Promoting Aquatic Health in Constructed Wetlands: Removal of Pathogens and Nitrogen
Abstract
:1. Introduction
2. The Role of Plants in CWs
2.1. The Coupling Role of Plants with Nitrifying and Denitrifying Microorganisms
2.2. The Effect of Plants on the Removal of Pathogens
3. The Removal Efficiency of Different Constructed Wetland Types on Pathogens and Nitrogen Species
4. Factors Affecting the Removal of Pathogens and Nitrogen Species
4.1. Substrates
4.2. Hydraulic Retention Time (HRT)
4.3. Water Composition, Oxygen, and pH
4.4. UV Radiation
4.5. Temperature/Seasonal Fluctuation
5. Challenges and Outlook
- (1)
- In most CWs, planting systems have a higher removal efficiency of pathogens and nitrogen than no-planting systems. We should delve deeper into understanding the role of plants in CWs.
- (2)
- As aquatic ecological health issues related to pathogen pollution in wastewater become increasingly severe, water quality standards may become higher. Therefore, it may be necessary to conduct a detailed investigation of a wider range of indicator bacteria and to explore more efficient detection methods.
- (3)
- As concerns the combination of CWs and other processes, although CWs can significantly reduce the concentration of pathogens and nitrogen in wastewater, if combined with other removal processes (different chemical and physical disinfection methods), this will develop and improve more efficient and economical wetland treatment technologies.
- (4)
- As concerns the model simulation and optimization research of hydraulic, conventional pollutant (such as N and P) removal, as well as pathogen removal in CWs, providing a theoretical basis and technical support for the promotion and application of CWs is required.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Guidelines for the Safe Use of Wastewater, Excreta and Greywater; Volume 2: Wastewater use in agriculture; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Hansen, K. Meeting the challenge of water scarcity in the Western United States. In Competition for Water Resources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 2–18. [Google Scholar]
- Tong, Y.; Bu, X.; Chen, C.; Yang, X.; Lu, X.; Liang, H.; Liu, M.; Lin, H.; Zhang, H.; Lin, Y.; et al. Impacts of sanitation improvement on reduction of nitrogen discharges entering the environment from human excreta in China. Sci. Total Environ. 2017, 593, 439–448. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, W.; Wang, W.; Lin, W.; Liu, H.; Ma, X.; Zhou, Y.; Lei, P.; Wei, D.; Zhang, L.; et al. A review on China’s constructed wetlands in recent three decades: Application and practice. J. Environ. Sci. 2021, 104, 53–68. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, S.; Zhang, Y.; Lv, M.; Kinhoun, J.J.R.; Qian, T.; Fan, B. Constructed wetland treatment of source separated washing wastewater in rural areas of southern China. Sep. Purif. Technol. 2021, 272, 118725. [Google Scholar] [CrossRef]
- Calderón-Franco, D.; Sarelse, R.; Christou, S.; Pronk, M.; van Loosdrecht, M.C.; Abeel, T.; Weissbrodt, D.G. Metagenomic profiling and transfer dynamics of antibiotic resistance determinants in a full-scale granular sludge wastewater treatment plant. Water Res. 2022, 219, 118571. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecol. Eng. 2002, 18, 633–646. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Teixeira, A.; Pires, C.; Franco, A.R.; Duque, A.F.; Crispim, L.F.C.; Moula, S.C.; Castro, P.M.L. Bacterial community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing. Water Res. 2010, 44, 5032–5038. [Google Scholar] [CrossRef] [PubMed]
