Analysis of the Spatial Spillover Effect and Impact Transmission Mechanism of China’s Water Network by Constructing a Water Transfer Information Weight Matrix
Abstract
:1. Introduction
2. Research Variables and Data Sources
2.1. Input–Output Measurement Indicators
2.2. Spatial Measurement Indicator Variables
2.3. Data Sources
3. Theoretical Model
3.1. SBM Model Considering Nonconsensual Outputs
3.2. Spatial Spillover Effects Measurement Model
3.2.1. Spatial Water Transfer Information Weight Matrix
- (I)
- When, , in which refers to interbasin and interregional water transfer volume in area i in the t year; these data can be obtained through Water Resources Bulletins directly. refers to the starting year of this study period, i.e., 2003, and refers to the ending year of the period. refers to the average volume of water transferred in 2003–2020.
- (II)
- When, . Eventually, a spatial water transfer information weight matrix is introduced, drawing on the approach of Lin et al. [33]:
3.2.2. Spatial Autocorrelation Test
3.2.3. Spatial Measurement Model
4. Empirical Results and Analysis
4.1. Input–Output Benefits Level of Water Network Construction
4.2. Spatial Spillover Effect of the Water Network
4.2.1. Spatial Autocorrelation Test
4.2.2. Measurement and Analysis of the Water Network Spatial Spillover Effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Wang, H.; Ma, H.; He, G.H.; He, F. Conception of China’s “Double T”-shaped water network economic pattern construction. J. Hydraul. Eng. 2022, 53, 1271–1279. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer: Dordrecht, The Netherlands, 1988. [Google Scholar] [CrossRef]
- Hanna, R. US Environmental Regulation and FDI: Evidence from a Panel of US-based Multinational Firms. Am. Econ. J. Appl. Econ. 2010, 2, 158–189. [Google Scholar] [CrossRef]
- Liu, Y. Resource drag in an endogenous growth context: A panel data-based estimation with cross-sectional dependences and structural breaks. Appl. Econ. 2014, 46, 1586–1598. [Google Scholar] [CrossRef]
- Chu, J.; Liu, Y.M.; Lin, X.B.; De, T. Spatial Mutual Effects between Municipal Infrastructure Investment and Economic Development. Beijing Da Xue Xue Bao 2021, 57, 291–298. [Google Scholar] [CrossRef]
- Wang, B.; Fu, Q. Analysis on the spatial spillover mechanism change induced by infrastructure construction. Eng. Manag. 2020, 34, 127–134. [Google Scholar] [CrossRef]
- Pan, X.F.; Yang, Y.; Zhang, W.W. The Spatial Spillover Effect of China’s Regional Energy Efficiency. Eng. Manag. 2014, 28, 132–136. [Google Scholar] [CrossRef]
- Yi, Q.G.; Ma, C.; Ding, R. Analysis of the spatial spillover effect of high-speed rail on regional economic development. Stat. Decis. 2021, 583, 129–133. [Google Scholar] [CrossRef]
- Lv, T.Y.; Zeng, C.; Lindsay, C.S. The spatial spillover effect of transportation networks on ecological footprint. Ecol. Indic. 2021, 132, 108309. [Google Scholar] [CrossRef]
- Sun, C.Z.; Zhao, L.S.; Zou, W. Water Resource Utilization Efficiency and Spatial Spillover Effects in China. Acta Geogr. Sin. 2014, 24, 771–788. [Google Scholar] [CrossRef]
- Song, M.; Du, S.X. Dynamic changes and spatial overflow of water resources green efficiency: A case study on Yangtze River Economic Zone. Resour. Ind. 2021, 583, 129–133. [Google Scholar] [CrossRef]
