Results and Discussion
8. Conclusions
- Ensure that the parabolic collectors are specifically built to achieve the highest possible concentration of sunlight on the surface of the solar still.
- Investigate high-performance materials for constructing the parabolic collector in order to enhance its resilience and ability to reflect sun irradiation.
- Incorporation of Tracking devices:
- Deploy solar tracking devices for the parabolic collectors to accurately track the sun’s trajectory throughout the day. This guarantees that the solar still receives the most favorable sunlight during the entire day, not just for 4 h.
- Selective Coating for Solar Steel:
- The coatings can be engineered to optimize absorption in the visible and near-infrared range while minimizing thermal energy dissipation through radiation.
- Environmental Considerations:
- Evaluate the ecological repercussions of the solar desalination system and strive for long-term viability. This may entail utilizing sustainable materials, implementing recycling techniques, and mitigating any adverse impacts on the local ecosystem.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Term | Description |
HTC | Heat transfer coefficient |
Convective HTC from seawater to glass, W per K per m2 | |
Radiative HTC from seawater to glass, W per K per m2 | |
Evaporative HTC from seawater to glass, W per K per m2 | |
Rate of convective heat transfer within seawater and glass, W/m2 | |
Rate of radiative heat transfer within seawater and glass, W/m2 | |
Rate of evaporative heat transfer within seawater and glass, W/m2 | |
Basin thermal conductivity, W per m per °C | |
Insulation thermal conductivity, W per m per °C | |
A | Surface area, m2 |
Specific heat, J/kg °C | |
Intensity of solar radiation, W/m2 | |
Insulation thickness, m | |
Basin thickness, m | |
Partial saturated vapor pressure in seawater temperature, Pa | |
Partial saturated vapor pressure in glass temperature, Pa | |
Seawater temperature, °C | |
Glass temperature, °C | |
Basin temperature, °C | |
Density, kg/m3 | |
t | Time, s |
Stephan Boltzman, W/m2 °K4 | |
Emissivity |
References
- Angappan, G.; Pandiaraj, S.; Alrubaie, A.J.; Muthusamy, S.; Said, Z.; Panchal, H.; Katekar, V.P.; Shoeibi, S.; Kabeel, A.E. Investigation on Solar Still with Integration of Solar Cooker to Enhance Productivity: Experimental, Exergy, and Economic Analysis. J. Water Process Eng. 2023, 51, 103470. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Panchal, H.; Alawee, W.H.; Omara, Z.M. Methods Used to Improve Solar Still Performance with Generated Turbulence for Water Desalination- Detailed Review. Results Eng. 2023, 19, 101251. [Google Scholar] [CrossRef]
- Panchal, H.; Nurdiyanto, H.; Sadasivuni, K.K.; Hishan, S.S.; Essa, F.A.; Khalid, M.; Dharaskar, S.; Shanmugan, S. Experimental Investigation on the Yield of Solar Still Using Manganese Oxide Nanoparticles Coated Absorber. Case Stud. Therm. Eng. 2021, 25, 100905. [Google Scholar] [CrossRef]
- UNICEF Water and the Global Climate Crisis: 10 Things You Should Know. Available online: https://www.unicef.org/stories/water-and-climate-change-10-things-you-should-know?gclid=CjwKCAiAgeeqBhBAEiwAoDDhn_GhPkfm7QkiXzjceFMDu7CVPdMBZZHXKCe-iJTh5_uoSxGeCZ4_iBoCVykQAvD_BwE (accessed on 15 October 2023).
- United Nation Summary Progress Update 2021: SDG 6—Water and Sanitation for All. In The UN-Water Integrated Monitoring Initiative; UN-Water: Geneva, Switzerland, 2021; pp. 1–58.
- FAO Overcoming Water Challenges in Agriculture. Available online: https://www.fao.org/state-of-food-agriculture/2020/en/ (accessed on 5 October 2023).