- Trand, J.A.; Weisner, S.E.B. Effects of wetland construction on nitrogen transport and species richness in the agricultural landscape—Experiences from Sweden. Ecol. Eng. 2013, 56, 14–25. [Google Scholar] [CrossRef]
- Stephanakis, A.; Tsihrintzis, V. Effect of loading, resting period porous media, vegetation and aeration on performance of two pilot scale vertical flow constructed wetlands. Chem. Eng. J. 2012, 181, 182. [Google Scholar]
- Li, J.; Yang, X.; Wang, Z.; Shan, Y.; Zheng, Z. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water. Bioresour. Technol. 2015, 179, 1–7. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, Y.; Zhou, Q.; Vymazal, J. Effects of plant biomass on denitrifying genes in subsurface-flow constructed wetlands. Bioresour. Technol. 2014, 157, 341–345. [Google Scholar] [CrossRef]
- Aranychianakis, N.V.; Tsiknia, M.; Kalogerakis, N. Pathways regulating the removal of nitrogen in planted and unplanted subsurface flow constructed wetlands. Water Res. 2016, 102, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Levy, G.; Fine, P.; Bar-Tal, A. (Eds.) Treated Wastewater in Agriculture: Use and Iimpacts on the Soil Environment and Crops; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Jiménez, B.; Maya, C.; Barrios, J.A.; Navarro, I. Helminths and their role in environmental engineering. In Human Helminthiasis; IntechOpen: London, UK, 2017. [Google Scholar]
- Garcia, M.; Becares, E. Bacterial removal in three pilot-scale wastewater treatment systems for rural areas. Water Sci. Technol. 1997, 35, 197–200. [Google Scholar] [CrossRef]
- Ottová, V.; Balcarová, J.; Vymazal, J. Microbial characteristics of constructed wetlands. Water Sci. Technol. 1997, 35, 117–123. [Google Scholar] [CrossRef]
- Boutilier, L.; Jamieson, R.; Gordon, R.; Lake, C.; Hart, W. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands. Water Res. 2009, 43, 4370–4380. [Google Scholar] [CrossRef]
- Cui, H.; Yang, Y.; Ding, Y.; Li, D.; Zhen, G.; Lu, X.; Huang, M.; Huang, X. A novel pilot-scale tubular bioreactor-enhanced floating treatment wetland for efficient in situ nitrogen removal from urban landscape water: Long-term performance and microbial mechanisms. Water Environ. Res. 2019, 91, 1498–1508. [Google Scholar] [CrossRef]
- Bever, J.D.; Dickie, I.A.; Facelli, E.; Facelli, J.M.; Klironomos, J.; Moora, M.; Rillig, M.C.; Stock, W.D.; Tibbett, M.; Zobel, M. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 2010, 25, 468–478. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X.; He, X.; Zhang, S.; Liang, R.; Shen, J. Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland. Sci. Total Environ. 2017, 598, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xu, Y.; Jin, J.; Liu, J.; Zhang, Q.; Liu, X. Effect of soil type and soybean genotype on fungal community in soybean rhizosphere during reproductive growth stages. Plant Soil 2009, 317, 135–144. [Google Scholar] [CrossRef]
- Albuquerque, A.; Randerson, P.; Białowiec, A. Oxygen transfer capacity as a measure of water aeration by floating reed plants: Initial laboratory studies. Processes 2020, 8, 1270. [Google Scholar] [CrossRef]
