Pollution Assessment and Spatial Distribution of Heavy Metals in Surface Waters and Bottom Sediments of the Krzna River (Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Preparation
2.2. Analytical Procedures
3. Results and Discussion
3.1. Analysis of Heavy Metals in the Surface Water
3.2. Analysis of Heavy Metals in Bottom Sediments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dinar, A. Challenges to Water Resource Management: The Role of Economic and Modeling Approaches. Water 2024, 16, 610. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.; Xu, X. Effect of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Ahmed, S.; Ismail, S. Water Pollution and its Sources, Effect and Management: A Case Study of Delhi. Int. J. Curr. Adv. Res. 2018, 7, 10436–10442. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, Y.; Zhang, W.; Zhang, H.; Li, T.; Kong, D.; Xu, C.; Shi, H.; Xu, X.; Wang, D. The Spatiotemporal Variation and Historical Evolution of Heavy Metal Pollution in Sediments from the Pearl River Estuary, China. Water 2024, 16, 531. [Google Scholar] [CrossRef]
- Arif, A.; Malik, M.F.; Liaqat, S.; Aslam, A.; Mumtaz, K.; Afzal, A. Water Pollution and Industries. Pure Appl. Biol. 2020, 9, 2214–2224. [Google Scholar] [CrossRef]
- Chowdhary, P.; Bharagava, R.N.; Mishra, S.; Khan, N. Role of Industries in Water Scarcity and its Adverse Effects on Environment and Human Health. In Environmental Concerns and Sustainable Development; Springer: Singapore, 2020; pp. 235–256. [Google Scholar] [CrossRef]
- Masindi, V.; Muedi, K.L. Environmental Contamination by Heavy Metals. Heavy Metals 2018, 10, 115–132. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mazumder, M.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016, 569–570, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Cukrov, N.; Cindrić, A.-M.; Omanović, D.; Cukrov, N. Spatial Distribution, Ecological Risk Assessment, and Source Identification of Metals in Sediments of the Krka River Estuary (Croatia). Sustainability 2024, 16, 1800. [Google Scholar] [CrossRef]
- Selvam, S.; Jesuraja, K.; Roy, P.D.; Venkatramanan, S.; Khan, R.; Shukla, S.; Manimaran, D.; Muthukumar, P. Human health risk assessment of heavy metal and pathogenic contamination in surface water of the Punnakayal estuary, South India. Chemosphere 2022, 298, 134027. [Google Scholar] [CrossRef]
- Su, C.C. Heavy metal and cancer Risk. Am. J. Public Health Epidemiol. 2015, 1, 1019–1021. [Google Scholar]
- Gurgenidze, D.; Romanovski, V. The Pharmaceutical Pollution of Water Resources Using the Example of the Kura River (Tbilisi, Georgia). Water 2023, 15, 2574. [Google Scholar] [CrossRef]
- Chen, Y.; Xiong, F.; Zhai, D.; Liu, H.; Duan, X.; Chen, D.; Jiang, W.; Li, B. Risk Assessment of Dissolved Trace Elements and Heavy Metals in the Upper Reaches of the Yangtze River, China. Water 2023, 15, 1330. [Google Scholar] [CrossRef]
- Okey-Wokeh, C.G.; Wokeh, O.K.; Orose, E.; Lananan, F.; Azra, M.N. Anthropogenic Impacts on Physicochemical and Heavy Metal Concentrations of Ogbor Hill River Water, Southern Nigeria. Water 2023, 15, 1359. [Google Scholar] [CrossRef]
- Kaba, P.; Shushi, S.; Gyimah, E.; Husein, M.; Abomohra, A. Multivariate Analysis of Heavy Metals and Human Health Risk Implications Associated with Fish Consumption from the Yangtze River in Zhenjiang City, China. Water 2023, 15, 1999. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Sankhla, M.S.; Kumari, M.; Nandan, M.; Kumar, R.; Agrawal, P. Heavy Metals Contamination in Water and Their Hazardous Effect on Human Health-A Review. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 759–766. [Google Scholar] [CrossRef]
- Jabłońska, J.; Kluska, M. Determination of mercury content in surface waters using an environmentally non-toxic terminating electrolyte. Bull. Environ. Contam. Toxicol. 2020, 105, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.; Li, S. Health and environmental effects of heavy metals. J. King Saud Univ. Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Thilagam, H.; Raja, P. Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans. Chemosphere 2008, 71, 515–528. [Google Scholar] [CrossRef]
