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Abstract: In Taiwan, mountainous areas account for approximately two-thirds of the total area. The
steep terrain and concentrated rainfall during typhoons cause landslides, which pose a considerable
threat to mountain settlements. Therefore, models for analyzing rainfall-induced landslide hazards
are urgently required to ensure adequate land use in mountainous areas. In this study, focusing on
Pingtung County in southern Taiwan, we developed a landslide hazard index (IRL) to land use. Using
FORMOSA-2 and SPOT-5 satellite images, data were collected before and after four typhoons (one in
2009 and three in 2013). The ArcGIS random tree classifier was used for interpreting satellite images
to explore surface changes and disasters, which were used to analyze slope disturbances. The product
of the maximum 3-h rolling rainfall intensity and effective accumulated rainfall was used as a rainfall
trigger index (IRT). Considering environmental and slope disturbance factors, an index of slope
environmental strength potential (ISESP) was developed through logistic regression (LR). Landslide
hazard to land use was estimated using IRT and ISESP. The average coefficient of agreement (Kappa)
was approximately 0.71 (medium to high accuracy); the overall accuracy of slope environmental
strength potential analysis was approximately 80.4%. At a constant ISESP, IRT increased with the
increasing hazard potential of rainfall-induced landslides. Furthermore, IRT and ISESP were positively
correlated with landslide occurrence. When large ISESP values occur (e.g., fragile environment and
high land development intensity), small IRT values may induce landslides.

Keywords: land use; mountainous area; rainfall; landslide hazard; random tree classifier; logistic
regression; geographic information system; Taiwan

1. Introduction

Taiwan is an island located in the North Pacific subtropical monsoon region, which
is vulnerable to typhoons. More than two-thirds of Taiwan’s total area is mountainous
with steep slopes. Recently, climate anomalies have resulted in frequent extreme rainfall
events. The number of typhoons that hit Taiwan has increased every year, and large-scale
landslides and debris flows have become likely. As stated in the 2012 White Paper on
Disaster Management [1], remote mountainous settlements in Chiayi County, Kaohsiung
City, Tainan City, Pingtung County in southern Taiwan account for approximately 24% of
the total area in Taiwan. Recent large-scale sediment disasters due to typhoon-induced
concentrated rainfall occurred mostly in the remote mountainous areas of southern Taiwan.
Such disasters pose a major threat to the environmental security of the settlements in
remote mountainous areas. For example, Typhoon Morakot on August of 2009, with a
maximum precipitation of over 2884 mm in 5 days, induced over 22,705 landslides, covering
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a total area of 274 km2 in mountainous area throughout southern Taiwan [2]. Typhoon
Morakot resulted in 619 deaths, 76 missing persons, and the temporary evacuation of
24,950 residents, flooding, and approximate USD five billion in economic losses [3]. Since
Typhoon Morakot struck, the slopes of the remote mountainous areas of southern Taiwan
have become highly unstable. Therefore, studies on the land use risk of the aforementioned
settlements during rainfall disasters are essential.

Jan and Lee [4] used the product of effective accumulated rainfall (EAR) and rainfall
intensity as a rainfall trigger index (IRT) for determining debris flow; they discovered
relevant geological factors (average stream bed slope, catchment area, landslide rate, and
lithology) for establishing comprehensive geological indicators. A rainfall prediction
model for debris flow was constructed using the rainfall warning and comprehensive
physiographic indices. For rainfall warning, the following occurrence possibilities were set:
10%, 50%, and 90%. Chen et al. [5] demonstrated that extreme rainfall events cause frequent
landslide erosion; they reported that a maximum 24-h rainfall amount of >600 mm resulted
in the average landslide erosion rate of 64–79%. Jan et al. [6] mentioned that the effects of
typhoon rainfall depend not only on the rainfall amount but also on its intensity. Tseng
et al. [7] reported that the number and area of rainfall-induced landslides were positively
correlated with the degree of land disturbance. Chen et al. [8] investigated areas with high
and low susceptibility to landslides; they identified cumulative rainfall to be the primary
factor for landslide occurrence in areas with high susceptibility; in contrast, in areas with
low susceptibility, the rainfall intensity was found to be the key factor. Due to climate
extremes, areas with high susceptibility exhibited a higher magnitude and frequency of
landslides than those with low susceptibility.

Lee et al. [9] explored the mechanisms underlying landslide disasters due to the
intensity of Typhoon Soudelor-induced rainfall on the mountainous areas of northern
Taiwan; they revealed that most sediment disasters occurred 1 or 2 h after peak rainfall.
Moreover, the maximum rainfall occurring 3, 6, and 12 h after this event was higher than
that in the 200-year return period. To estimate a rainfall alert value for landslide occurrence,
Caracciolo et al. [10] analyzed historical data on the rainfall that led to a landslide as well
as data on rainfall occurring 5, 15, and 30 days before a landslide in southern Sicily, Italy.
Chen and Wu [11] focused on a state-owned forest land in Taiwan and analyzed various
internal (e.g., elevation, slope, terrain roughness, distance from the fault, and distance
from the river) and external (total accumulated rainfall after event) factors through logistic
regression (LR) to build an internal potential level without external factors; subsequently,
they evaluated the changes in the potential value and rainfall to estimate a reference
value for the prediction of landslides induced by rainfall. Shahabi et al. [12] combined
remote sensing and a geographic information system (GIS) to statistically delineate areas
susceptible to landslides; for this, they considered the following factors: slope, aspect,
elevation, lithology, normalized difference vegetation index, vegetation, rainfall, distance
from the fault, distance from the river, and distance from the road. Tseng et al. [7] focused
on the periods before and after a typhoon that recently caused a road slope landslide in the
study area; through image interpretation, they identified surface changes before and after
the landslide disaster and developed a model for assessing landslide susceptibility. Then,
the GIS platform was used to construct landslide susceptibility maps. Among the statistical
methods used for evaluating landslide susceptibility, LR analysis has been proven to be
one of the most reliable approaches [13–20].

