The Inhibition of Engineered Nano-ZnO in the Biological Nitrogen Removal Process: A Review
Abstract
:1. Introduction
2. Sources of Nano-ZnO in the Environment
3. Effect of Nano-ZnO on BNR Process in WWTSs
3.1. Effect of the Nano-ZnO Concentration on the BNR Process
3.2. Effects of the Exposure Mode of Nano-ZnO on BNR Process
Concentration (mg/L) | Reactor Type | BNR Process | Experimental Duration | Influences | Reference |
---|---|---|---|---|---|
10 | Flasks | Nitrification, N. europaea | 6 h | Cell morphology, cell density, membrane integrity, and ammonia monooxygenase activity were impaired. The ammonia nitrogen removal efficiency was reduced by about 22.9%. | [47] |
20, and 200 | Flasks | Nitrification, N. europaea | 4 h | The ammonia nitrogen removal efficiency of Nitrosomonas europaea at the 4th h decreased by about 67%. There was a reduction in the cell size by 40–45%. The specific oxygen uptake rate was seriously depressed. | [48] |
1, 4, 16, 64, and 128 | Serum bottles | Denitrification, P. stutzeri PCN-1 | 48 h | TN removal efficiency decreased from 100% to 1.70% with the increase in ZnO NPs from 1 to 128 mg/L. The gene expression of napA, nirS, norB, and nosZ were all inhibited. | [49] |
1, 10, and 50 | SBR | Nitrification and denitrification | 4.5 h | After increasing the concentration of ZnO NPs from 10 mg/L to 50 mg/L, the reactor’s removal of TN decreased from 75.6% to 70.8%. | [3] |
5, 10, 20, 50, and 100 | UASB | Anammox | 24 h | When the concentration of ZnO NPs was within the range of 5 mg/(gVSS)~20 mg/(gVSS), the specific anammox activity of anammox granular sludge tended to decrease with an increase in ZnO NP concentration. When the concentration of ZnO NPs was higher than 20 mg/(gVSS), the specific anammox activity of anammox granular sludge was almost completely lost. | [50] |
450, 900, 1500, and 2000 | Aerobic bioreactors | Nitrification and denitrification, activated sludge | 8 h | The removal efficiency of ammonia nitrogen by activated sludge was inhibited, but its removal efficiency did not decrease with the increase in the concentration of ZnO NPs and was maintained at about 59%. | [51] |
1, 25, and 50 | SBR | Nitrification and denitrification, activated sludge | 6 h | Denitrification processes were depressed, while nitrification processes were not under different levels of ZnO NP exposure. TN removal efficiencies decreased from 69.7% (control) to 64.9% and 62.2% after being exposed to 25 and 50 mg/L ZnO NPs. The main denitrifying functional genes, including narG, nirK, norB, and nosZ, generally displayed decreasing trends in their relative expressions with the increase in ZnO NP concentrations. | [54] |
1, and 10 | SBR | Nitrification and denitrification, activated sludge | 30 d (1 mg/L ZnO NPs) 60 d (10 mg/L ZnO NPs) | Exposure to 1 mg/L ZnO NPs did not affect the performance of ammonia and TN. After exposure to 10 mg/L ZnO NPs for 45 d, the reactor almost completely lost TN and ammonia nitrogen. | [55] |
10, 50, and 100 | SBR | Nitrification and denitrification, aerobic granules | 6 h | Ammonia removal efficiencies decreased from 98.85% (control) to 93.17%, 91.69%, and 77.79%, respectively, after being exposed to 10, 50, and 100 mg/L ZnO NPs. TIN removal efficiencies also dropped from 96.65% (control) to 80.30%, 74.3%, and 57.43%, respectively. | [56] |
5, 10 and 20 | SBR | Nitrification and denitrification, aerobic granules | 45 d for each ZnO NPs concentration | The removal efficiencies of ammonia nitrogen and TIN decreased by 24.75% and 36.14% after being exposed to 20 mg/L ZnO NPs for 45 d. | [57] |
4. Inhibition Mechanism of Nano-ZnO to the BNR Process
4.1. Nitrification Process
4.2. Denitrification Process
4.3. Anammox Process
5. Mitigation Strategies for Inhibition Effects
