Exploring Plastic Mulching as a Strategy for Mitigating Drought Stress and Boosting Maize Yield in the Ecuadorian Andes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Soil Water Content
3.2. Soil Temperature
3.3. Agronomic Performance of Maize
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Kirkby, M.J. Water in the critical zone: Soil, water and life from profile to planet. Soil 2016, 2, 631–645. [Google Scholar] [CrossRef]
- Lee, J.G.; Chae, H.G.; Hwang, H.Y.; Kim, P.J.; Cho, S.R. Effect of plastic film mulching on maize productivity and nitrogen use efficiency under organic farming in South Korea. Sci. Total Environ. 2021, 787, 147503. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Coulter, J.A.; Li, L.; Luo, Z.; Chen, Y.; Deng, X.; Xie, J. Plastic mulching reduces nitrogen footprint of food crops in China: A meta-analysis. Sci Total Environ. 2020, 748, 141479. [Google Scholar] [CrossRef] [PubMed]
- Xiukang, W.; Zhanbin, L.; Yingying, X. Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China. Agric. Water Manag. 2015, 161, 53–64. [Google Scholar] [CrossRef]
- Tito, R.; Vasconcelos, H.L.; Feeley, K.J.; Abad del Cusco, A. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Wiley Online Libr. 2018, 24, e592–e602. [Google Scholar] [CrossRef]
- Zambrano, J.L.; Yánez, C.F.; Sangoquiza, C.A. Maize Breeding in the Highlands of Ecuador, Peru, and Bolivia: A Review. Agronomy 2021, 11, 212. [Google Scholar] [CrossRef]
- Guzzon, F.; Rios, L.W.A.; Cepeda, G.M.C.; Polo, M.C.; Cabrera, A.C.; Figueroa, J.M.; Hoyos, A.E.M.; Calvo, T.W.J.; Molnar, T.L.; León, L.A.N.; et al. Conservation and Use of Latin American Maize Diversity: Pillar of Nutrition Security and Cultural Heritage of Humanity. Agronomy 2021, 11, 172. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Ganadería. Cifras Agroproductivas. 2022. Available online: http://sipa.agricultura.gob.ec/index.php/cifras-agroproductivas (accessed on 17 February 2024).
- Hossain, E.; Zhang, Z.; Dong, W.; Wang, S.; Liu, M.; Liu, E.; Mei, X. Plastic Film Mulching Improved Maize Yield, Water Use Efficiency, and N Use Efficiency under Dryland Farming System in Northeast China. Plants 2022, 11, 1710. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Cai, T.; Ali, S.; Han, Q.; Ren, X.; Jia, Z. Plastic-film mulching for enhanced water-use efficiency and economic returns from maize fields in semiarid China. Front. Plant Sci. 2017, 8, 247092. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Li, Y.; Du, Y. Biodegradable film mulching improves soil temperature, moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil Tillage Res. 2017, 171, 2–50. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Li, S.; Gao, Y.; Tian, X. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agric. Water Manag. 2013, 116, 39–49. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, C.; Xiao, C.; Xie, R.; Ming, B.; Hou, P.; Liu, G.; Xu, W.; Shen, D.; Wang, K.; et al. Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China. Field Crops Res. 2017, 211, 137–146. [Google Scholar] [CrossRef]