- Kluska, M.; Jabłońska, J.; Prukała, W.; Popiel, S. Research on the stability of biologically active (E)-azastilbene derivatives in polish rivers. Pol. J. Environ. Stud. 2021, 30, 1647–1663. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, J.; Yang, F.; Hou, Z.; Ren, K.; Yu, L.; Yang, S.; Li, Z.; Zhang, X. Comprehensive Monitoring and Ecological Risk Assessment of Heavy Metals in Soil and Surface Water of Chishui River Basin in Upper Reaches of the Yangtze River. Water 2023, 15, 2069. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q. Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. J. Hazard. Mater. 2010, 181, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Meng, F.; Liu, N.; Zhang, J.; Xue, H. The Taxon-Specific Species Sensitivity and Aquatic Ecological Risk Assessment of Three Heavy Metals in Songhua River Water, China. Water 2023, 15, 3694. [Google Scholar] [CrossRef]
- Michalski, R.; Kostecki, M.; Kernert, J.; Pecyna, J.; Jabłońska-Czapla, M.; Grygoyć, K.; Nocoń, K. Time and spatial variability in concentrations of selected metals and their species in water and bottom sediments of Dzierżno Duże (Poland). J. Environ. Sci. Health A 2019, 54, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, V.; Pandita, S.; Singh, S.; Bhardwaj, R.; Varol, M.; Rodrigo-Comino, J. A global meta-analysis of toxic metals in continental surface water bodies. J. Environ. Chem. Eng. 2023, 11, 109964. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Z.; Lu, S.; Jiang, S.; Mu, D.; Shu, Y. Multivariate statistical and GIS-based approach to identify source of anthropogenic impacts on metallic elements in sediments from the mid Guangdong coasts, China. Environ. Pollut. 2012, 163, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Walna, B.; Siepak, M. Heavy metals: Their pathway from the ground, groundwater and springs to Lake Góreckie (Poland). Environ. Monit. Assess. 2012, 184, 3315–3340. [Google Scholar] [CrossRef]
- Ciążela, J.; Siepak, M. Environmental factors affecting soil metals near outlet roads in Poznań, Poland: Impact of grain size, soil depth, and wind dispersal. Environ. Monit. Assess. 2016, 188, 323. [Google Scholar] [CrossRef]
- Bazarsadueva, S.V.; Shiretorova, V.G.; Nikitina, E.P.; Zhigzhitzhapova, S.V.; Taraskin, V.V.; Bazarzhapov, T.Z.; Dong, S.; Radnaeva, L.D. Heavy Metal Content in Fish of the Barguzin River (Eastern Cisbaikalia) and Assessment of Potential Risks to Human Health. Water 2023, 15, 3710. [Google Scholar] [CrossRef]
- Mayar, M.A.; Hamidov, A.; Akramkhanov, A.; Helming, K. Consideration of the Environment in Water-Energy-Food Nexus Research in the Aral Sea Basin. Water 2024, 16, 658. [Google Scholar] [CrossRef]
- Sojka, M.; Jaskuła, J.; Siepak, M. Heavy metals in bottom sediments of reservoirs in the lowland area of western Poland: Concentrations, distribution, sources and ecological risk. Water 2019, 11, 56. [Google Scholar] [CrossRef]
- Michalski, R.; Jabłonska-Czapla, J.; Szopa, S.; Łyko, A.; Grygoyc, K. Variability in different antimony, arsenic and chromium species in waters and bottom sediments of three water reservoirs in Upper Silesia (Poland). Comparative study. Int. J. Environ. Anal. Chem. 2016, 96, 682–693. [Google Scholar] [CrossRef]
- Jabłońska, J.; Kluska, M. Dynamics of mercury content changes in snow in the heating season on the example of the city of Siedlce. Ochr. Sr. Zasobow Nat. 2019, 30, 19–24. [Google Scholar] [CrossRef]
- Bagul, V.R.; Shinde, D.N.; Chavan, R.P.; Patil, C.L.; Pawar, R.K. New perspective on heavy metal pollution of water. J. Chem. Pharm. Res. 2015, 7, 700–705. [Google Scholar]
- Lim, A.P.; Aris, A.Z. A review on economically adsorbents on heavy metals removal in water and wastewater. Rev. Environ. Sci. Biotechnol. 2014, 13, 163–181. [Google Scholar] [CrossRef]
- Jabłońska, J.; Kluska, M.; Erchak, N. Development of a procedure for the isolation of electrostatically stabilized silanates from wheat samples. Przem. Chem. 2020, 99, 605–608. [Google Scholar]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Tiwari, A.K.; De Maio, M.; Singh, P.K.; Mahato, M.K. Evaluation of Surface Water Quality by Using GIS and a Heavy Metal Pollution Index (HPI) Model in a Coal Mining Area, India. Bull. Environ. Contam. Toxicol. 2015, 95, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Michalski, R. Test Procedure No. PB 2. Measurement of pH in Sediments, 5th ed.; Internal Laboratory Procedure of the Institute of Environmental Engineering; Polish Academy of Sciences: Zabrze, Poland, 2016. [Google Scholar]
- ISO 10523:2008; Water Quality—Determination of pH, 2nd ed. Technical Committee ISO/TC 147/SC 2 Physical, Chemical and Biochemical Methods. ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/51994.html (accessed on 19 March 2024).