5.1. Adding Agents or Substances to Reduce the Concentration and/or Toxicity of Nano-ZnO
5.2. The Modification of Nano-ZnO
5.3. Artificial Way to Enhance the Adaptability of Nitrogen Removal Bacteria to Nano-ZnO
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farré, M.; Gajda-Schrantz, K.; Kantiani, L.; Barceló, D. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal. Bioanal. Chem. 2009, 393, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Vandebriel, R.J.; De Jong, W.H. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol. Sci. Appl. 2012, 5, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wu, R.; Chen, Y. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal. Environ. Sci. Technol. 2011, 45, 2826–2832. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Nanda, A. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: An in vitro comparative study. Int. J. Cosmet. Sci. 2014, 36, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Susanna, A.; Armelao, L.; Callone, E.; Dire, S.; D’Arienzo, M.; Di Credico, B.; Giannini, L.; Hanel, T.; Morazzoni, F.; Scotti, R. ZnO nanoparticles anchored to silica filler. A curing accelerator for isoprene rubber composites. Chem. Eng. J. 2015, 275, 245–252. [Google Scholar] [CrossRef]
- Doan Van, T.; Nguyen Tri, K.; Kim, S.W.; Yoo, D.-H.; Kim, E.J.; Hahn, S.H. Photoluminescence Properties and Photocatalytic Performance of Different Size ZnO Nanoparticles Decorated Graphene Oxide. J. Nanosci. Nanotechnol. 2015, 15, 8896–8900. [Google Scholar] [CrossRef]
- Wang, H.; Xie, C.; Zhang, W.; Cai, S.; Yang, Z.; Gui, Y. Comparison of dye degradation efficiency using ZnO powders with various size scales. J. Hazard. Mater. 2007, 141, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanoparticle Res. 2007, 9, 479–489. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Soares, N.D.F.F.; Coimbra, J.S.D.R.; Andrade, N.J.D.; Cruz, R.S.; Medeiros, E.A.A. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012, 5, 1447–1464. [Google Scholar] [CrossRef]
- Keller, A.A.; McFerran, S.; Lazareva, A.; Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013, 15, 1692. [Google Scholar] [CrossRef]
- Hou, L.; Li, K.; Ding, Y.; Li, Y.; Chen, J.; Wu, X.; Li, X. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH₄ reduction. Chemosphere 2012, 87, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Westerhoff, P.; Song, G.X.; Hristovski, K.; Kiser, M.A. Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials. J. Environ. Monit. 2011, 13, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Otero-González, L.; Field, J.A.; Sierra-Alvarez, R. Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. J. Environ. Manag. 2014, 135, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.K.; Zhu, G.C.; Yu, R. Fates and Impacts of Nanomaterial Contaminants in Biological Wastewater Treatment System: A Review. Water Air Soil Pollut. 2018, 229, 9. [Google Scholar] [CrossRef]
- Puay, N.-Q.; Qiu, G.; Ting, Y.-P. Effect of Zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor. J. Clean. Prod. 2015, 88, 139–145. [Google Scholar] [CrossRef]
- Gottschalk, F.; Sonderer, T.; Scholz, R.W.; Nowack, B. Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions. Environ. Sci. Technol. 2009, 43, 9216–9222. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Yang, K.; Zhu, L.; Jiang, Y.; Wang, H.; Zhou, J.; Zhang, H. Aerobic denitrification: A review of important advances of the last 30 years. Biotechnol. Bioprocess Eng. 2015, 20, 643–651. [Google Scholar] [CrossRef]
- Jetten, M.S.; Wagner, M.; Fuerst, J.; van Loosdrecht, M.; Kuenen, G.; Strous, M. Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process. Curr. Opin. Biotechnol. 2001, 12, 283–288. [Google Scholar] [CrossRef]