In the past, studies seldom focused on the landslide hazard to land use, therefore
models for analyzing rainfall-induced landslide hazards to ensure adequate land use in
mountainous areas are necessary. The data processing and flowchart of research work of the
present study is shown in Figure 1. Coupled with the use of the ArcGIS platform, random
tree classifier (RTC) was employed to classify and interpret satellite images to obtain
land use information and disasters. Furthermore, considering the regional environmental
characteristics and land disturbance, we analyzed the potential of slope environmental
intensity, factors associated with slope disasters, and the rainfall characteristics of the study
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area and investigated the correlation between rainfall trigger and slope environmental
strength potential to develop IRL. Our research findings can provide considerable references
for the strategies of land use in mountainous settlements. However, only the influence
from the natural environment was considered; the socio-economic, governmental policy
aspects that should be overall considered in decision making for land use were excluded in
this study. This could lead to the potential research direction in the next step.
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2. Methods and Materials
2.1. Study Area

This study was conducted in Sandimen Township and certain mountainous areas of
Wutai Township in Pingtung County in southern Taiwan (Figure 2). Pingtung County is
located in the south of the Tropic of Cancer. Except for elevated mountainous areas, the
county has a tropical monsoon climate and the temperature does not vary substantially
throughout the year. The annual average temperature and rainfall is approximately 25.5 ◦C
and 2325 mm, respectively. It is humid and rainy in summer. However, because of the
barrier between the Dawu Mountain Range and the Central Mountain Range, the cold
northeast monsoon is blocked from entering the county; this blockage, combined with a
low latitude and sufficient sunshine, reduces the intensity of winter in Pingtung, where
the average high and low temperatures are 24–27 ◦C and 16–19 ◦C, respectively [21,22]. In
Sandimen and Wutai Townships, most of the strata are Chaozhou and Bilushan Formations;
low contents of alluvial and grounding deposits are observed. Lithologically, the study area
is mainly interbedded with hard shale, slate, and sandy shale. In addition, low contents of
gravel, sand, clay, and slate interbedded with metamorphic sandstone and metamorphic
igneous rock lens, mud, sand, and gravel, lenticular sandstone bodies are noted [23].
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Sandimen Township is located at an altitude of 100–2159 m and at the intersection of
mountains and plains and features, mostly hilly terrain. Wutai Township is located in
the northeast area of Pingtung County (in the Central Mountain Range). This township
has steep terrain and is located at an average altitude of >1000 m. The largest tributary
flowing through the study area is the Ailiao River, which is the largest tributary of the
Gaoping River. Its farthest source stream is Eluowu River, which flows south to Babanaban
River and then turns southwest to Laibuan River (where it is called the Ailiao North
Stream); subsequently, it turns south to join Hayou Creek and Qiaoguo Laci Creek (among
others) and finally turns south to converge into Ailiao South Stream in Dalai Village; this
is called Ailiao Creek in Sandimen Township. The main rivers in Wutai Township are
Erchong and Ailiao Beixi, whereas the main rivers in Wutai Township are Ailiao Beixi and
Qiaoguolaci [21].
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Figure 2. Study area.

In Sandimen Township, the Sandi and Dalai villages have the highest (n = 1683) and
lowest (n = 402) populations, respectively. In Wutai Township, Wutai and Jilu Villages have
the highest (n = 1325) and lowest (n = 210) populations, respectively [24]. The residents
of Sandimen Township are mainly Paiwan individuals (Taiwan Aborigines); some Rukai
individuals also reside in this township such as in Qingye Village, which has recently been
included in the Maolin National Scenic Area. The main economy in Sandimen Township
is agriculture, and the main agricultural products are sweet potato, millet, taro, mango,
pineapple, red quinoa, and coffee [25]. The residents of Wutai Township are mainly Rukai
individuals [26]. The main agricultural products of the township are love jade, red quinoa,
millet, coffee, taro, and sweet potato [27].

2.2. Image Interpretation and Classification
2.2.1. Preprocessing of Satellite Images

FORMOSA 2 (FS-2) or SPOT-5 satellite images of the areas affected by typhoons
or rainstorms were acquired. Data on the 2009 Typhoon Morakot, 0517 rainfall in 2013,
2013 Typhoon Soulik, and 2013 Typhoon Kongrey were obtained to explore the land
development types and landslide areas in the study area. We used six satellite images with
image resolutions of 8 m × 8 m and 10 m × 10 m (Table 1).
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Table 1. Basic satellite imagery data.

Image Shooting
Date Before/after Event Image

Resolution Type Location X
TWD97

Y
TWD97

22 July 2009
Before Typhoon Morakot 8 m × 8 m

FS-2

Upper left
Bottom right

211584
230432

2530416
2511176

9 May 2009

15 August 2009
After Typhoon Morakot 8 m × 8 m

11 January 2010

15 January 2013
Before 0517 Rainfall 8 m × 8 m

Upper left
Bottom right

211584
230424

2530408
2511184

19 January 2013

3 June 2013 After 0517 Rainfall
Before Typhoon Soulik 8 m × 8 m

29 June 2013

27 August 2013 After Typhoon Soulik
Before Typhoon Kongrey 8 m × 8 m

11 September 2013

9 September 2013 After Typhoon Kongrey 10 m × 10 m SPOT-5 Upper left
Bottom right

211570
230440

2530430
2511160

The FS-2 and SPOT-5 satellite images are multispectral and contain four spectral
bands [28]. FS-2 spectral bands are red, green, blue, and near-infrared (NIR), whereas
SPOT-5 spectral bands are red, green, NIR, and short-wave infrared. The telemetry image
processing software ERDAS IMAGINE (2013) [29] was used to fuse and locate the images.