- Siebelec, S.; Siebelec, G.; Smreczak, B. Zanieczyszczenia osadów dennych rzek i zbiorników wodnych. Stud. I Rap. IUNG-PIB 2015, 46, 163–181. (In Polish) [Google Scholar]
- Regulation of the Regulation Minister of Maritime Economy and Inland Navigation of 29 August 2019 on the Requirements to Be Met by Surface Water Used for Supplying the Public with in Water Intended for Human Consumption. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001747 (accessed on 20 February 2024). (In Polish)
- Lis, J.; Pasieczna, A. Atlas Geochemiczny Polski w Skali 1: 2,500,000; Państwowy Instytut Geologiczny: Warszawa, Poland, 1995; 72p. Available online: https://mapgeochem.pgi.gov.pl/atlas-polski/atlas-geochemiczny-polski/ (accessed on 11 February 2024).
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the Earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Bojakowska, I.; Sokołowska, G. Geochemiczne klasy czystości osadów wodnych. Przegląd Geol. 1988, 46, 49–54. (In Polish) [Google Scholar]
- Gatti, L.V.; Mozeto, A.; Artaxo, P. Trace elements in lake sediments measured by the PIXE technique. Nucl. Instrum. Methods Phys. Res. Sect. B 1999, 150, 298–305. [Google Scholar] [CrossRef]
- Menounou, N.; Presley, B.J. Mercury and other trace elements in sediment cores from central Texas lakes. Arch. Environ. Contam. Toxicol. 2003, 45, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Heininger, P.; Höss, S.; Claus, E.; Pelzer, J.; Traunspurger, W. Nematode communities in contaminated river sediments. Environ. Pollut. 2007, 146, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.L.; Braun, M.; Szaloki, I.; Baeyens, W.; Van Grieken, R.; Leermakers, M. Tracing the metal pollution history of the Tisza river through the analysis of a sediment depth profile. Water Air Soil Pollut. 2009, 200, 119–132. [Google Scholar] [CrossRef]
- Bábek, O.; Hilscherová, K.; Nehyba, S.; Zeman, J.; Famera, M.; Francu, J.; Holoubek, I.; MacHát, J.; Klánová, J. Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years: Morava River (Danube catchment area), Czech Republic. J. Soils Sediments 2008, 8, 165–176. [Google Scholar] [CrossRef]
- He, J.; Lü, C.; Fan, Q.; Xue, H.; Bao, J. Distribution of AVS-SEM, transformation mechanism and risk assessment of heavy metals in the Nanhai Lake in China. Environ. Earth Sci. 2011, 64, 2025–2037. [Google Scholar] [CrossRef]
- Ciszewski, D.; Czajka, A. Human-induced sedimentation patterns of a channelized lowland river. Earth Surf. Process. Landf. 2015, 40, 783–795. [Google Scholar] [CrossRef]
- Ciążela, J.; Siepak, M.; Wojtowicz, P. Tracking heavy metal contamination in a complex river-oxbow lake system: Middle Odra Valley, Germany/Poland. Sci. Total Environ. 2017, 616–617, 996–1006. [Google Scholar] [CrossRef]