- Chen, Q.; Ni, J. Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification-aerobic denitrification. J. Biosci. Bioeng. 2012, 113, 619–623. [Google Scholar] [CrossRef]
- Leong, C.L.; How, S.W.; Rabuni, M.F.; Aris, A.M.; Khor, B.C.; Curtis, T.P.; Chua, A.S.M. Pilot Study of Oxic-Anoxic Process under Low Dissolved Oxygen for Nitrogen Removal from Low COD/N Tropical Wastewater. Water 2023, 15, 2070. [Google Scholar] [CrossRef]
- Yue, X.; Yu, G.P.; Lu, Y.Q.; Liu, Z.H.; Li, Q.H.; Tang, J.L.; Liu, J. Effect of dissolved oxygen on nitrogen removal and the microbial community of the completely autotrophic nitrogen removal over nitrite process in a submerged aerated biological filter. Bioresour. Technol. 2018, 254, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Qi, S.Y.; Sun, Y.F.; Jiang, Y.Y.; Zhao, N.; Huang, L.L.; Sun, Y.N. Nitrogen removal and nitrogen functional gene abundances in three subsurface wastewater infiltration systems under different modes of aeration and influent C/N ratios. Bioresour. Technol. 2017, 241, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.N.; Sun, Y.L.; Ma, F.; Li, A.; Yang, J.X. Role of soluble microbial product as an intermediate electron station linking C/N and nitrogen removal performance in sequencing batch reactor. Environ. Res. 2020, 183, 109248. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.J.; Xu, Z.Z.; Peng, Y.Z.; Zhang, L.; Ding, J. The nitrification recovery capacity is the key to enhancing nitrogen removal in the AOA system at low temperatures. Sci. Total Environ. 2022, 818, 151674. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.H.; Ding, X.Y.; Lin, Y.; Lu, X.S.; Lv, H.; Zhao, M.P.; Yu, R.H. Nitrogen removal by a novel heterotrophic nitrification and aerobic denitrification bacterium Acinetobacter calcoaceticus TY1 under low temperatures. Bioresour. Technol. 2022, 353, 127148. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Li, X.; Wang, Y.K.; Liu, B.T. Effect of temperature on simultaneous nitrogen and phosphorus removal and microbial community in anaerobic-aerobic-anoxic sequencing batch reactor. Desalination Water Treat. 2022, 253, 1–8. [Google Scholar] [CrossRef]
- Li, Z.X.; Peng, Y.Z.; Gao, H.J. Enhanced long-term advanced denitrogenation from nitrate wastewater by anammox consortia: Dissimilatory nitrate reduction to ammonium (DNRA) coupling with anammox in an upflow biofilter reactor equipped with EDTA-2Na/Fe(II) ratio and pH control. Bioresour. Technol. 2020, 305, 123083. [Google Scholar] [CrossRef]
- Tomaszewski, M.; Cema, G.; Ziembinska-Buczynska, A. Significance of pH control in anammox process performance at low temperature. Chemosphere 2017, 185, 439–444. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zhou, Y.; Xu, T.F.; Zheng, K.W.; Zhang, R.R.; Peng, Z.X.; Zhang, H.Z. Toxic effects of CuO, ZnO and TiO2 nanoparticles in environmental concentration on the nitrogen removal, microbial activity and community of Anammox process. Chem. Eng. J. 2018, 332, 42–48. [Google Scholar] [CrossRef]
- Zheng, X.; Su, Y.; Chen, Y.; Wan, R.; Liu, K.; Li, M.; Yin, D. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environ. Sci Technol 2014, 48, 13800–13807. [Google Scholar] [CrossRef]
- Ye, J.Y.; Gao, H.; Domingo-Félez, C.; Wu, J.K.; Zhan, M.J.; Yu, R.; Smets, B.F. Insights into chronic zinc oxide nanoparticle stress responses of biological nitrogen removal system with nitrous oxide emission and its recovery potential. Bioresour. Technol. 2021, 327, 124797. [Google Scholar] [CrossRef]
- Kim, M.; Lee, H.J.; Oh, S.; Kim, Y.; Jung, H.; Oh, M.K.; Yoon, Y.J.; Yoo, T.H.; Yoon, T.S.; Lee, H.H. Robust ZnO nanoparticle embedded memory device using vancomycin conjugate and its biorecognition for electrical charging node. Biosens. Bioelectron. 2014, 56, 33–38. [Google Scholar] [CrossRef]