2.2.2. Selection of Satellite Imagery Classifications

In this study, FS-2 or SPOT-5 satellite images of four typhoons or rainstorms were se-
lected as the base map. Using GIS ArcGIS, each classification factor was manually digitized
and circled. We compared the Tiff files of the satellite images (resolution, 2 m × 2 m) of
the study area to increase the accuracy of the sampling area delineation; furthermore, we
selected the following eight classifications suitable for the scope of this study: river, road,
building, farmland, forest, meadow, streamway, and bare land (Figure 3).
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2.3. Rainfall Projection
2.3.1. Effective Accumulative Rainfall (EAR)

We referred to the rainfall analysis methods described by Seo and Funasaki [30] and
Tseng et al. [7]. Concentrated rainfall is considered to be continuous if no rainfall occurs
24 h before and after the rainfall event. The rainfall field with continuous rainfall inducing
a landslide is regarded as the main rainfall field. The beginning of rainfall was defined as
the time point when the first rainfall reached ≥4 mm in the main rainfall field. Cumulative
rainfall inducing a landslide was calculated. Cumulative rainfall was divided into previous
indirect rainfall (Pb) and previous direct rainfall (Pr). Previous indirect rainfall refers to the
amount of rainfall in the main rainfall field within 7 days [30] and can be calculated using
Equation (1).

∑7
n=1 knPn = Pb (1)

where Pn is the amount of rainfall (mm) in n days before the main rainfall field; k is the
decreasing coefficient. In the present study, k was 0.9 [31]. EAR can be calculated as follows:

EAR = Pr + Pb (2)

where Pr is the amount of cumulative rainfall from the first rainfall in the main rainfall field
from the time of the landslide disaster (a time point when the first rainfall reaches ≥4 mm)
to the occurrence of the landslide.

2.3.2. Rolling Rainfall Intensity

Rain-induced landslides may be triggered by continuous rainfall for several hours.
Therefore, rolling rainfall intensity can be expressed using Equation (3):

ImR = ∑m
i = t − m + 1 Ii = It − m + 1 + It − m + 2 + · · ·+ Im (3)

where I is the rainfall intensity, m is the unit time of rain rolling, and m = 3 h [7]. ImR is the
IR in m h, and It is the rainfall intensity in t h.

2.4. Random Tree Classifier (RTC)

We used the RTC in the ArcGIS supervised image classification module to classify
images. The RTC does not lead to overfitting and can process segmented images and
auxiliary grid datasets [32]. The classifier can be used to construct several decision trees,
and selects a random subset of variables for each tree and uses the most frequent tree output
for the overall classification. Therefore, random trees correct for the tendency of decision
trees to overfit the training data. Random trees are a collection of individual decision trees;
each tree is generated from different subsets of sample and training data. Decisions are
made in the order of the importance of each pixel being classified. An image is drawn for
a certain pixel that appears as a tree branch. After the entire dataset is processed, each
branch forms a whole tree; this is the concept of random trees. In the operation of random
trees, each tree has decision-making power; this process reduces overfitting. In the random
tree method, analogically, many trees continue to grow; the changes in the trees of a forest
are projected into randomly selected subspaces through training data, and each node’s
decision is optimized through a random process [32].

2.5. Logistic Regression (LR)

In regression analysis, dependent variables serve as categorical variables, whereas in-
dependent variables serve as continuous or dummy variables. Dummy variables represent
categorical data; the corresponding numerical values are the basis for classification and
have no comparative significance. The primary feature of LR is that dependent variables
are categorical variables, whereas independent variables can be continuous or categorical
variables [33].
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LR is used for analyzing dichotomous dependent variables. One or more independent
variables may be included in the model. Response variables can be categorical or continuous
variables. Previously, landslide susceptibility was analyzed by mostly considering the
distribution patterns of binary variables [34]. Through a statistical induction method, a
set of regression patterns may be identified to differentiate between landslide and non-
landslide. The value range of the logistic distribution function is 0–1, and the distribution
of the value range follows an S-shaped curve [35].

As shown in Equation (4), linear regression assumes a linear function and includes
dependent and independent variables (and random residual values) [33].

Y = β0 + β1 × x1 + β2 × x2 + β3 × x3 + e (4)

where Y is a dependent variable; x1, x2, and x3 are independent variables; and e represents
a residual value. β0 + β1x1 + β2x2 + β3x3 is a linear function between expectation E(Y) and
the three independent variables.

LR is used to construct practical and reasonable allocation models for predicting the
correlations between a dependent variable (y) and a set of independent variables (x). The
relationship usually refers to the relationship between a set of independent variables (xs),
which is used to predict the probability of the dependent variable being equal to 1 such as
the probability of landslide occurrence. The ratio of the probability of event occurrence to
that of event non-occurrence is called the event odds. A linear function can be obtained
using its natural logarithm, which is the logit model, as shown in Equation (5) [33].

ln
(

P
1 − P

)
= α +

k

∑
i=1

βixi (5)

where P is an independent variable; x1, x2,. . ., xk are the probabilities of event occurrence.
In this study, y indicates the probability of landslides, and the aforementioned x parameters
represent various independent variables. A logistic curve can be constructed using the logit
function; its mathematical formula is shown in Equation (6).

P =
1

1 + e
−(α+

k
∑

i=1
βixi)

(6)

In general, the probability threshold is set at 0.5. A predicted probability (p) of ≥0.5
indicates the likelihood of a landslide event; in contrast, if p < 0.5, a landslide event is not
expected to occur.