- Qin, T.; Zhang, H.Q.; Tong, J.P. Water resource constraint on urbanization in Yangtze River Economic Belt. China Popul. Resour. Environ. 2018, 28, 39–45. [Google Scholar] [CrossRef]
- Qin, T.; Tong, J.; Zhang, H. Construction and evolutionary factors of spatial correlation network of China’s provincial water resource efficiency under environmental constraints. China Popul. Resour. Environ. 2020, 30, 84–94. [Google Scholar] [CrossRef]
- Ding, X.H.; He, J.H.; Wang, L.Y. Inter-provincial water resources utilization efficiency and its driving factors considering undesirable outputs. China Popul. Resour. Environ. 2018, 28, 157–164. [Google Scholar] [CrossRef]
- An, M.; Butsic, V.; He, W.J.; Zhang, Z.F.; Qin, T.; Huang, Z.W.; Yuan, L. Drag Effect of Water Consumption on Urbanization—A Case Study of the Yangtze River Economic Belt from 2000 to 2015. Water 2018, 10, 1115. [Google Scholar] [CrossRef]
- Ward, F.A.; Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef]
- Adewale, C.; Reganold, J.P.; Higgins, S.; Evans, R.D. Improving carbon footprinting of agricultural systems: Boundaries, tiers, and organic farming. Environ. Impact Assess. Rev. 2018, 71, 41–48. [Google Scholar] [CrossRef]
- Rong, J.; Hong, J.; Guo, Q.; Fang, Z.; Chen, S.K. Path mechanism and spatial spillover effect of green technology innovation on agricultural CO2 emission intensity: A case study in Jiangsu Province, China. Ecol. Indic. 2023, 157, 111147. [Google Scholar] [CrossRef]
- Chen, H.Y.; Yi, J.Z.; Chen, A.B.; Peng, D.X.; Yang, J.Q. Green technology innovation and CO2 emission in China: Evidence from a spatial-temporal analysis and a nonlinear spatial durbin model. Energy Policy 2023, 172, 113338. [Google Scholar] [CrossRef]
- Solow. Science and Ideology in Economics. In Contemporary Issues in Economics; Grandall, E., Ed.; Little Brown Inc.: Boston, MA, USA, 1972. [Google Scholar]
- Tobler, W.R. Cellular Geography. Theory Decis. Libr. 1979, 20, 379–386. [Google Scholar]
- Zhang, X.L. Has Transport Infrastructure Promoted Regional Economic Growth?—With an Analysis of the Spatial Spillover Effects of Transport Infrastructure. China Soc. Sci. 2013, 34, 24–47. [Google Scholar]
- Wu, Y.J.; Zhang, M.Q. An Empirical Analysis of the Relationship between Transport Infrastructure, Spatial Spillover and Economic Growth. Stat. Decis. 2017, 116–120. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.S.; Tian, A.R.; Zhou, Y. Spatial and Temporal Differentiation of Green Innovation Efficiency in Manufacturing Industry Based on Super-SBM-ESDA and Tobit Model: Taking the Yangtze River Economic Belt as an Example. Ecol. Econ. 2023, 11. Available online: https://link.cnki.net/urlid/53.1193.F.20231102.1132.002 (accessed on 2 November 2023).
- Elhorst, J.P. Spatial Econometrics from Cross-Sectional Data to Spatial Panels; Briefs in Regional Science; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Elhorst, J.P. Specification and estimation of spatial panel data models. Int. Reg. Sci. Rev. 2003, 26, 244–268. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Panel Data Models; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Elhorst, J.P. Matlab Software for Spatial Panels. Int. Reg. Sci. Rev. 2014, 37, 389–405. [Google Scholar] [CrossRef]
- Tone, K.A. Slacks-based Measure Efficiency in Data Envelopment Analysis. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K.A. Strange Case of the Cost and Allocative Efficiencies in DEA. Oper. Res. Soc. 2002, 53, 1225–1231. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Manag. Sci. 1993, 39, 1179–1297. [Google Scholar] [CrossRef]