- Thidar, M.; Gong, D.; Mei, X.; Gao, L.; Li, H.; Hao, W.; Gu, F. Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China. Agric. Water Manag. 2020, 241, 106340. [Google Scholar] [CrossRef]
- Voroney, P. Soils for Horse Pasture Management. Horse Pasture Manag. 2019, 1, 65–79. [Google Scholar]
- Córdoba, J.; Salcedo, E.; Rodríguez, R.; Zamora, J.F.; Manríquez, R.; Contreras, H.; Robledo, J.; Delgado, E. Manejo de los Ensayos e Informe de los Datos Para el Programa de Ensayos Internacionales de Maíz del CIMMYT. 1995. Available online: https://repository.cimmyt.org/handle/10883/764 (accessed on 17 February 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Madadgar, S.; Aghakouchak, A.; Farahmand, A.; Davis, S.J. Probabilistic estimates of drought impacts on agricultural production. Wiley Online Libr. Res. Lett. 2017, 44, 7799–7807. [Google Scholar] [CrossRef]
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Glob. Environ. Chang. 2011, 21, 1073–1083. [Google Scholar] [CrossRef]
- Falih, A.; Tawfeeq, H.; Al-Hassani, A.; Razaq, I. Utilization of Soil Mulching Practices to Improve Drought Management in Arid Region. J. Multidiscip. Curr. Res. 2017, 5, 1029–1034. [Google Scholar]
- Yin, W.; Chai, Q.; Guo, Y.; Fan, H.; Fan, Z.; Hu, F.; Zhao, C.; Yu, A.; Coulter, J.A. No Tillage with Plastic Re-mulching Maintains High Maize Productivity via Regulating Hydrothermal Effects in an Arid Region. Front. Plant Sci. 2021, 12, 649684. [Google Scholar] [CrossRef]
- Ren, A.-T.; Zhou, R.; Mo, F.; Liu, S.-T.; Li, J.-Y.; Chen, Y.; Zhao, L.; Xiong, Y.-C. Soil water balance dynamics under plastic mulching in dryland rainfed agroecosystem across the Loess Plateau. Agric. Ecosyst. Environ. 2021, 312, 107354. [Google Scholar] [CrossRef]
- Mo, F.; Wang, J.-Y.; Zhou, H.; Luo, C.-L.; Zhang, X.-F.; Li, X.-Y.; Li, F.-M.; Xiong, L.-B.; Kavagi, L.; Nguluu, S.N.; et al. Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize (Zea mays L.): An adaptive management in east African Plateau. Agric. For. Meteorol. 2017, 236, 100–112. [Google Scholar] [CrossRef]
- Jia, Q.; Chen, K.; Chen, Y.; Ali, S.; Manzoor; Sohail, A.; Fahad, S. Mulch covered ridges affect grain yield of maize through regulating root growth and root-bleeding sap under simulated rainfall conditions. Soil Tillage Res. 2018, 175, 101–111. [Google Scholar] [CrossRef]
- Li, R.; Hou, X.; Jia, Z.; Han, Q.; Yang, B. Effects of rainfall harvesting and mulching technologies on soil water, temperature, and maize yield in Loess Plateau region of China. Soil Res. 2012, 50, 105–113. [Google Scholar] [CrossRef]
- Cartagena Ayala, Y.E.; Zambrano Mendoza, J.L.; Parra, R.; Angamarca Ichao, M.V.; Maiguashca, J.A.; Rivadeneira García, J.L.; Velásquez, D.; Condor, A.; León Ruiz, J.; Ortíz Calle, R. Evaluación del uso eficiente del agua en el cultivo de maíz (Zea mays L.) variedad INIAP 101, con diferentes niveles de fertilización. In Proceedings of the I Simposio Ecuatoriano del Maíz, Quito, Ecuador, 27–29 October 2021; pp. 15–16, Núm. 38. Available online: https://revistas.usfq.edu.ec/index.php/archivosacademicos/issue/view/189 (accessed on 1 February 2024).