- Obolewski, K.; Glinska-Lewczuk, K. Distribution of heavy metals in bottom sediments of floodplain lakes and their parent river—A case study of the Słupia. J. Elem. 2012, 18, 673–682. [Google Scholar] [CrossRef]
- Kluska, M.; Jabłońska, J. Variability and Heavy Metal Pollution Levels in Water and Bottom Sediments of the Liwiec and Muchawka Rivers (Poland). Water 2023, 15, 2833. [Google Scholar] [CrossRef]
- Skorbiłowicz, E.; Skorbiłowicz, M. Metals in grain fractions of bottom sediments from selected rivers in north-eastern Poland. Phys. Chem. Earth 2011, 36, 567–578. [Google Scholar] [CrossRef]
- Adamiec, E.; Helios-Rybicka, E. Distribution of pollutants in the Odra River system part V. Assessment of total and mobile heavy metals content in the suspended matter and sediments of the Odra River system and recommendations for river chemical monitoring. Pol. J. Environ. Stud. 2002, 11, 675–688. [Google Scholar]
Metal | Certified Value | AAS |
---|---|---|
Pb | 8.0 ± 0.5 | 7.8 ± 0.4 |
Ni | 117 ± 10 | 116 ± 8 |
Cu | 84 ± 5 | 85 ± 2 |
Cd | 0.14 ± 0.02 | 0.12 ± 0.03 |
Zn | 100 ± 12 | 101 ± 11 |
Metal | Detection Range (mg/L) | Gap Width (nm) | Wave Length (nm) | Accuracy (%) | Precision (%) |
---|---|---|---|---|---|
Pb | 0.002–10 | 1.0 | 217.0 | 20 | 10 |
Cd | 0.002–4 | 0.5 | 228.8 | 20 | 10 |
Ni | 0.01–10 | 0.2 | 232.0 | 20 | 10 |
Cu | 0.003–5 | 0.5 | 324.7 | 20 | 10 |
Zn | 0.01–15 | 1.0 | 213.9 | 20 | 10 |
Metal | Pb | Zn | Cd | Cu | Ni |
---|---|---|---|---|---|
Class I | 30 | 200 | 1 | 40 | 16 |
Class II | 100 | 500 | 3.5 | 100 | 40 |
Class III | 200 | 1000 | 6 | 200 | 50 |
Class IV | >200 | >1000 | >6 | >200 | >50 |
Geochemical background (mg/kg DM) | 15 | 73 | < 0.5 | 7 | 5 |
Metal | I Class | II Class | III Class |
---|---|---|---|
Pb | 0.05 | 0.05 | 0.05 |
Cd | 0.005 | 0.005 | 0.005 |
Ni | 0.05 | 0.05 | 0.2 |
Cu | 0.05 | 0.05 | 0.5 |
Zn | 3 | 5 | 5 |
Pollution | Cf | Cd |
---|---|---|
Poor | <1 | <8 |
Moderate | 1–3 | 8–16 |
Significant | 3–6 | 16–32 |
Very strong | ≥6 | ≥32 |
Element | Min–Max (mg/L) | Mean | Median | SD |
---|---|---|---|---|
May (pH: 6.73–7.11) | ||||
Ni | 1.1–1.4 | 1.2 | 1.3 | 1.0 |
Cd | 0.02–0.07 | 0.04 | 0.03 | 0.26 |
Cu | 0.5–1.4 | 0.9 | 0.8 | 0.9 |
Pb | 3.4–8.2 | 5.3 | 6.2 | 1.7 |
Zn | 10.3–19.4 | 15.4 | 16.1 | 3.4 |
August (pH: 6.79–7.23) | ||||
Ni | 1.3–1.6 | 1.4 | 1.5 | 0.8 |
Cd | 0.04–0.07 | 0.05 | 0.04 | 0. 17 |
Cu | 0.5–1.1 | 0.8 | 0.6 | 0.7 |
Pb | 5.1–7.9 | 6.1 | 6.6 | 1.5 |
Zn | 11.6–19.3 | 15.4 | 16.5 | 2.6 |
Element | Min–Max (mg/kg DM) | Mean | Median | SD |
---|---|---|---|---|
May (pH: 6.88–7.36) | ||||