- Hossein, K.; Nazeri Tahroudi, M. Annual and Seasonal Distribution Pattern of Rainfall in Iran and Neighboring Regions. Arab. J. Geosci. 2019, 12, 271. [Google Scholar] [CrossRef]
- Khani, S.M.R.; Bahadori, M.; Dehghani-Sanij, A. Experimental Investigation of a Modular Wind Tower in Hot and Dry Regions. Energy Sustain. Dev. 2017, 39, 21–28. [Google Scholar] [CrossRef]
- Omiddezyani, S.; Dehghani, Z.; Ahmadi, P.; Ashjaee, M.; Houshfar, E. Design and Optimization of an Integrated Novel Desalination System Based on the Temperature Difference between the Sea and Mountain. Sol. Energy 2023, 258, 37–56. [Google Scholar] [CrossRef]
- Soltani, M.; Moradi Kashkooli, F.; Dehghani-Sanij, A.R.; Nokhosteen, A.; Ahmadi-Joughi, A.; Gharali, K.; Mahbaz, S.B.; Dusseault, M.B. A Comprehensive Review of Geothermal Energy Evolution and Development. Int. J. Green Energy 2019, 16, 971–1009. [Google Scholar] [CrossRef]
- Dehghani-Sanij, A.R.; MacLachlan, S.; Naterer, G.F.; Muzychka, Y.S.; Haynes, R.D.; Enjilela, V. Multistage Cooling and Freezing of a Saline Spherical Water Droplet. Int. J. Therm. Sci. 2020, 147, 106095. [Google Scholar] [CrossRef]
- Abadi, M.M.; Izadi, I.; Jalili, B. Numerical Analysis of a Multi-Stage Evacuation Desalination in Tehran City. Water Energy Int. 2019, 61, 53–57. [Google Scholar]
- Karimi, H.; Adibhesami, M.A.; Bazazzadeh, H.; Movafagh, S. Green Buildings: Human-Centered and Energy Efficiency Optimization Strategies. Energies 2023, 16, 3681. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; Campos-Celador, Á.; Terés-Zubiaga, J. Renewable Energy Cooperatives as an Instrument towards the Energy Transition in Spain. Energy Policy 2018, 123, 215–229. [Google Scholar] [CrossRef]
- Dehghani-Sanij, A.; Kashkooli, F.M. Special Issue: New Developments and Prospects in Clean and Renewable Energies. Appl. Sci. 2023, 13, 9632. [Google Scholar] [CrossRef]
- Al Mallahi, M.N.; Assad, M.E.H.; Rejeb, O.; Delnava, H.; Asaad, S.; Tan, Y.C. A Review on Cleaning Techniques of Solar Photovoltaic Panels. AIP Conf. Proc. 2023, 2847, 40010. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. A Review of Concentrating Solar Thermal Collectors with and without Nanofluids. J. Therm. Anal. Calorim. 2019, 135, 763–786. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Alawee, W.H.; Mohammed, S.A.; Majdi, A.; Omara, Z.M.; Essa, F.A. Increasing the Productivity of Modified Cords Pyramid Solar Still Using Electric Heater and Various Wick Materials. Process Saf. Environ. Prot. 2023, 169, 169–176. [Google Scholar] [CrossRef]
- Esmaeilion, F.; Soltani, M.; Hoseinzadeh, S.; Sohani, A.; Nathwani, J. Benefits of an Innovative Polygeneration System Integrated with Salinity Gradient Solar Pond and Desalination Unit. Desalination 2023, 564, 116803. [Google Scholar] [CrossRef]
- Wheatley, G.; Rubel, R.I. Design Improvement of a Laboratory Prototype for Efficiency Evaluation of Solar Thermal Water Heating System Using Phase Change Material (PCMs). Results Eng. 2021, 12, 100301. [Google Scholar] [CrossRef]
- Pambudi, N.A.; Nanda, I.R.; Saputro, A.D. The Energy Efficiency of a Modified V-Corrugated Zinc Collector on the Performance of Solar Water Heater (SWH). Results Eng. 2023, 18, 101174. [Google Scholar] [CrossRef]