- Mei, X.Q.; Yang, Y.; Tam, N.F.Y.; Wang, Y.W.; Li, L. Roles of root porosity, radial oxygen loss, Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater. Water Res. 2014, 50, 147–159. [Google Scholar] [CrossRef]
- Han, J.Y.; Kim, D.H.; Oh, S.; Moon, H.S. Effects of water level and vegetation on nitrate dynamics at varying sediment depths in laboratory-scale wetland mesocosms. Sci. Total Environ. 2020, 703, 134741. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rueda, O.; Hallin, S.; Baneras, L. Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiol. Ecol. 2009, 67, 308–319. [Google Scholar] [CrossRef]
- Zhang, C.B.; Wang, J.; Liu, W.L.; Zhu, S.X.; Liu, D.; Chang, S.X.; Chang, J.; Ge, Y. Effects of plant diversity on nutrient retention and enzyme activities in a full-scale constructed wetland. Bioresour. Technol. 2010, 101, 1686–1692. [Google Scholar] [CrossRef]
- Huang, X.F.; Ye, G.Y.; Yi, N.K.; Lu, L.J.; Zhang, L.; Yang, L.Y.; Xiao, L.; Liu, J. Effect of plant physiological characteristics on the removal of conventional and emerging pollutants from aquaculture wastewater by constructed wetlands. Ecol. Eng. 2019, 135, 45–53. [Google Scholar] [CrossRef]
- Wu, S.; Carvalho, P.N.; Müller, J.A.; Manoj, V.R.; Dong, R. Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. Sci. Total Environ. 2016, 541, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Avelar, F.F.; de Matos, A.T.; de Matos, M.P.; Borges, A.C. Coliform bacteria removal from sewage in constructed wetlands planted with Mentha aquatica. Environ. Technol. 2014, 35, 2095–2103. [Google Scholar] [CrossRef]
- Seidel, K. Macrophytes as functional elements in the environment of man. Hidrobiol. Bucur. 1971, 12, 121–130. [Google Scholar]
- Kipasika, H.J.; Buza, J.; Smith, W.A.; Njau, K. Removal capacity of faecal pathogens from wastewater by four wetland vegetation: Typha latifolia, Cyperus papyrus, Cyperus alternifolius and Phragmites australis. Afr. J. Microbiol. Res. 2016, 10, 654–661. [Google Scholar]
- Chang, N.B.; Xuan, Z.; Daranpob, A.; Wanielista, M. A subsurface upflow wetland system for removal of nutrients and pathogens in on-site sewage treatment and disposal systems. Environ. Eng. Sci. 2011, 28, 11–24. [Google Scholar] [CrossRef]
- García, M.; Soto, F.; González, J.M.; Bécares, E. A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems. Ecol. Eng. 2008, 32, 238–243. [Google Scholar] [CrossRef]
- Shingare, R.P.; Nanekar, S.V.; Thawale, P.R.; Karthik, R.; Juwarkar, A.A. Comparative study on removal of enteric pathogens from domestic wastewater using Typha latifolia and Cyperus rotundus along with different substrates. Int. J. Phytoremediat. 2017, 19, 899–908. [Google Scholar] [CrossRef]
- Lekeufack, M.; Fonkou, T.; Pamo, T.E.; Amougou, A. Removal of faecal bacteria and nutrients from domestic wastewater in a horizontal surface flow wetland vegetated with Echinochloa pyramidalis. Afr. J. Environ. Sci. Technol. 2012, 6, 337–345. [Google Scholar]
- Manios, T.; Stentiford, E.I.; Millner, P.A. The removal of indicator microorganisms from primary treated wastewater in subsurface reed beds using different substrates. Environ. Technol. 2002, 23, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Afrin, R.; Al Muyeed, A.; Sun, G. Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh. Chemosphere 2012, 88, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Muntaha, S.; Rashid, M.; Sun, G.; Hasnat, A. Industrial wastewater treatment in constructed wetlands packed with construction materials and agricultural by-products. J. Clean. Prod. 2018, 189, 442–453. [Google Scholar] [CrossRef]