Ni | 4.6–6.1 | 5.2 | 5.3 | 1.2 |
Cd | 0.4–0.8 | 0.6 | 0.5 | 0.2 |
Cu | 1.8–5.3 | 3.6 | 2.4 | 3.1 |
Pb | 9.7–15.7 | 12.0 | 11.8 | 1.5 |
Zn | 16.2–22.7 | 18.8 | 17.9 | 3.3 |
August (pH: 6.91–7.34) | ||||
Ni | 4.8–6.8 | 6.0 | 5.9 | 1.4 |
Cd | 0.5–0.7 | 0.6 | 0.6 | 0.2 |
Cu | 2.3–6.9 | 4.5 | 4.4 | 3.3 |
Pb | 10.4–16.3 | 12.9 | 12.8 | 2.2 |
Zn | 16.8–23.5 | 19.8 | 19.2 | 3.1 |
Related River (Country) | Min–Max | Ref. | ||||
---|---|---|---|---|---|---|
Ni | Cd | Cu | Pb | Zn | ||
Krzna (Poland) | 4.6–6.8 | 0.4–0.8 | 1.8–6.9 | 9.7–16.3 | 16.2–23.5 | This study |
Mojiguaçu (Brazil) | 8–38 | n/a | 9–48 | 3–31 | 17–92 | [47] |
Navasota (USA) | n/a | 0.2–0.4 | 16–22 | 18–30 | n/a | [48] |
Elba (Germany) | 30–90 | 3–6 | 62–174 | 40–172 | 13–56 | [49] |
Tisza (Hungary) | 64–88 | 0.2–3.7 | 40–137 | 18–304 | 130–570 | [50] |
Morawa (Czech Republic) | n/a | 0.1–4.8 | 22–63 | 14–55 | 66–321 | [51] |
Yellow River (China) | n/a | 217–393 | 20–55 | 29–37 | 58–93 | [52] |
Vistula (Poland) | n/a | 1–8 | n/a | 28–122 | 180–860 | [53] |
Odra (Poland) | 7–23 | 0.6–0.99 | 2–28 | 1–2 | 3–35 | [54] |
Słupia (Poland) | 3–14 | 0.1–0.7 | 2–45 | 6–244 | 14–96 | [55] |
Liwiec (Poland) | 3.3–9.9 | 0.2–0.7 | 0.7–9.4 | 10.4–13.9 | 16.4–25.3 | [56] |
Supraśl (Poland) | 5.4–18 | 0.4–1.1 | 0.8–16 | 3.5–35 | 10–67 | [57] |
Muchawka (Poland) | 2.3–8.4 | 0.1–0.6 | 0.7–5.2 | 9.8–13.4 | 14.4–21.3 | [58] |
Odra River (Poland) | 37–108 | 3–21.7 | 31–298 | 19–343 | 333–2591 | [59] |
River | Month | Cf | Cd | Pollution | ||||
---|---|---|---|---|---|---|---|---|
Zinc | Lead | Cadmium | Nickel | Copper | ||||
Krzna | May | 0.26 | 0.8 | 1.16 | 1.04 | 0.51 | 3.77 | poor |
August | 0.27 | 0.86 | 1.12 | 1.19 | 0.65 | 4.09 | poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluska, M.; Jabłońska, J. Pollution Assessment and Spatial Distribution of Heavy Metals in Surface Waters and Bottom Sediments of the Krzna River (Poland). Water 2024, 16, 1008. https://doi.org/10.3390/w16071008
Kluska M, Jabłońska J. Pollution Assessment and Spatial Distribution of Heavy Metals in Surface Waters and Bottom Sediments of the Krzna River (Poland). Water. 2024; 16(7):1008. https://doi.org/10.3390/w16071008
Chicago/Turabian StyleKluska, Mariusz, and Joanna Jabłońska. 2024. "Pollution Assessment and Spatial Distribution of Heavy Metals in Surface Waters and Bottom Sediments of the Krzna River (Poland)" Water 16, no. 7: 1008. https://doi.org/10.3390/w16071008
APA StyleKluska, M., & Jabłońska, J. (2024). Pollution Assessment and Spatial Distribution of Heavy Metals in Surface Waters and Bottom Sediments of the Krzna River (Poland). Water, 16(7), 1008. https://doi.org/10.3390/w16071008