3. Results
3.1. Interpretation of Images and Assessment of Accuracy

Considering the aforementioned eight classifications, the RTC module was used with
the results of texture analysis to interpret the images. The research scope was interpreted
using a total of six satellite images obtained before and after the 2009 Typhoon Morakot,
0517 rainfall in 2013, 2013 Typhoon Soulik, and 2013 Typhoon Kongrey. Figure 4 depicts
the results of image interpretation. To confirm the accuracy of the interpretation results,
we randomly selected a total of 25 points (interpretation grids; checkpoints) for each
classification and compared them with high-resolution aerial photos and on-site survey
data. The most common accuracy evaluation method is the error matrix [36], which is used
to calculate the coefficient of agreement (Kappa index) and overall accuracy. The value of
the Kappa index proposed by Cohen [37] ranges from 0 to 1. Kappa values of <0.4, 0.4–0.8,
and >0.8 indicate low, medium, and high accuracies, respectively. Table 2 summarizes the
OAs before and after the rainfall events in the study area. In this study, the average Kappa
value of each satellite image was approximately 0.71, and the average overall accuracy was
approximately 74% (medium to high accuracy).
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Table 2. Coefficients of agreement and overall accuracies of the satellite image interpretation results.

Year Rainfall Event Resolution Kappa OA (%)

2009
Before Typhoon Morakot 8 m 0.66 70.0

After Typhoon Morakot 8 m 0.70 73.0

2013

Before 0517 rainfall 8 m 0.69 72.5

After 0517 rainfall and before Typhoon Soulik 8 m 0.70 73.3

After Typhoon Soulik and Before Typhoon Kongrey 8 m 0.78 79.5

After Typhoon Soulik and Before Typhoon Kongrey 10 m 0.77 79.5

After Typhoon Kongrey 10 m 0.74 76.5

3.2. Identification of Landslides through Image Interpretation

After image classification, to identify rainfall-induced landslides in the study area, we
subtracted bare land grids before and after rainfall events by using the image subtraction
method. The river, streamway, and bare land classifications with a slope percentage of <5%
were deducted. High-resolution aerial photos of the study area were compared, and manual
inspection was performed to identify landslides; then, the locations of the rainfall-induced
landslides in the study area were obtained (Figure 5). Among the types of slope failure,
debris slides were the easiest and most reliable type to be identified in the satellite images
since vegetation was effectively stripped off from the slopes. Therefore, debris slides are the
major landslides mapped in our study. The 2009 Typhoon Morakot resulted in the highest
rainfall and the largest landslide area (1313.12 ha). The areas of landslides induced by the
other events were as follows: 0517 rainfall in 2013, 813.92 ha; Typhoon Kongrey, 789.44 ha;
and Typhoon Soulik, 635.04 ha.
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3.3. Development of a Model for Assessing Rainfall-Induced Landslide Susceptibility
3.3.1. Selection of Factors Associated with Landslide

Landslides can be attributed to factors such as artificial slope land use, environment,
and rainfall triggers. Human activities may negatively affect water and soil conservation
on slope lands, which compromises the safety of slope land. Therefore, referring to studies
of Chen et al. [38] and Tseng et al. [7], we divided the aforementioned factors into the
following three categories: environmental, slope disturbance, and rainfall trigger factors.
The environmental factors assessed in this study included elevation, slope, aspect, slope
roughness, terrain roughness, distance from the river, and geology. The slope disturbance
factors included road density, building density, farmland planting rate, forest density,
grassland density, and bare density. The rainfall trigger factor was the product of EAR and
the maximum 3-h rolling rainfall intensity (I3R,max).

The digital elevation model (DEM) was used to analyze the environmental factors
using ArcGIS Spatial Analyst. A basic grid of 40 m × 40 m was constructed for the factors
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related to landslide occurrence, followed by the development of a GIS database of the study
area. The hazard factors are described below.

Environmental Factors

• Elevation (El)

The elevation of a place refers to its height from the sea level. In Taiwan, the elevation
datum comprises the mean sea level of Keelung Port, and the elevation of the terrain is
called the elevation difference. When other factors are constant, higher degrees of elevation
are associated with a higher sliding force. We used a 20 m × 20 m DEM for analysis. The
elevation of the study area is 78–2437 m, which was divided into a total of seven grades
and coded. Table 3 presents the elevation classification codes, ranging from an elevation of
<350 m coded as 1 to an elevation of >2100 m coded as 7.

Table 3. Elevation codes.

Grade Range of Elevation (m) Code

Above 2101 7

1751–2100 6

1401–1750 5

1051–1400 4

701–1050 3

351–700 2

Below 350 1

• Slope (Sl)

Here, slope indicates the inclination of a slope. Higher degrees of inclination indicate
steeper slopes and vice versa. High inclination as well as poor soil and water conservation
may facilitate the development of landslides. In this study, the slope value of each grid
was obtained through DEM and ArcGIS slope analysis. According to the Classification
Standards for Land Utilization Limits of Hillside Lands outlined in the Regulations of Soil
and Water Conservation [39], we graded and coded slopes (Table 4). A first-grade slope
was coded as 1, whereas a seventh-grade slope was coded as 7.

Table 4. Slope codes.

Slope Grade Grade Range of Slope (%) Code

7 Above 100 7

6 50–100 6

5 40–55 5

4 30–40 4

3 15–30 3

2 5–15 2

1 Below 5 1

• Slope Roughness (Slr)

Slope roughness reflects the changes in a slope (standard deviation). Higher degrees
of slope roughness indicate higher extents of changes, which may facilitate the occurrence
of landslides. Cluster analysis was performed to classify the slope roughness of the study
area. A slope roughness of <18.15 was coded as 1, whereas that of >63.34 was coded as 7
(Table 5).
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Table 5. Slope roughness codes.