- Saeed, T.; Al-Muyeed, A.; Afrin, R.; Rahman, H.; Sun, G. Pollutant removal from municipal wastewater employing baffled subsurface flow and integrated surface flow-floating treatment wetlands. J. Environ. Sci. 2014, 26, 726–736. [Google Scholar] [CrossRef]
- Shingare, R.P.; Thawale, P.R.; Raghunathan, K.; Mishra, A.; Kumar, S. Constructed wetland for wastewater reuse: Role and efficiency in removing enteric pathogens. J. Environ. Manag. 2019, 246, 444–461. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Cuvellier, C.; Stober, T. Performance of the Columbia, Missouri, treatment wetland. Ecol. Eng. 2010, 36, 672–684. [Google Scholar] [CrossRef]
- Galvão, A.; Matos, J.; Silva, M.; Ferreira, F. Constructed wetland performance and potential for microbial removal. Desalin. Water Treat. 2009, 4, 76–84. [Google Scholar] [CrossRef]
- García, J.A.; Paredes, D.; Cubillos, J.A. Effect of plants and the combination of wetland treatment type systems on pathogen removal in tropical climate conditions. Ecol. Eng. 2013, 58, 57–62. [Google Scholar] [CrossRef]
- Ayaz, S.C. Post-treatment and reuse of tertiary treated wastewater by constructed wetlands. Desalination 2008, 226, 249–255. [Google Scholar] [CrossRef]
- Redder, A.; Dürr, M.; Daeschlein, G.; Baeder-Bederski, O.; Koch, C.; Müller, R.; Exner, M.; Borneff-Lipp, M. Constructed wetlands–Are they safe in reducing protozoan parasites? Int. J. Hyg. Environ. Health 2010, 213, 72–77. [Google Scholar] [CrossRef]
- Tanner, C.C.; Sukias, J.P.; Headley, T.R.; Yates, C.R.; Stott, R. Constructed wetlands and denitrifying bioreactors for on-site and decentralised wastewater treatment: Comparison of five alternative configurations. Ecol. Eng. 2012, 42, 112–123. [Google Scholar] [CrossRef]
- Ushijima, K.; Ito, K.; Ito, R.; Funamizu, N. Greywater treatment by slanted soil system. Ecol. Eng. 2013, 50, 62–68. [Google Scholar] [CrossRef]
- Díaz, F.J.; O’Geen, A.T.; Dahlgren, R.A. Efficacy of constructed wetlands for removal of bacterial contamination from agricultural return flows. Agric. Water Manag. 2010, 97, 1813–1821. [Google Scholar] [CrossRef]
- Sawaittayothin, V.; Polprasert, C. Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate. Bioresour. Technol. 2007, 98, 565–570. [Google Scholar] [CrossRef]
- Tunçsiper, B.; Ayaz, S.Ç.; Akça, L. Coliform bacteria removal from septic wastewater in a pilot-scale combined constructed wetland system. Environ. Eng. Manag. J. EEMJ 2012, 11, 1873–1879. [Google Scholar] [CrossRef]
- Kansiime, F.; Van Bruggen, J.J.A. Distribution and retention of faecal coliforms in the Nakivubo wetland in Kampala, Uganda. Water Sci. Technol. 2001, 44, 199–206. [Google Scholar] [CrossRef]
- Stevik, T.K.; Aa, K.; Ausland, G.; Hanssen, J.F. Retention and removal of pathogenic bacteria in wastewater percolating through porous media: A review. Water Res. 2004, 38, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.G.; Jaffé, P.R. Effects of nonionic surfactants on bacterial transport through porous media. Environ. Sci. Technol. 2001, 35, 3877–3883. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: A review. J. Environ. Sci. Health 2005, 40, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Headley, T.; Nivala, J.; Kassa, K.; Olsson, L.; Wallace, S.; Brix, H.; Afferden, M.v.; Müller, R. Escherichia coli removal and internal dynamics in subsurface flow ecotechnologies: Effects of design and plants. Ecol. Eng. 2013, 61, 564–574. [Google Scholar] [CrossRef]