- Sood, K.; Kaur, J.; Singh, H.; Arya, S.K.; Khatri, M. Comparative toxicity evaluation of graphene oxide (GO) and zinc oxide (ZnO) nanoparticles on Drosophila melanogaster. Toxicol. Rep. 2019, 6, 768–781. [Google Scholar] [CrossRef]
- Gurugubelli, T.R.; Ravikumar, R.; Koutavarapu, R. Enhanced Photocatalytic Activity of ZnO-CdS Composite Nanostructures towards the Degradation of Rhodamine B under Solar Light. Catalysts 2022, 12, 84. [Google Scholar] [CrossRef]
- Indhira, D.; Krishnamoorthy, M.; Ameen, F.; Bhat, S.A.; Arumugam, K.; Ramalingam, S.; Priyan, S.R.; Kumar, G.S. Biomimetic facile synthesis of zinc oxide and copper oxide nanoparticles from Elaeagnus indica for enhanced photocatalytic activity. Environ. Res. 2022, 212, 113323. [Google Scholar] [CrossRef]
- Bordes, C.; Bolzinger, M.A.; El Achak, M.; Pirot, F.; Arquier, D.; Agusti, G.; Chevalier, Y. Formulation of Pickering emulsions for the development of surfactant-free sunscreen creams. Int. J. Cosmet. Sci. 2021, 43, 432–445. [Google Scholar] [CrossRef]
- Shamaila, S.; Jalil, A.; Ishfaq, M.; Sharif, R. Nano-technological aspects of zinc oxide and silver in cosmetics. J. Appl. Phys. 2022, 131, 164306. [Google Scholar] [CrossRef]
- Faisal, S.; Naqvi, S.; Ali, M.; Lin, L. Comparative study of multifunctional properties of synthesised ZnO and MgO NPs for textiles applications. Pigment Resin Technol. 2022, 51, 301–308. [Google Scholar] [CrossRef]
- Maghsoudi, S.; Pour, P.N.; Ebrahimnejad, H.; Jalali, E.; Zangiabadi, M. Decoration of Cotton Fiber with Biosynthesized Ag/ZnO Nanocomposite for Durable Antibacterial Textile. J. Nat. Fibers 2022, 19, 8033–8043. [Google Scholar] [CrossRef]
- Benitha, V.S.; Jeyasubramanian, K.; Prabhin, V.S. Enhanced near-infrared reflectance and functional characteristics of nano metal oxide embedded alkyd coatings. Mater. Res. Express 2022, 9, 056404. [Google Scholar] [CrossRef]
- Valença, D.P.; Alves, K.G.B.; de Melo, C.P.; Bouchonneau, N. Study of the Efficiency of Polypyrrole/ZnO Nanocomposites as Additives in Anticorrosion Coatings. Mater. Res.-Ibero-Am. J. Mater. 2015, 18, 273–278. [Google Scholar] [CrossRef]
- Song, U.; Kim, J. Zinc oxide nanoparticles: A potential micronutrient fertilizer for horticultural crops with little toxicity. Hortic. Environ. Biotechnol. 2020, 61, 625–631. [Google Scholar] [CrossRef]
- Zabrieski, Z.; Morrell, E.; Hortin, J.; Dimkpa, C.; McLean, J.; Britt, D.; Anderson, A. Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology 2015, 24, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Yusof, H.M.; Rahman, N.A.; Mohamad, R.; Zaidan, U.H.; Samsudin, A.A. Influence of Dietary Biosynthesized Zinc Oxide Nanoparticles on Broiler Zinc Uptake, Bone Quality, and Antioxidative Status. Animals 2023, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Levard, C.; Judy, J.D.; Unrine, J.M.; Durenkamp, M.; Martin, B.; Jefferson, B.; Lowry, G.V. Fate of Zinc Oxide and Silver Nanoparticles in a Pilot Wastewater Treatment Plant and in Processed Biosolids. Environ. Sci. Technol. 2014, 48, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, N.; Fu, H.; Chen, T.; Liu, S.; Zheng, S.; Zhang, J. Effect of zinc oxide nanoparticles on nitrogen removal, microbial activity and microbial community of CANON process in a membrane bioreactor. Bioresour. Technol. 2017, 243, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wu, J.K.; Liu, M.T.; Chen, L.H.; Zhu, G.C.; Lu, H.J. Physiological and transcriptional responses of Nitrosomonas europaea to TiO2 and ZnO nanoparticles and their mixtures. Environ. Sci. Pollut. Res. 2016, 23, 13023–13034. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Fang, X.; Somasundaran, P.; Chandran, K. Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas europaea. Chemosphere 2015, 128, 207–215. [Google Scholar] [CrossRef]