- Mawire, A.; Lentswe, K.; Owusu, P. Performance of Two Solar Cooking Storage Pots Using Parabolic Dish Solar Concentrators during Solar and Storage Cooking Periods with Different Heating Loads. Results Eng. 2022, 13, 100336. [Google Scholar] [CrossRef]
- Verma, S.; Banerjee, S.; Das, R. A Fully Analytical Model of a Box Solar Cooker with Sensible Thermal Storage. Sol. Energy 2022, 233, 531–542. [Google Scholar] [CrossRef]
- Krabch, H.; Tadili, R.; Idrissi, A. Design, Realization and Comparison of Three Passive Solar Dryers. Orange Drying Application for the Rabat Site (Morocco). Results Eng. 2022, 15, 100532. [Google Scholar] [CrossRef]
- Kumar, H.A.; Venkateswaran, H.; Kabeel, A.E.; Chamkha, A.; Athikesavan, M.M.; Sathyamurthy, R.; Kasi, K. Recent Advancements, Technologies, and Developments in Inclined Solar Still—A Comprehensive Review. Environ. Sci. Pollut. Res. 2021, 28, 35346–35375. [Google Scholar] [CrossRef] [PubMed]
- Naghipour, D.; Taghavi, K.; Jaafari, J.; Kabdaşlı, I.; Makkiabadi, M.; Javan Mahjoub Doust, M.; Javan Mahjoub Doust, F. Scallop Shell Coated Fe2O3 Nanocomposite as an Eco-Friendly Adsorbent for Tetracycline Removal. Environ. Technol. 2023, 44, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzzadeh, A.H.; Ahmadi, P.; Rosen, M.A. Technoeconomic and Environmental Optimization of a Solar Tower Integrated Energy System for Freshwater Production. J. Clean. Prod. 2020, 270, 121760. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Han, M.; Zhang, J. Embodied Water Consumption between Typical Desalination Projects: Reverse Osmosis versus Low-Temperature Multi-Effect Distillation. J. Clean. Prod. 2021, 295, 126340. [Google Scholar] [CrossRef]
- Alirahmi, S.M.; Rahmani Dabbagh, S.; Ahmadi, P.; Wongwises, S. Multi-Objective Design Optimization of a Multi-Generation Energy System Based on Geothermal and Solar Energy. Energy Convers. Manag. 2020, 205, 112426. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A. Electrodialysis Desalination for Water and Wastewater: A Review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar] [CrossRef]
- Cumo, F.; Astiaso Garcia, D.; Gugliermetti, F. Assessing the Potential Use of Solar Energy Source in Urban Areas Located in Natural Protected Sites. Nat. Resour. 2013, 4, 134–141. [Google Scholar] [CrossRef]
- Do Thi, H.T.; Pasztor, T.; Fozer, D.; Manenti, F.; Toth, A.J. Comparison of Desalination Technologies Using Renewable Energy Sources with Life Cycle, PESTLE, and Multi-Criteria Decision Analyses. Water 2021, 13, 3023. [Google Scholar] [CrossRef]
- Assareh, E.; Delpisheh, M.; Alirahmi, S.M.; Tafi, S.; Carvalho, M. Thermodynamic-Economic Optimization of a Solar-Powered Combined Energy System with Desalination for Electricity and Freshwater Production. Smart Energy 2022, 5, 100062. [Google Scholar] [CrossRef]
- Shoeibi, S.; Kargarsharifabad, H.; Rahbar, N.; Khosravi, G.; Sharifpur, M. An Integrated Solar Desalination with Evacuated Tube Heat Pipe Solar Collector and New Wind Ventilator External Condenser. Sustain. Energy Technol. Assess. 2022, 50, 101857. [Google Scholar] [CrossRef]
- Tanaka, H.; Nakatake, Y. A Simple and Highly Productive Solar Still: A Vertical Multiple-Effect Diffusion-Type Solar Still Coupled with a Flat-Plate Mirror. Desalination 2005, 173, 287–300. [Google Scholar] [CrossRef]