Grade Range of Slope Roughness (◦) Code

Above 63.34 7

56.80–63.33 6

49.47–56.79 5

41.02–49.46 4

31.21–41.01 3

18.16–31.20 2

Below 18.15 1

• Aspect (As)

Each slope has a different aspect. Aspect refers to the inclination direction of a slope
and affects wind flow and rainfall distribution. In this study, using DEM and ArcGIS
aspect analysis, the aspect data of each grid were obtained. The inclination angle may be
as follows: north, northeast, east, southeast, south, southwest, west, northwest, and flat
ground (clockwise). In this study, a flat ground was coded as 1, whereas the southwestern
part of a windward side was coded as 6 (Table 6).

Table 6. Aspect codes.

Aspect Inclination Angle (◦) Code

Flat ground — 1

Northeast 22.5–67.5◦ 2

East 67.5–112.5◦ 3

Southeast 112.5–157.5◦ 4

South 157.5–202.5◦ 5

Southwest 202.5–247.5◦ 6

West 247.5–292.5◦ 5

Northwest 292.5–337.5◦ 4

North 337.5–0◦

0–22.5◦ 3

• Surface Roughness (Tr)

Surface roughness reflects the changes in a surface (standard deviation). Higher
degrees of surface roughness indicate higher extents of changes, which may facilitate
landslide occurrence. In the present study, cluster analysis was performed to classify
the surface roughness of the study area. A surface roughness of <417.62 was coded as 1,
whereas that of >2298.55 was coded as 7 (Table 7).

Table 7. Surface roughness codes.

Grade Range of Surface Roughness (m) Code

Above 2298.55 7

2114.26–2298.54 6

1849.33–2114.25 5

1457.87–1849.32 4

957.51–1457.86 3

417.63–957.50 2

Below 417.62 1
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• Distance from the River (Dr)

The distance of an area from a water body may affect the occurrence of landslides. A
shorter distance is associated with higher levels of groundwater, which softens soil, thereby
facilitating landslide occurrence. We used a river map to calculate the distance of each grid
from a river; for this, the ArcGIS buffer analysis function was used. The analysis results
were coded as shown in Table 8.

Table 8. Codes corresponding to the distance of an area from a water body.

Grade Range of Distance from the River (m) Code

Below 350 7

351–700 6

701–1050 5

1051–1400 4

1401–1750 3

1751–2100 2

Above 2101 1

• Geology (Gs)

We used the geological map of the Central Geological Survey of the Ministry of
Economic Affairs (2021) to obtain information on the geological conditions corresponding
to each grid in the study area. On the basis of geological age and lithological data, it was
divided into four strengths: very weak, medium, medium strong, and strong [40]. The
highest strength was coded as 1, whereas the lowest strength was coded as 4 [38].

Slope Disturbance Factors

Using RTC with texture analysis for image interpretation and classification, we as-
sessed the slope disturbance of the research area. The following six factors were included
in further analysis: road density, building density, farmland planting rate, forest density,
grassland density, and bare density. To quantify the slope disturbance in each basic grid,
slope disturbance was defined as the area percentage ratio of each disturbance factor in
each basic grid. The degree of land development of hillsides and its index were evaluated
in reference to earlier studies [7,38]. Because we regarded environmental and slope distur-
bance factors as independent factors influencing landslides, a slope disturbance index was
developed and is shown in Equation (7).

IDC = ∑ GDC × R (7)

DC refers to the disturbance condition. GDC is a DC grade, which is the score corresponding
to slope land use disturbance in each grid. R is the ratio of the area occupied by each
slope and the utilization factor corresponding to the grid. Table 9 presents the grades
corresponding to the DCs of the aforementioned six slope disturbance factors. For grading,
we referred to a study conducted by Chen et al. [38].

Table 9. Scores of various slope disturbance factors.

Slope
Disturbance
Factor

Forest Density Grassland
Density

Farmland
Planting Rate Road Density Building

Density Bare Density

Score 1 2 3 4 5 6



Water 2024, 16, 1038 13 of 22

Rainfall Trigger Factors

We obtained relevant data from the following 12 rainfall measurement stations within
and near the study area: Weiliaoshan, Majia, Hongyeshan, Shangdewun, Dajin, Jinfeng,
Ligang, Meinong, and Gusia [22] as well as Zhiben-5, Ali, and Sandimen [41]. Through
inverse distance weighting (ArcGIS), the EAR and I3R,max values were calculated for each
station (Tables 10 and 11) for four rainfall events occurring in 2009 and 2013.

Table 10. EAR of each station after various rainfall events.

Management Unit Station Code Station Name
EAR (mm)

Morakot 0517 Rainfall Soulik Kongrey

CWB

C0R100 Weiliaoshan 1437.03 85.46 248.38 417.93

C0R140 Majia 882.32 – – –

C0S680 Hongyeshan 337.62 46.40 154.62 38.69

C1R120 Shangdewun 1745.22 121.64 – 378.98

C1V340 Dajin – 168.74 129.19 –

C1S820 Jinfeng 298.88 19.97 201.45 93.82

C0R590 Ligang 466.82 – – 233.36

C0V310 Meinong 312.16 138.47 – 648.74

C1R110 Gusia 492.67 269.31 87.05 263.33

WRA

01S210 Zhiben-5 91.57 16.49 130.31 54.73

01Q910 Ali 1205 698.56 141.25 585.02

01Q930 Sandimen 552.93 146.85 42.03 245.55

Table 11. I3R,max of each station after various rainfall events.