- Lee, L.; Yu, J. Some recent developments in spatial panel data models. Reg. Sci. Urban Econ. 2010, 40, 255–271. [Google Scholar] [CrossRef]
- Lin, G.P.; Long, Z.H.; Wu, M. A Spatial investigation of σ-convergence in China. J. Quant. Technol. Econ. 2006, 4, 14–21. [Google Scholar]
- Moran, P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q. Spatial Econometrics; Higher Education Press: Beijing, China, 2014. [Google Scholar]
- Lee, L.F.; Yu, J. A spatial dynamic panel data model with both time and individual fixed effects. Econom. Theory 2010, 26, 564–597. [Google Scholar] [CrossRef]
- Xie, R.; Chen, Y.; Han, F.; Fang, J.Y. Research on Influence and Time-space Effect of New-type Urbanization on Urban Eco-environmental Quality. Manag. Rev. 2018, 30, 230–241. [Google Scholar]
- LeSage, J.; Pace, R.K. Introduction to Spatial Economics; Chapman and Hall/CRC: New York, NY, USA, 2009. [Google Scholar]
- Arraiz, I.; Drukker, D.M.; Kelejian, H.H.; Prucha, I.R. A Spatial Cliff-Ord-type Model with Heteroskedastic Innovations: Small and Large Samples Results. J. Region. Sci. 2010, 50, 592–614. [Google Scholar] [CrossRef]
- Yang, Z.L. A robust LM test for spatial error components. Reg. Sci. Urban Econ. 2010, 40, 299–310. [Google Scholar] [CrossRef]
- Xu, X.B.; Lee, L.F. Theoretical foundations for spatial econometric research. Reg. Sci. Urban Econ. 2019, 76, 2–12. [Google Scholar] [CrossRef]
- Chen, H.B. Provincial agricultural water use efficiency evaluation and spatial spillover effect in China. J. Arid Resour. Environ. 2017, 31, 85–90. [Google Scholar] [CrossRef]
- Liu, D.D.; Zhu, X.Y.; Wang, Y.F. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Xie, Z.; Jing, Z.; Yang, M. Water Constraint Mitigation and Regional Economic Growth: Evidence from the South-to-north Water Diversion Project. J. Quant. Technol. Econ. 2023, 9, 93–115. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Deng, M.J.; He, G.H.; He, F.; Wang, Y. Jiziwan water network in the Yellow River Basin: Conceptualizing the east extension project of the west route of the South-to-Nouth Water Diversion. J. Hydraul. Eng. 2023, 54, 1015–1024. [Google Scholar] [CrossRef]
Year | Cumulative Completion (CNY Billion) | Investment under Construction (CNY Billion) |
---|---|---|
2020 | 4188.7 | 7365.2 |
2019 | 4530.2 | 7875 |
2018 | 4095 | 7327.8 |
2017 | 2879.4 | 6372.4 |
2016 | 2590.6 | 4648.1 |
2015 | 3429.6 | 4634.3 |
2014 | 2947.6 | 4104.6 |
2013 | 2503.9 | 3304.4 |
2012 | 1937.4 | 2645 |
2011 | 1435.2 | 2483.7 |
2010 | 968 | 1820.2 |
2009 | 727.4 | 1282.2 |
2008 | 567.4 | 869.9 |
2007 | 683.3 | 1102.7 |
Objective Layer | Guideline Layer | Indicator Layer |
---|---|---|
Input–output benefit of water network construction | Resource input | Total water resources, billion m3. Of these, annual interbasin and interregional water transfer, billion m3. |
Capital input | Investment in water resources and environment fixed assets, CNY billion. Length of urban water supply pipes, km. Local financial expenditure on science and technology, CNY billion. | |
Labor input | Urban employment rate (1—urban registered unemployment rate), %. Average education level, characterized by per capita education expenditure. | |