- Stewart, D.W.; Dwyer, L.M.; Carrigan, L.L. Phenological Temperature Response of Maize. Agron. J. 1998, 90, 73–79. [Google Scholar] [CrossRef]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Hashim, S.; Marwat, K.; Saeed, M.; Haroon, M.; Waqas, M. Developing a sustainable and eco-friendly weed management system using organic and inorganic mulching techniques. Pak. J. Bot. 2013, 45, 483–486. [Google Scholar]
- Luo, L.; Hui, X.; He, G.; Wang, S.; Wang, Z.; Siddique, K. Benefits and Limitations to Plastic Mulching and Nitrogen Fertilization on Grain Yield and Sulfur Nutrition: Multi-Site Field Trials in the Semiarid Area of China. Front. Plant Sci. 2022, 22, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xiong, Y.-C.; Li, F.-M.; Wang, R.-Y.; Qiang, S.-C.; Yao, T.-F.; Mo, F. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agric. Water Manag. 2012, 104, 68–78. [Google Scholar] [CrossRef]
- Salama, K.; Geyer, M. Plastic Mulch Films in Agriculture: Their Use, Environmental Problems, Recycling and Alternatives. Environments 2023, 10, 179. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, R.; Brown, R.W.; Yang, Y.; Zeng, Z.; Jones, D.L.; Zang, H. The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health. J. Hazard. Mater. 2023, 442, 130055. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yu, B.; Yuan, C.; Guo, L.; Liu, P.; Gao, W.; Li, D.; Cui, B.; El-Aty, A.M.A. An overview on plasticized biodegradable corn starch-based films: The physicochemical properties and gelatinization process. Crit. Rev. Food Sci. Nutr. 2022, 62, 2569–2579. [Google Scholar] [CrossRef] [PubMed]
- Morra, L.; Bilotto, M.; Mignoli, E.; Sicignano, M.; Magri, A.; Cice, D.; Cozzolino, R.; Malorni, L.; Siano, F.; Picariello, G.; et al. New Mater-Bi, Biodegradable Mulching Film for Strawberry (Fragaria × Ananassa Duch.): Effects on Film Duration, Crop Yields, Qualitative, and Nutraceutical Traits of Fruits. Plants 2022, 11, 1726. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, E.; Di Mola, I.; Ottaiano, L.; Bilotto, M.; Petriccione, M.; Ferrara, E.; Mori, M.; Morra, L. Assessing Yield and Quality of Melon (Cucumis melo L.) Improved by Biodegradable Mulching Film. Plants 2023, 12, 219. [Google Scholar] [CrossRef]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Riccardi, R.; Spigno, P.; Petriccione, M.; Fiorentino, N.; Fagnano, M.; Mori, M. Biodegradable Mulching Film vs. Traditional Polyethylene: Effects on Yield and Quality of San Marzano Tomato Fruits. Plants 2023, 12, 32. [Google Scholar] [CrossRef]
Soil Depth (cm) | Year 2019 | Year 2020 | ||||||
---|---|---|---|---|---|---|---|---|
Plastic Mulching (%) | Conventional (%) | Dif. * | p-Value (t-Test) n = 33 | Plastic Mulching (%) | Conventional (%) | Dif. * | p-Value (t-Test) n = 30 | |
0–10 | 23.48 ± 1.48 | 19.97 ± 2.07 | 3.51 | *** | 23.84 ± 2.23 | 21.11 ± 1.66 | 2.73 | *** |
10–20 | 31.73 ± 2.14 | 28.62 ± 0.81 | 3.11 | *** | 30.49 ± 1.41 | 29.84 ± 1.59 | 0.65 | *** |
20–30 | 36.00 ± 1.09 | 31.29 ± 0.34 | 4.71 | *** | 35.48 ± 0.72 | 31.91 ± 0.92 | 3.57 | *** |