Management Unit Station Code Station Name
I3R,max (mm/3 h)

Morakot 0517 Rainfall Soulik Kongrey

CWB

C0R100 Weiliaoshan 274 68.5 78 183.5

C0R140 Majia 194 – – –

C0S680 Hongyeshan 75 27.5 52.5 21

C1R120 Shangdewun 206 83 – 153.5

C1V340 Dajin – 84 81 –

C1S820 Jinfeng 199.5 12 108 25

C0R590 Ligang 154.5 – – 97

C0V310 Meinong 114.5 61 – 176.5

C1R110 Gusia 192 54 46.5 82

WRA

01S210 Zhiben-5 78 15 81 14

01Q910 Ali 286 117 65 131

01Q930 Sandimen 171 60 33 107

3.3.2. Analysis of Slope Environmental Strength Potential

We performed correlation analyses of environmental and slope disturbance factors.
After highly correlated factors were eliminated, LR was performed to analyze the slope envi-
ronmental strength; thus, a slope environmental strength regression model was constructed.
Then, we established the index of slope environmental strength potential (ISESP). A basic
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grid of 40 m × 40 m was constructed using ArcGIS; subsequently, the slope environmental
strength potential value in each grid of the study area was calculated.

Correlation Analyses of Slope Environmental Strength Potential Factors

The slope environmental strength potential factors initially selected in this study
included environmental factors such as elevation, slope, aspect, slope roughness, surface
roughness, distance from the river, and geology and slope disturbance factors. To ensure
that the factors were independent and exerted no mutual effects, we performed correlation
analyses of the selected factors before LR analysis to identify the degree of correlations
between the factors. Elevation, slope, slope roughness, surface roughness, and slope
disturbance index served as continuous variables, whereas aspect, distance from the river,
and geology served as categorical variables. In LR, categorical variables only represent the
data distribution of factor codes and not the effects of the code size on dependent variables.
Hence, we focused only on continuous variables. Statistical analysis was performed
using SPSS [42]. For the four rainfall events, the correlations between the factors were
investigated through Pearson correlation analysis. If the absolute value of the correlation
coefficient is closer to 0, the degree of correlation is weaker; in contrast, if it is closer to 1,
the degree of correlation is stronger. Table 12 presents the correlations between the slope
environmental strength potential factors. Elevation exhibited high-level correlations with
surface roughness. Slope exhibited medium-to-high-level correlation with slope roughness.
The remaining factors exhibited low-level correlations. Hence, surface roughness was not
included in the LR model.

Table 12. Correlations between the slope environmental strength potential factors.

Elevation
(El)

Slope
(Sl)

Slope Roughness
(Slr)

Surface Roughness
(Tr) IDC

Elevation
(El)

Correlation 1

Significance
(Two-tailed)

N 170,651

Slope
(Sl)

Correlation 0.299 ** 1

Significance
(Two-tailed) 0.000

N 170,651 170,651

Slope Roughness
(Slr)

Correlation 0.473 ** 0.731 ** 1

Significance
(Two-tailed) 0.000 0.000

N 170,651 170,651 170,651

Surface Roughness
(Tr)

Correlation 1.000 ** 0.299 ** 0.473 ** 1

Significance
(Two-tailed) 0.000 0.000 0.000

N 170,651 170,651 170,651 170,651

IDC

Correlation −0.369 ** −0.282 ** −0.363 ** −0.369 ** 1

Significance
(Two-tailed) 0.000 0.000 0.000 0.000

N 170,651 170,651 170,651 170,651 170,651

Note: ** Correlation is significant at 0.01 level (two-tailed).

Results of the Analysis of Slope Environmental Strength Potential

To reduce errors due to the evaluation model and subjective errors due to selection bias
(human errors), we randomly sampled the same number of landslide and non-landslide
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samples. After sampling, the data were randomly divided into training (70%) and test
(30%) datasets. An environmental strength assessment model was constructed through
LR [42].

The dependent variable was landslide or non-landslide, and the independent variables
were environmental factors such as slope, aspect, elevation, distance from the river, slope
roughness, geology, and slope disturbance factors. Through LR, a regression formula was
developed for analyzing the slope environmental strength potential. The formula is shown
in Equation (8).

L = α + β1 × El + β2 × Sl + β3 × Slr + β4 × IDC +
4

∑
i=1

βAs,iDAs,i +
6

∑
i=1

βDr,iDDr,i +
3

∑
i=1

βGs,iDGs,i (8)

where El denotes the elevation, Sl is the slope, Slr is the slope roughness, IDC is the slope
disturbance index, As is the aspect grade, Dr is the distance from the river, Gs is the
geological grade, β is the regression coefficient of continuous variables, and α is a constant.
D represents a dummy variable, which is a value coded for the category corresponding to a
factor. Substituting each regression coefficient and constant value into Equation (8) and
substituting it into Equation (9), we can calculate the probability value of each grid, which
represents the value of ISESP.

P =
1

1 + e−L (9)

LR was performed to evaluate the training classification results of various rainfall
events. The accuracies of classifications performed using the training and test data after
2009 Typhoon Morakot were 68.3% and 68.1%, respectively. Training data were used to
deduce the accuracies of classifications for the entire study area. The estimated accuracy
was 65.2% (Table 13). Table 14 presents the errors in the evaluation of various rainfall
events. The accuracies of classifications performed using training data after the 0517
rainfall, Typhoon Soulik, and Typhoon Kongrey were 83.8%, 86.2%, and 86.4%, respectively;
the corresponding values for the test datasets were 84.3%, 86.4%, and 87.5%. The average
accuracy of the overall classification was approximately 80.4%.