Consensual output | Gross regional product per unit of water resources, characterized by the ratio of gross regional product to water resources, CNY million/m3, GDP deflator adjusted to 2003 constant prices. | |
Nonconsensual output | Total wastewater discharge, 10,000 metric tons. |
Symbol | Meaning of Variable | Data Expression | Unit |
---|---|---|---|
Y | Benefit level | Input–output benefit level value of water network construction in each province. | |
PGDP | Per capita GDP | Per capita GDP (GDP deflated and adjusted to 2003 constant prices). | CNY/person |
PWR | Resources endowment | Per capita water resources characterize the local water resources endowment. | m3/person |
TI | Technological innovation level | The research and experimental development (R&D) activities of industrial enterprises above designated size per capita per year. | Person year |
GA | Government attention | Local finance on agriculture, forestry, and water affairs/local finance general expenditure. | % |
IWD | Industrial water demand | Total industrial water demand/total water demand. | % |
AWD | Agricultural water demand | Total agricultural water demand/total water demand. | % |
CI | Consumption index | Consumer price index. | % |
AW | Average wage | The average wage of local employed persons in urban area. | CNY |
I > 0 | I = 0 | I < 0 |
---|---|---|
Spatial positive autocorrelation | Spatial noncorrelation | Spatial negative autocorrelation |
Regions | 2003 | 2004 | 2005 | 2010 | 2011 | 2012 | 2017 | 2018 | 2019 | Average |
---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.319 | 0.409 | 0.512 | 0.654 | 0.690 | 0.723 | 0.867 | 0.915 | 1.000 | 0.717 |
Tianjin | 0.220 | 0.222 | 0.257 | 0.242 | 0.241 | 0.235 | 0.412 | 0.533 | 0.579 | 0.295 |
Hebei | 0.400 | 0.437 | 0.406 | 0.505 | 0.523 | 0.518 | 0.678 | 0.710 | 0.747 | 0.583 |
Shanxi | 0.732 | 1.000 | 1.000 | 1.000 | 1.000 | 0.866 | 1.000 | 1.000 | 1.000 | 0.856 |
Inner Mongolia | 0.283 | 0.334 | 0.299 | 0.336 | 0.301 | 0.316 | 0.650 | 0.667 | 0.656 | 0.471 |
Liaoning | 0.327 | 0.383 | 0.324 | 0.271 | 0.264 | 0.265 | 0.523 | 0.896 | 0.896 | 0.428 |
Jilin | 0.287 | 0.325 | 0.287 | 0.342 | 0.384 | 0.328 | 0.420 | 0.470 | 0.528 | 0.347 |
Heilongjiang | 0.319 | 0.409 | 0.429 | 0.392 | 0.382 | 0.350 | 0.563 | 0.695 | 0.732 | 0.484 |
Shanghai | 0.273 | 0.304 | 0.306 | 0.444 | 0.573 | 0.604 | 0.800 | 1.000 | 1.000 | 0.610 |
Jiangsu | 0.389 | 0.453 | 0.542 | 1.000 | 0.781 | 0.852 | 1.000 | 1.000 | 1.000 | 0.831 |
Zhejiang | 0.294 | 0.335 | 0.360 | 0.501 | 0.586 | 0.565 | 1.000 | 1.000 | 1.000 | 0.590 |
Anhui | 1.000 | 1.000 | 0.725 | 0.418 | 0.419 | 0.385 | 0.480 | 0.560 | 0.538 | 0.544 |
Fujian | 0.558 | 0.615 | 0.627 | 1.000 | 1.000 | 0.634 | 1.000 | 0.922 | 1.000 | 0.807 |
Jiangxi | 1.000 | 1.000 | 0.548 | 0.468 | 0.558 | 0.543 | 0.417 | 0.396 | 0.404 | 0.498 |
Shandong | 0.575 | 0.647 | 0.740 | 1.000 | 0.875 | 1.000 | 1.000 | 1.000 | 1.000 | 0.922 |
Henan | 0.772 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.932 | 1.000 | 1.000 | 0.967 |
Hubei | 1.000 | 1.000 | 0.969 | 1.000 | 1.000 | 1.000 | 0.789 | 1.000 | 1.000 | 0.921 |
Hunan | 0.386 | 0.398 | 0.403 | 0.571 | 0.653 | 0.711 | 1.000 | 0.672 | 0.712 | 0.610 |
Guangdong | 0.713 | 0.805 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.949 |
Guangxi | 0.242 | 0.257 | 0.252 | 0.298 | 0.311 | 0.306 | 0.390 | 0.423 | 0.430 | 0.328 |