- Olson, M.R.; Axler, R.P.; Hicks, R.E. Effects of freezing and storage temperature on MS2 viability. J. Virol. Methods 2004, 122, 147–152. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Hui, Z.; Chao, X.; Nie, E.; Li, H.J.; He, J.; Zheng, Z. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecol. Eng. 2011, 37, 1546–1554. [Google Scholar] [CrossRef]
- Silverman, A.I.; Nguyen, M.T.; Schilling, I.E.; Wenk, J.; Nelson, K.L. Sunlight inactivation of viruses in open-water unit process treatment wetlands: Modeling endogenous and exogenous inactivation rates. Environ. Sci. Technol. 2015, 49, 2757–2766. [Google Scholar] [CrossRef]
- Wigginton, K.R.; Kohn, T. Virus disinfection mechanisms: The role of virus composition, structure, and function. Curr. Opin. Virol. 2012, 2, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Jokerst, A.; Sharvelle, S.E.; Hollowed, M.E.; Roesner, L.A. Seasonal performance of an outdoor constructed wetland for graywater treatment in a temperate climate. Water Environ. Res. 2011, 83, 2187–2198. [Google Scholar] [CrossRef] [PubMed]
- Elfanssi, S.; Ouazzani, N.; Latrach, L.; Hejjaj, A.; Mandi, L. Phytoremediation of domestic wastewater using a hybrid constructed wetland in mountainous rural area. Int. J. Phytoremediat. 2018, 20, 75–87. [Google Scholar] [CrossRef]
- Sartori, L.; Canobbio, S.; Fornaroli, R.; Cabrini, R.; Marazzi, F.; Mezzanotte, V. COD, nutrient removal and disinfection efficiency of a combined subsurface and surface flow constructed wetland: A case study. Int. J. Phytoremediat. 2016, 18, 416–422. [Google Scholar] [CrossRef]
- Thurston, J.A.; Foster, K.E.; Karpiscak, M.M.; Gerba, C.P. Fate of indicator microorganisms, Giardia and Cryptosporidium in subsurface flow constructed wetlands. Water Res. 2001, 35, 1547–1551. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Benigna, I.; Sorlini, S.; Torretta, V. Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability 2017, 10, 86. [Google Scholar] [CrossRef]
- Albuquerque, A.; Oliveira, J.; Semitela, S.; Amaral, L. Influence of bed media characteristics on ammonia and nitrate removal in shallow horizontal subsurface flow constructed wetlands. Bioresour. Technol. 2009, 100, 6269–6277. [Google Scholar] [CrossRef] [PubMed]
Pathogens | Plants | HRT (d) | Log10 | References | ||
---|---|---|---|---|---|---|
In | Out | Reduction | ||||
EC | Canna flaccida | 3.00 | 5.68 | 0.00 | 4.45 | [33] |
Iris versicolor L. | 3.00 | 5.68 | 1.23 | 3.88 | [33] | |
Juncus effusus L. | 3.00 | 5.68 | 1.80 | - | [33] | |
TC | Scirpus lacustris | 3.00 | 6.70 | 4.64 | 2.70 | [34] |
Typha sp., Iris sp., Phragmites sp. | 3.00 | 6.70 | 3.82 | 4.46 | [34] | |
Typha latifolia | 4.00 | 7.41 | 2.40 | 5.01 | [35] | |
FC | Canna flaccida | 3.00 | 5.96 | 1.85 | 4.11 | [33] |
Iris versicolor L. | 3.00 | 5.96 | 3.24 | 2.72 | [33] | |
Juncus effusus L. | 3.00 | 5.96 | 1.89 | 4.07 | [33] |
Features | FWS | HSF | VSF |
---|---|---|---|
Water flow | Flow on the surface | Horizontal flow under the substrate | Longitudinal flow from the surface to the bottom of the substrate |
Hydraulic loading | Low | High | High |