Table 13. Errors in the evaluation of Typhoon Morakot.

Training Testing Overall

Predicted
Accuracy
(%)

Predicted
Accuracy
(%)

Predicted
Accuracy
(%)Non-

landslide Landslide Non-
landslide Landslide Non-

landslide Landslide

Actual

Non-
landslide 4021 1692 70.4 1787 712 71.5 105,419 57,025 64.9

Landslide 1946 3831 66.3 858 1572 64.7 2391 5816 70.9

Overall accuracy 68.3 68.1 65.2

Table 14. Accuracies of the classifications performed using training and test data after the
four rainfall events.

Rainfall Event
Accuracy

Training (%) Testing (%) Overall (%)

Typhoon Morakot 68.3 68.1 65.2

0517 Rainfall 83.8 84.3 83.5

Typhoon Soulik 86.2 86.4 87.3

Typhoon Kongrey 86.4 87.5 85.7

Average accuracy 81.2 81.6 80.4
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3.3.3. Establishment of a Landslide Hazard Index

Higher values of slope environmental strength potential are associated with larger
amounts of rainfall and thus higher probabilities of landslides. By referring to the study of
Jan and Lee [4], we adjusted this, and IRT can be calculated as shown in Equation (10).

IRT = EAR × I3R,max (10)

We established a landslide hazard index (IRL) using IRT and ISESP. The formula is
shown in Equation (11).

IRL = IRT × ISESP (11)

Higher values of IRL indicate a higher probability of landslides. At a constant IRL,
IRT is inversely proportional to ISESP. Thus, if ISESP is relatively stable, a large amount
of rainfall would induce landslides. In contrast, if ISESP is low, only a small amount of
rainfall would induce landslides. We used the following comprehensive indicators of
rainfall-induced landslides [4]: IRL1, IRL10, IRL25, IRL50, and IRL90. The index development
method is described below.

1. IRL1: From the IRL values corresponding to the grid data of all rainfall-induced land-
slides in the study area, the value with a cumulative probability of 1% is selected
(Weber’s method) and is indicated as IRL1. Grids with IRL values less than that of IRL1
have landslide probabilities of <1%.

2. IRL10: From the IRL values corresponding to the grid data of all rainfall-induced
landslides in the study area, the value with a cumulative probability of 10% is selected
(Weber’s method) and is indicated as IRL10. Grids with IRL values between the values
of IRL1 and IRL10 have landslide probabilities of 1%–10%.

3. IRL90: Landslide and non-landslide grids with values less than that of IRL10 are ex-
cluded. From the IRL values corresponding to the remaining grids, the value with a
cumulative probability of 90% (Weber’s method) is selected and indicated as IRL90.
Grids with IRL values exceeding that of IRL90 have landslide probabilities of >90%.

4. IRL10–IRL90: To determine a landslide probability corresponding to a comprehensive
index between IRL10 and IRL90, the relationship between the aforementioned index
and landslide probability can be expressed as shown in Equation (12).

IRLi − IRL10

IRL90 − IRL10
=

P − 0.1
0.9 − 0.1

(12)

Equation (12) can be rewritten as Equation (13).

IRLi = IRL10 + ∆IRL

(
P − 0.1

0.8

)
(13)

where ∆IRL = IRL90 − IRL10. Thus, the landslide probability corresponding to the landslide
comprehensive index IRLi can be obtained.

4. Discussion
4.1. Correlation between Slope Environmental Strength Potential and Rainfall-Induced Landslide

We first explored the distribution of landslide and non-landslide grids with the same
IRL value for each event and performed stratified random sampling according to the ratio
of the numbers of landslide and non-landslide grids with the same IRL value. To calculate
the IRL values corresponding to IRL1, IRL10, IRL25, IRL50, and IRL90, after merging the data
points of each rainfall event, we sorted the landslide grids; then, using Equation (12), the
IRL values corresponding to different cumulative probabilities were calculated. Table 15
presents the IRL indices and the corresponding values.
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Table 15. Various IRL values.

Various IRL IRL Value

IRL1 1417.30

IRL10 6563.47

IRL25 28,307.89

IRL50 64,548.59

IRL90 122,533.70

Using the IRL indices presented in Table 15, the correlation between IRT and slope
environmental strength potential was calculated after merging the data points of each
rainfall event (Figure 6). The product of IRT and ISESP was the closest to the grids with
different cumulative probabilities. The trend line corresponding to each IRL value was
drawn using the power method. As shown in Figure 5, the IRT of 2009 Typhoon Morakot
was the highest among the four rainfall events; thus, most of its landslide grids were
distributed above IRL50. For the 0517 rainfall in 2013, the grids were mostly below IRL90.
The IRT of 2013 Typhoon Soulik was the lowest among the four rainfall events; most of its
landslide grids were distributed below IRL25, while the IRT of 2013 Typhoon Kongrey was
higher than those of the Typhoon Soulik and 0517 rainfall events; for Typhoon Kongrey, the
grids were distributed between IRL1 and IRL90.
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4.2. Evaluation of Landslide Hazards to Land Use

After the classification of IRL indices with different cumulative probabilities, the
number of landslide and non-landslide grids with different ISESP grades and the landslide
ratio (landslide/non-landslide) were estimated. Considering that higher values of IRT are
associated with higher values of ISESP (and higher degrees of hazard), we investigated the
most reasonable average distribution of the landslide ratio in an inductive manner. Then,
the degree of hazard was calculated for each distribution situation and substituted into the
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grids of each event. Thus, the hazard degree of rainfall-induced landslide in each grid of
each event was obtained. Table 16 presents the landslide ratios (before and after induction)
of various ISESP grades of different IRL indices. The same color in the table represents the
same category of landslide ratio intervals (n = 8). Figure 6 illustrates the results presented
in Table 16. The landslide ratio intervals were normalized using the average landslide ratio
of the same interval, as shown in Equation (14).