Hainan | 0.377 | 0.396 | 0.412 | 0.391 | 0.420 | 0.338 | 0.421 | 0.422 | 0.292 | 0.374 |
Chongqing | 0.354 | 0.350 | 0.365 | 0.650 | 0.752 | 0.872 | 1.000 | 1.000 | 1.000 | 0.701 |
Sichuan | 1.000 | 1.000 | 0.773 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.980 |
Guizhou | 0.254 | 0.282 | 0.296 | 0.334 | 0.316 | 0.339 | 0.379 | 0.418 | 0.563 | 0.390 |
Yunnan | 0.382 | 0.454 | 0.461 | 0.519 | 1.000 | 1.000 | 0.769 | 0.869 | 1.000 | 0.725 |
Tibet | 0.241 | 0.276 | 0.334 | 0.400 | 0.453 | 0.502 | 0.551 | 0.625 | 0.729 | 0.445 |
Shaanxi | 0.341 | 0.371 | 0.397 | 1.000 | 0.781 | 1.000 | 0.782 | 0.850 | 1.000 | 0.747 |
Gansu | 0.517 | 0.628 | 0.543 | 0.595 | 0.422 | 0.413 | 0.434 | 0.519 | 0.601 | 0.518 |
Qinghai | 0.212 | 0.267 | 0.259 | 0.282 | 0.341 | 0.345 | 0.268 | 0.260 | 0.283 | 0.263 |
Ningxia | 0.115 | 0.145 | 0.122 | 0.239 | 0.256 | 0.275 | 0.204 | 0.230 | 0.233 | 0.208 |
Xinjiang | 0.237 | 0.261 | 0.292 | 0.475 | 1.000 | 0.564 | 0.319 | 0.372 | 0.379 | 0.408 |
Year | 2003 | 2004 | 2005 | 2010 | 2011 | 2012 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|
Moran’s I | 0.079 | 0.071 | 0.063 | 0.042 | 0.034 | 0.037 | 0.061 | 0.060 | 0.064 |
Z | 3.477 | 3.204 | 2.960 | 2.325 | 2.080 | 2.180 | 2.897 | 2.875 | 2.448 |
p-value * (5%) | 0.001 | 0.001 | 0.003 | 0.020 | 0.038 | 0.029 | 0.004 | 0.004 | 0.014 |
Variables | SLM | SEM | SDM | LR_Direct | LR_Indirect | LR_Total |
---|---|---|---|---|---|---|
ln(pgdp) | −0.0775 | −0.0707 | −0.1645 ** | −0.1617 ** | −0.016 | −0.1777 |
ln(pwr) | 0.0309 ** | 0.0268 * | 0.0406 ** | 0.0432 *** | 0.1948 * | 0.2380 ** |
ln(ti) | 0.0431 *** | 0.0412 *** | 0.0392 *** | 0.0418 *** | 0.2955 ** | 0.3374 ** |
ln(ga) | −0.1203 *** | −0.1188 *** | −0.0551 | 0.0815 | −1.4342 *** | −1.3527 *** |
ln(iwd) | 0.014 | 0.0114 | 0.0178 | 0.0268 | 0.8126 ** | 0.8394 ** |
ln(awd) | 0.1388 *** | 0.1381 *** | 0.0294 | 0.05 | 1.9514 *** | 2.0014 *** |
ln(ci) | −3.7896 *** | −3.8018 *** | −3.9349 *** | −3.9365 *** | −4.2246 | −8.1611 |
ln(aw) | 0.1136 *** | 0.1143 *** | 0.1115 *** | 0.1352 *** | 1.3294 *** | 1.4647 *** |
N | 558 | 558 | 558 | |||
LMerror | 34.050 *** | |||||
R-LMerror | 4.728 *** | |||||
LMlag | 83.254 *** | |||||
R-LMlag | 53.932 *** | |||||
Hausman | 20.38 *** | 25.97 *** | 80.000 *** | |||
Log Lik. | 263.1571 | 262.9849 | 274.1941 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Chen, F.; Nie, X.; Du, X. Analysis of the Spatial Spillover Effect and Impact Transmission Mechanism of China’s Water Network by Constructing a Water Transfer Information Weight Matrix. Water 2024, 16, 809. https://doi.org/10.3390/w16060809
Gao J, Chen F, Nie X, Du X. Analysis of the Spatial Spillover Effect and Impact Transmission Mechanism of China’s Water Network by Constructing a Water Transfer Information Weight Matrix. Water. 2024; 16(6):809. https://doi.org/10.3390/w16060809
Chicago/Turabian StyleGao, Junyan, Feng Chen, Xiangtian Nie, and Xuewan Du. 2024. "Analysis of the Spatial Spillover Effect and Impact Transmission Mechanism of China’s Water Network by Constructing a Water Transfer Information Weight Matrix" Water 16, no. 6: 809. https://doi.org/10.3390/w16060809
APA StyleGao, J., Chen, F., Nie, X., & Du, X. (2024). Analysis of the Spatial Spillover Effect and Impact Transmission Mechanism of China’s Water Network by Constructing a Water Transfer Information Weight Matrix. Water, 16(6), 809. https://doi.org/10.3390/w16060809