- Chen, Q.; Li, T.; Gui, M.; Liu, S.; Zheng, M.; Ni, J. Effects of ZnO nanoparticles on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Bioresour. Technol. 2017, 239, 21–27. [Google Scholar] [CrossRef]
- Song, Y.-X.; Chai, L.-Y.; Tang, C.-J.; Xiao, R.; Li, B.-R.; Wu, D.; Min, X.-B. Influence of ZnO nanoparticles on anammox granules: The inhibition kinetics and mechanism analysis by batch assays. Biochem. Eng. J. 2018, 133, 122–129. [Google Scholar] [CrossRef]
- Cervantes-Aviles, P.; Diaz Barriga-Castro, E.; Palma-Tirado, L.; Cuevas-Rodriguez, G. Interactions and effects of metal oxide nanoparticles on microorganisms involved in biological wastewater treatment. Microsc. Res. Tech. 2017, 80, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wu, H.; Button, M.; Konnerup, D.; Brix, H. Impact of engineered nanoparticles on microbial transformations of carbon, nitrogen, and phosphorus in wastewater treatment processes—A review. Sci. Total Environ. 2019, 660, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Semprini, L.; Radniecki, T.S. Influence of Water Hardness on Silver Ion and Silver Nanoparticle Fate and Toxicity Toward Nitrosomonas europaea. Environ. Eng. Sci. 2014, 31, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.Y.; Gao, H.; Wu, J.K.; Chang, Y.; Chen, Z.K.; Yu, R. Responses of nitrogen transformation processes and N2O emissions in biological nitrogen removal system to short-term ZnO nanoparticle stress. Sci. Total Environ. 2020, 705, 135916. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Ye, J.Y.; Zhao, R.Y.; Zhan, M.J.; Yang, G.P.; Yu, R. Pluripotency of endogenous AHL-mediated quorum sensing in adaptation and recovery of biological nitrogen removal system under ZnO nanoparticle long-term exposure. Sci. Total Environ. 2022, 842, 156911. [Google Scholar] [CrossRef]
- He, Q.; Yuan, Z.; Zhang, J.; Zhang, S.; Zhang, W.; Zou, Z.; Wang, H. Insight into the impact of ZnO nanoparticles on aerobic granular sludge under shock loading. Chemosphere 2017, 173, 411–416. [Google Scholar] [CrossRef]
- He, Q.; Gao, S.; Zhang, S.; Zhang, W.; Wang, H. Chronic responses of aerobic granules to zinc oxide nanoparticles in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. Bioresour. Technol. 2017, 238, 95–101. [Google Scholar] [CrossRef]
- Zhang, Z.-Z.; Cheng, Y.-F.; Xu, L.-Z.-J.; Bai, Y.-H.; Xu, J.-J.; Shi, Z.-J.; Zhang, Q.-Q.; Jin, R.-C. Transient disturbance of engineered ZnO nanoparticles enhances the resistance and resilience of anammox process in wastewater treatment. Sci. Total Environ. 2018, 622, 402–409. [Google Scholar] [CrossRef]
- Abebe, B.; Zereffa, E.A.; Tadesse, A.; Murthy, H.C.A. A Review on Enhancing the Antibacterial Activity of ZnO: Mechanisms and Microscopic Investigation. Nanoscale Res. Lett. 2020, 15, 190. [Google Scholar] [CrossRef]
- Wang, S.T.; Li, S.P.; Wang, W.Q.; You, H. The impact of zinc oxide nanoparticles on nitrification and the bacterial community in activated sludge in an SBR. RSC Adv. 2015, 5, 67335–67342. [Google Scholar] [CrossRef]
- Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.Z.; Tam, P.K.H.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 2006, 5, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.K.; Zhan, M.J.; Chang, Y.; Gao, H.; Ye, J.Y.; Yu, R.; Ding, Z. Mechanistic insights into stress response and metabolic activity resilience of Nitrosomonas europaea cultures to long-term CeO2 nanoparticle exposure. Environ. Sci.-Nano 2019, 6, 2215–2227. [Google Scholar] [CrossRef]
- Ranjan, S.; Ramalingam, C. Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ. Chem. Lett. 2016, 14, 487–494. [Google Scholar] [CrossRef]
- Arakha, M.; Saleem, M.; Mallick, B.C.; Jha, S. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci. Rep. 2015, 5, 9578. [Google Scholar] [CrossRef] [PubMed]