Decontamination effect | Average | Good removal of organic matter and heavy metals | Good removal of N and P |
System control | Simpler, highly influenced by the seasons | Relatively complex | Relatively complex |
Environmental situation | Smells bad and breeds flies in summer | Good | Smells bad and breeds flies in summer |
Wastewater | Type | Media | Plants | Targeted Pollutants (% Removal) | References |
---|---|---|---|---|---|
Textile waste | VSF | Sugarbagasse | P. australis, D. sanderina | BOD-79.20 | [38] |
COD-62.50 | |||||
NH4-N-66.40 | |||||
HSF | Sylhet sand | P. australis, D. sanderina, Asplenium platyneuron | BOD-76.10 | ||
COD-69.70 | |||||
NH4-N-42.10 | |||||
VSF + HSF | Sugarbagasse, sylhet sand | P. australis, D. sanderina, A. platyneuron | BOD-96.60 | ||
COD-89.30 | |||||
NH4-N-80.50 | |||||
Industrial waste | VSF + HSF | Recycled brick | Canna indica | BOD-87.00 | [39] |
COD-83.20 | |||||
TSS-95.00 | |||||
NH4-N-81.00 | |||||
TP-89.00 | |||||
TN-80.00 | |||||
Sugarcane bagasse | BOD-74.00 | ||||
COD-67.00 | |||||
TSS-55.10 | |||||
NH4-N-40.30 | |||||
TP-64.20 | |||||
TN-67.50 | |||||
Municipal waste | VSF | Sawdust and coal | Macrophytes | BOD-77.30 | [40] |
COD-63.10 | |||||
NH4-N-50.00 | |||||
HSF | Small gravel and sylhet sand | BOD-83.00 | |||
COD-55.80 | |||||
NH4-N-28.90 | |||||
FWS | Gravel, sylhet sand, and oyster shell | BOD-21.10 | |||
COD-66.10 | |||||
NH4-N-50.50 | |||||
Hybrid unit | - | BOD-97.00 | |||
COD-94.40 | |||||
NH4-N-82.30 |
Pollutant Type | Main Removal Mechanism |
---|---|
organic compound | microbial degradation; adsorption and precipitation of matrix; plant absorption |
phosphorus | matrix adsorption and replacement; plant absorption and harvesting |
nitrogen | nitrification; ammonification; denitrification; anammox; plant absorption; matrix adsorption |
pathogens | natural death; prey; precipitate; filter; ultraviolet radiation |
Pathogens | Type | Plants | HRT (d) | Log10 | References | ||
---|---|---|---|---|---|---|---|
In | Out | Reduction | |||||
EC | FWS | Typha latifolia | 2.00 | 5.26 | 4.30 | 0.96 | [42] |
HSF | Phragmites australis | - | 6.20 | 4.00 | 2.20–2.50 | [43] | |
HSF + VSF | Cyperus sp. | - | 6.97 | 2.26 | 4.71 | [44] | |
TC | FWS | Cyperus sp. | 3.80 | 4.47 | 3.11 | 1.36 | [45] |
HSF | Cyperus sp. | 1.60 | 4.47 | 3.21 | 1.26 | [45] | |
VSF + VSF | Cyperus sp. | - | 7.77 | 4.00 | 3.77 | [44] | |
FC | FWS | Unplanted | 3.00 | 6.70 | 3.72 | 3.48 | [34] |
HSF | Scirpus lacustris | 3.00 | 5.80 | 3.88 | 2.88 | [34] | |
HSF + HSF | Cyperus sp. | - | 6.81 | 5.41 | 1.40 | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Zou, Y.; Zhu, X.; Yu, X. Promoting Aquatic Health in Constructed Wetlands: Removal of Pathogens and Nitrogen. Water 2024, 16, 917. https://doi.org/10.3390/w16070917
Yang Z, Zou Y, Zhu X, Yu X. Promoting Aquatic Health in Constructed Wetlands: Removal of Pathogens and Nitrogen. Water. 2024; 16(7):917. https://doi.org/10.3390/w16070917
Chicago/Turabian StyleYang, Zihang, Yuanchun Zou, Xiaoyan Zhu, and Xiuli Yu. 2024. "Promoting Aquatic Health in Constructed Wetlands: Removal of Pathogens and Nitrogen" Water 16, no. 7: 917. https://doi.org/10.3390/w16070917
APA StyleYang, Z., Zou, Y., Zhu, X., & Yu, X. (2024). Promoting Aquatic Health in Constructed Wetlands: Removal of Pathogens and Nitrogen. Water, 16(7), 917. https://doi.org/10.3390/w16070917