30–40 | 35.99 ± 0.7 | 35.07 ± 0.27 | 0.92 | *** | 35.78 ± 0.53 | 35.22 ± 0.65 | 0.56 | *** |
40–50 | 35.53 ± 1.09 | 35.01 ± 0.15 | 0.52 | *** | 35.52 ± 0.55 | 35.36 ± 0.60 | 0.16 | *** |
50–60 | 35.73 ± 0.43 | 34.95 ± 0.11 | 0.78 | *** | 35.79 ± 0.56 | 35.27 ± 0.56 | 0.52 | *** |
70–80 | 31.83 ± 0.28 | 30.46 ± 0.35 | 1.37 | *** | 32.24 ± 0.60 | 30.87 ± 0.71 | 1.37 | *** |
80–90 | 33.53 ± 0.82 | 32.93 ± 0.23 | 0.60 | *** | 33.64 ± 0.45 | 32.95 ± 0.65 | 0.69 | *** |
90–100 | 35.96 ± 0.36 | 35.46 ± 1.79 | 0.50 | *** | 35.55 ± 0.39 | 35.66 ± 0.41 | −0.11 | ** |
Planting Method | Mean, Year 2019 °C | Mean, Year 2020 °C | Average °C |
---|---|---|---|
Plastic mulching | 17.91 ± 0.65 | 16.05 ± 0.34 | 16.98 |
Conventional | 16.30 ± 0.77 | 15.13 ± 0.35 | 15.72 |
n | 143 | 84 | - |
p-Value (t-test) | *** | *** | - |
Difference | 1.61 | 0.92 | 1.26 |
Maize Variety | Planting System (T) | Yield, Fresh Ears (t ha−1) | Female Flowering Time (Days after Planting) | Plant Height (m) | |||
---|---|---|---|---|---|---|---|
Year 2019 | Year 2020 | Year 2019 | Year 2020 | Year 2019 | Year 2020 | ||
INIAP 101 | Plastic mulching | 6.24 ± 0.98 | 7.49 ± 0.22 | 129.00 ± 1.53 | 118.00 ± 1.15 | 1.87 ± 0.10 | 2.16 ± 0.09 |
Conventional | 3.12 ± 0.72 | 2.34 ± 0.63 | 164.00 ± 1.73 | 138.00 ± 1.15 | 1.75 ± 0.23 | 1.64 ± 0.02 | |
INIAP 122 | Plastic mulching | 3.79 ± 0.84 | 6.50 ± 0.70 | 145.67 ± 2.91 | 129.00 ± 1.00 | 2.07 ± 0.07 | 2.08 ± 0.05 |
Conventional | 1.20 ± 0.34 | 4.73 ± 0.25 | 177.67 ± 4.33 | 146.33 ± 0.88 | 1.64 ± 0.02 | 1.77 ± 0.05 | |
ANOVA, p-value (T) | *** | *** | *** | *** | * | *** | |
LSD * value (T) | 1.42 | 0.78 | 4.76 | 1.35 | 0.26 | 0.14 | |
Coefficient of variation (%) | 28.05 | 10.50 | 2.19 | 0.73 | 9.87 | 5.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambrano, J.L.; Cartagena, Y.; Sangoquiza, C.; Pincay, A.; Parra, A.R.; Maiguashca, J.; Rivadeneira, J.L.; Subía, C.; Park, C.H. Exploring Plastic Mulching as a Strategy for Mitigating Drought Stress and Boosting Maize Yield in the Ecuadorian Andes. Water 2024, 16, 1033. https://doi.org/10.3390/w16071033
Zambrano JL, Cartagena Y, Sangoquiza C, Pincay A, Parra AR, Maiguashca J, Rivadeneira JL, Subía C, Park CH. Exploring Plastic Mulching as a Strategy for Mitigating Drought Stress and Boosting Maize Yield in the Ecuadorian Andes. Water. 2024; 16(7):1033. https://doi.org/10.3390/w16071033
Chicago/Turabian StyleZambrano, José Luis, Yamil Cartagena, Carlos Sangoquiza, Ana Pincay, Anibal Rafael Parra, Javier Maiguashca, José Luis Rivadeneira, Cristian Subía, and Chang Hwan Park. 2024. "Exploring Plastic Mulching as a Strategy for Mitigating Drought Stress and Boosting Maize Yield in the Ecuadorian Andes" Water 16, no. 7: 1033. https://doi.org/10.3390/w16071033
APA StyleZambrano, J. L., Cartagena, Y., Sangoquiza, C., Pincay, A., Parra, A. R., Maiguashca, J., Rivadeneira, J. L., Subía, C., & Park, C. H. (2024). Exploring Plastic Mulching as a Strategy for Mitigating Drought Stress and Boosting Maize Yield in the Ecuadorian Andes. Water, 16(7), 1033. https://doi.org/10.3390/w16071033