- Shoeibi, S.; Rahbar, N.; Abedini Esfahlani, A.; Kargarsharifabad, H. Improving the Thermoelectric Solar Still Performance by Using Nanofluids—Experimental Study, Thermodynamic Modeling and Energy Matrices Analysis. Sustain. Energy Technol. Assess. 2021, 47, 101339. [Google Scholar] [CrossRef]
- Shoeibi, S.; Kargarsharifabad, H.; Mirjalily, S.A.A.; Muhammad, T. Solar District Heating with Solar Desalination Using Energy Storage Material for Domestic Hot Water and Drinking Water—Environmental and Economic Analysis. Sustain. Energy Technol. Assess. 2022, 49, 101713. [Google Scholar] [CrossRef]
- Sathyamurthy, R.; Ali, H.M.; Said, Z.; Kabeel, A.E.; El-Sebaey, M.S.; Gopalsamy, S.; Nagaraj, M.; Almasoud, N.; Alomar, T.S. Enhancing Solar Still Thermal Performance: The Role of Surface Coating and Thermal Energy Storage in Repurposed Soda Cans. J. Energy Storage 2024, 77, 109807. [Google Scholar] [CrossRef]
- Hassan, H. Comparing the Performance of Passive and Active Double and Single Slope Solar Stills Incorporated with Parabolic Trough Collector via Energy, Exergy and Productivity. Renew. Energy 2020, 148, 437–450. [Google Scholar] [CrossRef]
- Muthu Manokar, A.; Vimala, M.; Prince Winston, D.; Rajendran, D.R.; Sathyamurthy, R.; Kabeel, A.E. Year around Distilled Water Production, Energy, and Economic Analysis of Solar Stills—A Comparative Study. Heat Transf. 2020, 49, 3651–3662. [Google Scholar] [CrossRef]
- Rubio, E.; Fernández, J.; Porta-Gándara, M. Modeling Thermal Asymmetries in Double Slope Solar Stills. Renew. Energy 2004, 29, 895–906. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Bhatia, B.; Li, B.; Zhao, L.; Wang, E.N. Modeling and Performance Analysis of High-Efficiency Thermally-Localized Multistage Solar Stills. Appl. Energy 2020, 266, 114864. [Google Scholar] [CrossRef]
- Seralathan, S.; Chenna Reddy, G.; Sathish, S.; Muthuram, A.; Dhanraj, J.A.; Lakshmaiya, N.; Velmurugan, K.; Sirisamphanwong, C.; Ngoenmeesri, R.; Sirisamphanwong, C. Performance and Exergy Analysis of an Inclined Solar Still with Baffle Arrangements. Heliyon 2023, 9, e14807. [Google Scholar] [CrossRef]
- Baskaran, V.; Saravanane, R. Rendering Utility Water with Solar Still and Efficiency of Solar Stills with Different Geometry—A Review. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100534. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Omara, Z.M.; Essa, F.A. Numerical Investigation of Modified Solar Still Using Nanofluids and External Condenser. J. Taiwan Inst. Chem. Eng. 2017, 75, 77–86. [Google Scholar] [CrossRef]
- Nazari, S.; Daghigh, R. Techno-Enviro-Exergo-Economic and Water Hygiene Assessment of Non-Cover Box Solar Still Employing Parabolic Dish Concentrator and Thermoelectric Peltier Effect. Process Saf. Environ. Prot. 2022, 162, 566–582. [Google Scholar] [CrossRef]
- Sadeghi, G.; Nazari, S. Retrofitting a Thermoelectric-Based Solar Still Integrated with an Evacuated Tube Collector Utilizing an Antibacterial-Magnetic Hybrid Nanofluid. Desalination 2021, 500, 114871. [Google Scholar] [CrossRef]
- Kabeel, A.E.; El-Maghlany, W.; Abdelgaied, M.; Abdel-Aziz, M. Performance Enhancement of Pyramid-Shaped Solar Stills Using Hollow Circular Fins and Phase Change Materials. J. Energy Storage 2020, 31, 101610. [Google Scholar] [CrossRef]