- Stoimenov, P.K.; Klinger, R.L.; Marchin, G.L.; Klabunde, K.J. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002, 18, 6679–6686. [Google Scholar] [CrossRef]
- Dolan, H.L.; Bastarrachea, L.J.; Tikekar, R.V. Inactivation of Listeria innocua by a combined treatment of low-frequency ultrasound and zinc oxide. LWT-Food Sci. Technol. 2018, 88, 146–151. [Google Scholar] [CrossRef]
- Daraei, H.; Toolabian, K.; Thompson, I.; Qiu, G. Biotoxicity evaluation of zinc oxide nanoparticles on bacterial performance of activated sludge at COD, nitrogen, and phosphorus reduction. Front. Environ. Sci. Eng. 2021, 16, 19. [Google Scholar] [CrossRef]
- Phan, D.C.; Pasha, A.; Carwile, N.; Kapoor, V. Effect of Zinc Oxide Nanoparticles on Physiological Activities and Gene Expression of Wastewater Nitrifying Bacteria. Environ. Eng. Sci. 2020, 37, 328–336. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, Z.Z.; Ren, Z.M.; Huang, X.; Li, H.; Sun, P.F.; Bai, J. Effect of Zinc Oxide Nanoparticles on Denitrification and Denitrifying Bacteria Communities in Typical Estuarine Sediments. J. Ocean Univ. China 2021, 20, 599–607. [Google Scholar] [CrossRef]
- Chen, J.; Tang, Y.Q.; Li, Y.; Nie, Y.; Hou, L.; Li, X.Q.; Wu, X.L. Impacts of different nanoparticles on functional bacterial community in activated sludge. Chemosphere 2014, 104, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-F.; Zhang, Z.-Z.; Li, G.-F.; Zhu, B.-Q.; Zhang, Q.; Liu, Y.-Y.; Zhu, W.-Q.; Fan, N.-S.; Jin, R.-C. Effects of ZnO nanoparticles on high-rate denitrifying granular sludge and the role of phosphate in toxicity attenuation. Environ. Pollut. 2019, 251, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.-F.; Chen, Y.-P.; Fang, F.; Yan, P.; Shen, Y.; Kang, J.; Nie, Y.-D. Effects of ZnO nanoparticles on aerobic denitrifying bacteria Enterobacter cloacae strain HNR. Sci. Total Environ. 2020, 725, 138284. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.Y.; Chen, L.; Du, L.; Zhao, Y.Y.; Chen, Q. Response of the aerobic denitrifying phosphorus accumulating bacteria Pseudomonas psychrophila HA-2 to low temperature and zinc oxide nanoparticles stress. Bioresour. Technol. 2022, 354, 127162. [Google Scholar] [CrossRef]
- Dementin, S.; Arnoux, P.; Frangioni, B.; Grosse, S.; Léger, C.; Burlat, B.; Guigliarelli, B.; Sabaty, M.; Pignol, D. Access to the active site of periplasmic nitrate reductase: Insights from site-directed mutagenesis and zinc inhibition Studies. Biochemistry 2007, 46, 9713–9721. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Okubo, A.; Yamazaki, S. Characterization of a multi-copper enzyme, nitrous oxide reductase, from Rhodobacter sphaeroides f. sp. denitrificans. J. Biochem. 1998, 124, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.Y.; Chen, L.; Zhao, Y.Y.; Peng, G.Y.; Chen, Z.B.; Chen, Q. Transcriptomics uncover the response of an aerobic denitrifying bacteria to zinc oxide nanoparticles exposure. Environ. Technol. 2022, 44, 3685–3697. [Google Scholar] [CrossRef]
- Butler, C.S.; Charnock, J.M.; Bennett, B.; Sears, H.J.; Reilly, A.J.; Ferguson, S.J.; Garner, C.D.; Lowe, D.J.; Thomson, A.J.; Berks, B.C.; et al. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Biochemistry 1999, 38, 9000–9012. [Google Scholar] [CrossRef]
- Hino, T.; Matsumoto, Y.; Nagano, S.; Sugimoto, H.; Fukumori, Y.; Murata, T.; Iwata, S.; Shiro, Y. Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 2010, 330, 1666–1670. [Google Scholar] [CrossRef]
- Brown, K.; Tegoni, M.; Prudêncio, M.; Pereira, A.S.; Besson, S.; Moura, J.J.; Moura, I.; Cambillau, C. A novel type of catalytic copper cluster in nitrous oxide reductase. Nat. Struct. Biol. 2000, 7, 191–195. [Google Scholar] [CrossRef]