Znorm =

(
X − Xmin

Xmax − Xmin

)
(14)

where Znorm represents the value after normalization, X represents the value to be normal-
ized, Xmin represents the minimum value in the data, and Xmax represents the maximum
value in the data. In this study, the normalized value was regarded as the degree of rainfall-
induced landslide hazard. The estimated degree of hazard was substituted into the grid of
each rainfall event to obtain the degree of hazard corresponding to each rainfall event grid
in the study area. The normalized value is a value between 0 and 1. Landslide probabilities
of (IRL) of <1% still represent the possibility of landslide. Therefore, the minimum value
of IRL1 indicates its risk probability. Table 17 presents the hazard value of each landslide
ratio interval. The color reference in Table 17 is the same as that in Table 16. The hazard
value of each grid of each rainfall event was substituted into each grid, and hazard maps
were constructed. Higher degrees of hazard indicate higher probabilities of landslide and
vice versa.

The hazard value of each interval was substituted into each grid of each rainfall event,
and the hazard maps of the study area after each rainfall event were constructed (Figure 7).
Hazard degree was classified into eight grades, and the classification was based on the
method in Table 17. The IRT of 2009 Typhoon Morakot was the highest among all rainfall
events, and the number of landslide grids was 8207; thus, the degree of landslide hazard in
the study area after this typhoon was the highest. The IRT of 2013 Typhoon Kongrey was
higher than that of 0517 rainfall in 2013; thus, the degree of landslide hazard after Typhoon
Kongrey was higher than that after 0517 rainfall in 2013. The IRT of 2013 Typhoon Soulik
was the lowest, and the number of landslide grids was also the lowest (n = 3969); thus, the
degree of landslide hazard after this typhoon was the lowest.
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Figure 7. Potential maps of landslide hazards to land use after various rainfall events. Figure 7. Potential maps of landslide hazards to land use after various rainfall events.
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Table 16. Landslide ratios of various ISESP grades of different IRL classifications.

ISESP

Below IRL1 IRL1–IRL10 IRL10–IRL25 IRL25–IRL50 IRL50–IRL90 Above IRL90

Landslide Non-
landslide

Landslide
Ratio Landslide Non-

landslide
Landslide

Ratio Landslide Non-
landslide

Landslide
Ratio Landslide Non-

landslide
Landslide

Ratio Landslide Non-
landslide

Landslide
Ratio Landslide Non-

landslide
Landslide

Ratio

0<0.05

18 11,097 0.00162

26 6317 0.00412

101 8528 0.01184

0.05 < 0.10

53 2889 0.01835

0.10 < 0.15

0.15 < 0.20

196 4564 0.04294

0.20 < 0.25

0.25 < 0.30

56 3987 0.01405

0.30 < 0.35

184 1629 0.11295

0.35 < 0.40

0.40 < 0.45

0.45 < 0.50

20 317 0.06309

0.50 < 0.55

0.55 < 0.60

0.60 < 0.65

0.65 < 0.70

0.70 < 0.75

63 507 0.12426
51 148 0.344590.75 < 0.80

0.80 < 0.85

57 318 0.17925
0.85 < 0.90

55 368 0.14946
1 7 0.14286 22 19 1.15789

0.90 < 0.95 27 131 0.20611 5 12 0.41667 17 6 2.83333

0.95 < 1.00 255 294 0.86735 157 129 1.21705 29 17 1.70588 3 0 3
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Table 17. Hazard value of each interval.

Hazard Interval Average Landslide Ratio Hazard Value

Interval VIII 0.001 0.00001

Interval VII 0.004 0.00083

Interval VI 0.022 0.00673

Interval V 0.125 0.04142

Interval IV 0.39 0.1296

Interval III 0.93 0.30981

Interval II 2.27 0.7564

Interval I 3 1

5. Conclusions

In the present study, we developed an index to evaluate landslide hazards to land
use after four prominent rainfall events in Sandimen and Wutai Townships in Pingtung
County. Using RTC and texture analysis, we interpreted and classified the satellite images
of the study area captured before and after four rainfall events. The average Kappa value
was approximately 0.71, which indicated medium to high accuracy. A comparison of the
satellite images captured before and after the rainfall events in terms of exposure revealed
that the area of landslide due to 2009 Typhoon Morakot was the largest (1313.12 ha); the
areas of landslides due to the other rainfall events were as follows: 0517 rainfall in 2013,
813.92 ha; Typhoon Kongrey, 789.44 ha; and Typhoon Soulik, 635.04 ha. Environmental
factors (e.g., elevation, slope, aspect, slope roughness, distance from the river, and geology)
and slope disturbance factors (e.g., road density, building density, farmland planting rate,
forest density, grassland density, and bare density) were assessed in this study to analyze
the slope environmental strength potential ISESP. The average overall classification accuracy
was approximately 80.4%. IRT was calculated by multiplying EAR with I3R,max. A new
comprehensive index of rainfall-induced landslide IRL (IRL = IRT × ISESP) was established
to determine the hazard of rainfall-induced landslides to land use. Using the correlation
between ISESP and IRT, we determined the degrees of rainfall-induced landslide hazards
to land use. At a constant ISESP, higher values of IRT indicate higher degrees of landslide
hazard to land use; similarly, at a constant IRT, higher values of ISESP indicate higher degrees
of landslide hazard to land use. Landslide occurrence is positively correlated with IRT and
ISESP. In cases of large ISESP values (e.g., fragile environment and high land development
intensity), small IRT values may cause landslides.
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