- Jeevadason, A.W.; Padmini, S. Experimental Investigation of a Passive Type Solar Still with Double Wedge Shape Glass Cover. Mater. Today Proc. 2022, 56, 308–313. [Google Scholar] [CrossRef]
- Mevada, D.; Panchal, H.; Ahmadein, M.; Zayed, M.E.; Alsaleh, N.A.; Djuansjah, J.; Moustafa, E.B.; Elsheikh, A.H.; Sadasivuni, K.K. Investigation and Performance Analysis of Solar Still with Energy Storage Materials: An Energy- Exergy Efficiency Analysis. Case Stud. Therm. Eng. 2022, 29, 101687. [Google Scholar] [CrossRef]
- Hameed, H.G. Experimentally Evaluating the Performance of Single Slope Solar Still with Glass Cover Cooling and Square Cross-Section Hollow Fins. Case Stud. Therm. Eng. 2022, 40, 102547. [Google Scholar] [CrossRef]
- Panchal, H.; Sohani, A.; Van Nguyen, N.; Shoeibi, S.; Khiadani, M.; Huy, P.Q.; Hoseinzadeh, S.; Kabeel, A.E.; Shaik, S.; Cuce, E. Performance Evaluation of Using Evacuated Tubes Solar Collector, Perforated Fins, and Pebbles in a Solar Still—Experimental Study and CO2 Mitigation Analysis. Environ. Sci. Pollut. Res. 2023, 30, 11769–11784. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Omara, Z.M.; Essa, F.A.; Alqsair, U.F.; Aljaghtham, M.; Mansir, I.B.; Shanmugan, S.; Alawee, W.H. Enhancing Trays Solar Still Performance Using Wick Finned Absorber, Nano- Enhanced PCM. Alex. Eng. J. 2022, 61, 12417–12430. [Google Scholar] [CrossRef]
- Gupta, V.S.; Singh, D.B.; Mishra, R.K.; Sharma, S.K.; Tiwari, G.N. Development of Characteristic Equations for PVT-CPC Active Solar Distillation System. Desalination 2018, 445, 266–279. [Google Scholar] [CrossRef]
- Xiao, L.; Shi, R.; Wu, S.-Y.; Chen, Z.-L. Performance Study on a Photovoltaic Thermal (PV/T) Stepped Solar Still with a Bottom Channel. Desalination 2019, 471, 114129. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, A. Design, Fabrication and Performance of a Hybrid Photovoltaic/Thermal (PV/T) Active Solar Still. Energy Convers. Manag. 2010, 51, 1219–1229. [Google Scholar] [CrossRef]
- THE WORLD BANK Solar Irradiation and PV Power Potential Maps. Available online: https://datacatalog.worldbank.org/search/dataset/0039610/Iran---Solar-irradiation-and-PV-power-potential-maps (accessed on 22 November 2023).
- Thomas-Hillman, I.; Laybourn, A.; Dodds, C.; Kingman, S.W. Realising the Environmental Benefits of Metal–Organic Frameworks: Recent Advances in Microwave Synthesis. J. Mater. Chem. A 2018, 6, 11564–11581. [Google Scholar] [CrossRef]
- The World Bank. World Bank Country and Lending Group; The World Bank: Washington, DC, USA, 2023. [Google Scholar]
- The World Bank. Iran, Islamic, Rep; The World Bank: Washington, DC, USA, 2023. [Google Scholar]
- Mousavi, A.; Ardalan, A.; Takian, A.; Ostadtaghizadeh, A.; Naddafi, K.; Bavani, A.M. Climate Change and Health in Iran: A Narrative Review. J. Environ. Health Sci. Eng. 2020, 18, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Alamdari, P.; Nematollahi, O.; Alemrajabi, A.A. Solar Energy Potentials in Iran: A Review. Renew. Sustain. Energy Rev. 2013, 21, 778–788. [Google Scholar] [CrossRef]
- Kabeel, A.E. Performance of Solar Still with a Concave Wick Evaporation Surface. Energy 2009, 34, 1504–1509. [Google Scholar] [CrossRef]
- Tiwari, G.N.; Dimri, V.; Chel, A. Parametric Study of an Active and Passive Solar Distillation System: Energy and Exergy Analysis. Desalination 2009, 242, 1–18. [Google Scholar] [CrossRef]