- Granger, J.; Ward, B.B. Accumulation of nitrogen oxides in copper-limited cultures of denitrifying bacteria. Limnol. Oceanogr. 2003, 48, 313–318. [Google Scholar] [CrossRef]
- Moura, I.; Moura, J.J.G. Structural aspects of denitrifying enzymes. Curr. Opin. Chem. Biol. 2001, 5, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Labbé, N.; Parent, S.; Villemur, R. Addition of trace metals increases denitrification rate in closed marine systems. Water Res. 2003, 37, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Rikmann, E.; Zekker, I.; Tenno, T.; Saluste, A.; Tenno, T. Inoculum-free start-up of biofilm- and sludge-based deammonification systems in pilot scale. Int. J. Environ. Sci. Technol. 2018, 15, 133–148. [Google Scholar] [CrossRef]
- Zekker, I.; Artemchuk, O.; Rikmann, E.; Ohimai, K.; Dhar Bhowmick, G.; Madhao Ghangrekar, M.; Burlakovs, J.; Tenno, T. Start-Up of Anammox SBR from Non-Specific Inoculum and Process Acceleration Methods by Hydrazine. Water 2021, 13, 350. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, B.W.; Zuo, J.E. Response of anammox granules to ZnO nanoparticles at ambient temperature. Environ. Technol. Innov. 2019, 13, 146–152. [Google Scholar] [CrossRef]
- Kartal, B.; Keltjens, J.T. Anammox Biochemistry: A Tale of Heme c Proteins. Trends Biochem. Sci. 2016, 41, 998–1011. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zhang, Y.; Xue, Y.; Zhang, Y.; Li, Y.-Y. Relationship of heme c, nitrogen loading capacity and temperature in anammox reactor. Sci. Total Environ. 2019, 659, 568–577. [Google Scholar] [CrossRef]
- Zhang, Q.-Q.; Yang, G.-F.; Wang, H.; Wu, K.; Jin, R.-C.; Zheng, P. Estimating the recovery of ANAMMOX performance from inhibition by copper (II) and oxytetracycline (OTC). Sep. Purif. Technol. 2013, 113, 90–103. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Zhang, Z.Z.; Guo, Q.; Wang, J.J.; Wang, H.Z.; Jin, R.C. Analyzing the revolution of anaerobic ammonium oxidation (anammox) performance and sludge characteristics under zinc inhibition. Appl. Microbiol. Biotechnol. 2015, 99, 3221–3232. [Google Scholar] [CrossRef]
- Park, S.; Ely, R.L. Genome-wide transcriptional responses of Nitrosomonas europaea to zinc. Arch. Microbiol. 2008, 189, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chi, Z.F.; Yan, B.X. Insight into the impact of Fe3O4 nanoparticles on anammox process of subsurface-flow constructed wetlands under long-term exposure. Environ. Sci. Pollut. Res. 2018, 25, 29584–29592. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chi, Z.F.; Yan, B.X. Long-term impacts of graphene oxide and Ag nanoparticles on anammox process: Performance, microbial community and toxic mechanism. J. Environ. Sci. 2019, 79, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Xu, J.J.; Shi, Z.J.; Cheng, Y.F.; Ji, Z.Q.; Deng, R.; Jin, R.C. Short-term impacts of Cu, CuO, ZnO and Ag nanoparticles (NPs) on anammox sludge: CuNPs make a difference. Bioresour. Technol. 2017, 235, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Z.; Xu, J.-J.; Shi, Z.-J.; Cheng, Y.-F.; Ji, Z.-Q.; Deng, R.; Jin, R.-C. Combined impacts of nanoparticles on anammox granules and the roles of EDTA and S2− in attenuation. J. Hazard. Mater. 2017, 334, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Khort, A.; Brookman-Amissah, M.; Hedberg, J.; Chang, T.; Mei, N.; Lundberg, A.; Sturve, J.; Blomberg, E.; Odnevall, I. Influence of natural organic matter on the transformation of metal and metal oxide nanoparticles and their ecotoxic potency in vitro. NanoImpact 2022, 25, 100386. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lin, D.; Zhu, L. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ. Pollut. 2013, 173, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Han, T.; Lu, W.X.; Wang, Y.Q.; Jiang, D.Y.; Abbasi, H.N.; Guo, Z.C.; Zhang, S.; Li, B.; Wang, X.A.; et al. Effects of nano metal oxide particles on denitrifying phosphorus removal system: Potential stress mechanism and recovery strategy. Sci. Total Environ. 2023, 875, 162706. [Google Scholar] [CrossRef]
- Arteaga, J.F.M.; Gluhar, S.; Kaurin, A.; Lestan, D. Simultaneous removal of arsenic and toxic metals from contaminated soil: Laboratory development and pilot scale demonstration. Environ. Pollut. 2022, 294, 118656. [Google Scholar] [CrossRef]
- Gonzalez-Estrella, J.; Puyol, D.; Sierra-Alvarez, R.; Field, J.A. Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. J. Hazard. Mater. 2015, 283, 755–763. [Google Scholar] [CrossRef]
- Hsu, A.; Liu, F.; Leung, Y.H.; Ma, A.P.Y.; Djurišić, A.B.; Leung, F.C.C.; Chan, W.K.; Lee, H.K. Is the effect of surface modifying molecules on antibacterial activity universal for a given material? Nanoscale 2014, 6, 10323–10331. [Google Scholar] [CrossRef] [PubMed]
- George, S.; Yin, H.; Liu, Z.R.; Shen, S.; Cole, I.; Khiong, C.W. Hazard profiling of a combinatorial library of zinc oxide nanoparticles: Ameliorating light and dark toxicity through surface passivation. J. Hazard. Mater. 2022, 434, 128825. [Google Scholar] [CrossRef] [PubMed]
- Lai, R.W.S.; Kang, H.-M.; Zhou, G.-J.; Yung, M.M.N.; He, Y.L.; Ng, A.M.C.; Li, X.-Y.; Djurišić, A.B.; Lee, J.-S.; Leung, K.M.Y. Hydrophobic Surface Coating Can Reduce Toxicity of Zinc Oxide Nanoparticles to the Marine Copepod Tigriopus japonicus. Environ. Sci. Technol. 2021, 55, 6917–6925. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.-F.; Chen, Y.-P.; Yan, P.; Fang, F.; Shen, Y.; Mao, Z.; Guo, J.-S.; Zhao, B.; Feng, L. Adaptation mechanism of aerobic denitrifier Enterobacter cloacae strain HNR to short-term ZnO nanoparticle stresses. Environ. Res. 2021, 197, 111178. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wu, Y.H.; Esquivel-Elizondo, S.; Sorensen, S.J.; Rittmann, B.E. How Microbial Aggregates Protect against Nanoparticle Toxicity. Trends Biotechnol. 2018, 36, 1171–1182. [Google Scholar] [CrossRef]
- Gao, H.; Zhao, R.; Wu, Z.; Ye, J.; Duan, L.; Yu, R. New insights into exogenous N-acyl-homoserine lactone manipulation in biological nitrogen removal system against ZnO nanoparticle shock. Bioresour. Technol. 2023, 370, 128567. [Google Scholar] [CrossRef]
- Wu, J.; Chang, Y.; Gao, H.; Liang, G.; Yu, R.; Ding, Z. Responses and recovery assessment of continuously cultured Nitrosomonas europaea under chronic ZnO nanoparticle stress: Effects of dissolved oxygen. Chemosphere 2018, 195, 693–701. [Google Scholar] [CrossRef]
- Zhao, R.; Gao, H.; Yu, R. Dissolved oxygen benefits N-decanoyl-homoserine lactone regulated biological nitrogen removal system to resist acute ZnO nanoparticle exposure. Environ. Res. 2023, 228, 115806. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.-F.; Ma, H.-X.; Wu, J.; Yu, Y.-C.; Chen, T.-T.; Yao, Y.; Liao, W.-L.; Feng, L. The Inhibition of Engineered Nano-ZnO in the Biological Nitrogen Removal Process: A Review. Water 2024, 16, 17. https://doi.org/10.3390/w16010017
Ma T-F, Ma H-X, Wu J, Yu Y-C, Chen T-T, Yao Y, Liao W-L, Feng L. The Inhibition of Engineered Nano-ZnO in the Biological Nitrogen Removal Process: A Review. Water. 2024; 16(1):17. https://doi.org/10.3390/w16010017
Chicago/Turabian StyleMa, Teng-Fei, Hong-Xi Ma, Jin Wu, Yi-Chang Yu, Ting-Ting Chen, Yuan Yao, Wei-Ling Liao, and Li Feng. 2024. "The Inhibition of Engineered Nano-ZnO in the Biological Nitrogen Removal Process: A Review" Water 16, no. 1: 17. https://doi.org/10.3390/w16010017
APA StyleMa, T.-F., Ma, H.-X., Wu, J., Yu, Y.-C., Chen, T.-T., Yao, Y., Liao, W.-L., & Feng, L. (2024). The Inhibition of Engineered Nano-ZnO in the Biological Nitrogen Removal Process: A Review. Water, 16(1), 17. https://doi.org/10.3390/w16010017