- Halima, H.; Frikha, N.; Ben Slama, R. Numerical Investigation of a Simple Solar Still Coupled to a Compression Heat Pump. Desalination 2014, 337, 60–66. [Google Scholar] [CrossRef]
- Edalatpour, M.; Aryana, K.; Kianifar, A.; Tiwari, G.; Mahian, O.; Wongwises, S. Solar Stills: A Review of the Latest Developments in Numerical Simulations. Sol. Energy 2016, 135, 897–922. [Google Scholar] [CrossRef]
- Aldoori, W.H.; Ahmed, A.H.; Ahmed, A.M. Performance Investigation of a Solar Water Distiller Integrated with a Parabolic Collector Using Fuzzy Technique. Heat Transf. Res. 2020, 49, 120–134. [Google Scholar] [CrossRef]
- Arun Kumar, S.; Kumar, P.; Sathyamurthy, R.; Manokar, A. Experimental Investigation on Pyramid Solar Still with Single and Double Collector Cover-Comparative Study. Heat Transf. Res. 2019, 49, 103–119. [Google Scholar] [CrossRef]
- Kalidasa Murugavel, K.; Sivakumar, S.; Ahamed, J.; Chockalingam, K.K.S.K.; Srithar, K. Single Basin Double Slope Solar Still with Minimum Basin Depth and Energy Storing Materials. Appl. Energy 2010, 87, 514–523. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Ghadimi, N.; Marefati, M.; Ghorbanian, S.A. Numerical Investigation of a New Combined Energy System Includes Parabolic Dish Solar Collector, Stirling Engine and Thermoelectric Device. Int. J. Energy Res. 2021, 45, 16436–16455. [Google Scholar] [CrossRef]
- Sun Earth Tool Sun Earth Tool. Available online: https://www.sunearthtools.com/ (accessed on 20 October 2023).
- Zheng, H. Solar Energy Utilization and Its Collection Devices. In Solar Energy Desalination Technology; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128054116. [Google Scholar]
- Ari, R. Active Solar Collectors and Their Applications; Oxford University Press: Oxford, UK, 1985; ISBN 0195035461/9780195035469. [Google Scholar]
- Khadija, Z.; M’barek, F.; Hicham, M. Effect of Metal Oxide Nanofluids on the Performance of Passive Solar Still Single Slope for Two Different Absorbent Plates. Heat Transf. 2022, 2, 101320. [Google Scholar]
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
2500 | 7800 | Water thickness | 1 cm | ||
Insolation thickness | 5 cm | ||||
Glass thickness | 4 mm | Basin thickness | 2 mm | Isolation | 0.059 |
(irradiation sorption) | 0.05 | (irradiation sorption) | 0.05 | 0.9 | |
(irradiation passing) | 0.9 | (irradiation passing) | 0.95 | (area of the basin) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soltanian, M.; Hoseinzadeh, S.; Astiaso Garcia, D. Proposal of a Reflector-Enhanced Solar Still Concept and Its Comparison with Conventional Solar Stills. Water 2024, 16, 355. https://doi.org/10.3390/w16020355
Soltanian M, Hoseinzadeh S, Astiaso Garcia D. Proposal of a Reflector-Enhanced Solar Still Concept and Its Comparison with Conventional Solar Stills. Water. 2024; 16(2):355. https://doi.org/10.3390/w16020355
Chicago/Turabian StyleSoltanian, Mehdi, Siamak Hoseinzadeh, and Davide Astiaso Garcia. 2024. "Proposal of a Reflector-Enhanced Solar Still Concept and Its Comparison with Conventional Solar Stills" Water 16, no. 2: 355. https://doi.org/10.3390/w16020355
APA StyleSoltanian, M., Hoseinzadeh, S., & Astiaso Garcia, D. (2024). Proposal of a Reflector-Enhanced Solar Still Concept and Its Comparison with Conventional Solar Stills. Water, 16(2), 355. https://doi.org/10.3390/w16020355