Holocene Paleoclimate Records in Equatorial West Africa: Insights Based on the Characterization of Glycerol Dialkyl Glycerol Tetraethers
Abstract
:1. Introduction
2. Geological and Climate Background
3. Materials and Methods
3.1. Sampling
3.2. AMS 14C Dating
3.3. TOC, TN, and Stable Isotopes Analysis
3.4. Glycerol Dialkyl Glycerol Tetraethers
3.5. GDGTs Proxies and SST Estimation
4. Results
4.1. Age Model
4.2. Four Stages Indicated by δ13C, δ15N, and TOC/TN
4.3. Distribution of GDGTs
4.4. SST Reconstruction Based on TEXH86 and RI-OH Indexes
5. Discussion
5.1. Variation in the Sources of OM during the Holocene
5.2. Sources of GDGTs during the Holocene
5.3. Reconstruction of the SST during the Holocene
5.3.1. Modern SSTs
5.3.2. Paleo SSTs
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huguet, C.; Kim, J.H.; Gonzalez-Arango, C.; Ramirez-Valencia, V.; Kang, S.; Gal, J.K.; Shin, K.H. Sources of organic matter in two contrasting tropical coastal environments: The Caribbean Sea and the eastern Pacific. J. S. Am. Earth Sci. 2019, 96, 102349. [Google Scholar] [CrossRef]
- Carneiro, L.M.; Zucchi, M.d.R.; de Jesus, T.B.; Junior, J.B.d.S.; Hadlich, G.M. delta C-13, delta N-15 and TOC/TN as indicators of the origin of organic matter in sediment samples from the estuary of a tropical river. Mar. Pollut. Bull. 2021, 172, 112857. [Google Scholar] [CrossRef]
- Olusegun, D.A.; Qiao, L.; Ding, D.; Li, G.; Ma, Y.; Wang, L. Evolutionary trends of the Niger Delta shoreline during the last 100 years: Responses to rainfall and river discharge. Mar. Geol. 2015, 367, 202–211. [Google Scholar]
- Akinlua, A.; Torto, N. Geochemical evaluation of Niger Delta sedimentary organic rocks: A new insight. Int. J. Earth Sci. 2011, 100, 1401–1411. [Google Scholar] [CrossRef]
- Shanahan, T.M.; McKay, N.P.; Hughen, K.A.; Overpeck, J.T.; Otto-Bliesner, B.; Heil, C.W.; King, J.; Scholz, C.A.; Peck, J. The time-transgressive termination of the African Humid Period. Nat. Geosci. 2015, 8, 140–144. [Google Scholar] [CrossRef]
- Druyan, L.M.; Fulakeza, M. The impact of the Atlantic cold tongue on West African monsoon onset in regional model simulations for 1998–2002. Int. J. Climatol. 2015, 35, 275–287. [Google Scholar] [CrossRef]
- Liao, W.S.; Hu, J.F.; Peng, P.A. Burial of Organic Carbon in the Taiwan Strait. J. Geophys. Res.-Ocean. 2018, 123, 6639–6652. [Google Scholar] [CrossRef]
- Elderfield, H.; Ganssen, G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 2000, 405, 442–445. [Google Scholar] [CrossRef]
- Prahl, F.G.; Wakeham, S.G. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature 1987, 330, 367–369. [Google Scholar] [CrossRef]
- Rampen, S.W.; Schouten, S.; Wakeham, S.G.; Damste, J.S.S. Seasonal and spatial variation in the sources and fluxes of long chain diols and mid-chain hydroxy methyl alkanoates in the Arabian Sea. Org. Geochem. 2007, 38, 165–179. [Google Scholar] [CrossRef]
- Yao, P.; Yu, Z.; Bianchi, T.S.; Guo, Z.; Zhao, M.; Knappy, C.S.; Keely, B.J.; Zhao, B.; Zhang, T.; Pan, H.; et al. A multiproxy analysis of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf. J. Geophys. Res.-Biogeosci. 2015, 120, 1407–1429. [Google Scholar] [CrossRef]
- Kim, J.-H.; Crosta, X.; Willmott, V.; Renssen, H.; Bonnin, J.; Helmke, P.; Schouten, S.; Damste, J.S.S. Holocene subsurface temperature variability in the eastern Antarctic continental margin. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Schouten, S.; Hopmans, E.C.; Damste, J.S.S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Org. Geochem. 2013, 54, 19–61. [Google Scholar] [CrossRef]
- Hopmans, E.C.; Weijers, J.W.H.; Schefuss, E.; Herfort, L.; Damste, J.S.S.; Schouten, S. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 2004, 224, 107–116. [Google Scholar] [CrossRef]
- Damste, J.S.S.; Ossebaar, J.; Schouten, S.; Verschuren, D. Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: Extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake. Quat. Sci. Rev. 2012, 50, 43–54. [Google Scholar] [CrossRef]
- Karner, M.B.; DeLong, E.F.; Karl, D.M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 2001, 409, 507–510. [Google Scholar] [CrossRef]
- Liu, X.-L.; Summons, R.E.; Hinrichs, K.-U. Extending the known range of glycerol ether lipids in the environment: Structural assignments based on tandem mass spectral fragmentation patterns. Rapid Commun. Mass. Spectrom. 2012, 26, 2295–2302. [Google Scholar] [CrossRef]
- Peterse, F.; Nicol, G.W.; Schouten, S.; Sinninghe Damsté, J.S. Influence of soil pH on the abundance and distribution of core and intact polar lipid-derived branched GDGTs in soil. Org. Geochem. 2010, 41, 1171–1175. [Google Scholar] [CrossRef]
- Schouten, S.; Hopmans, E.C.; Schefuss, E.; Damste, J.S.S. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 2002, 204, 265–274. [Google Scholar] [CrossRef]
- Schouten, S.; Huguet, C.; Hopmans, E.C.; Kienhuis, M.V.M.; Damste, J.S.S. Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal. Chem. 2007, 79, 2940–2944. [Google Scholar] [CrossRef]
- Kim, J.-H.; van der Meer, J.; Schouten, S.; Helmke, P.; Willmott, V.; Sangiorgi, F.; Koç, N.; Hopmans, E.C.; Damsté, J.S.S. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta 2010, 74, 4639–4654. [Google Scholar] [CrossRef]
- Lü, X.; Liu, X.-L.; Elling, F.J.; Yang, H.; Xie, S.; Song, J.; Li, X.; Yuan, H.; Li, N.; Hinrichs, K.-U. Hydroxylated isoprenoid GDGTs in Chinese coastal seas and their potential as a paleotemperature proxy for mid-to-low latitude marginal seas. Org. Geochem. 2015, 89–90, 31–43. [Google Scholar] [CrossRef]
- Umoh, U.U.; Li, L.; Wang, J.; Kauluma, N.; Asuquo, F.E.; Akpan, E.R. Glycerol dialkyl glycerol tetraether signatures in tropical mesotidal estuary sediments of Qua Iboe River, Gulf of Guinea. Org. Geochem. 2022, 170, 104461. [Google Scholar] [CrossRef]
- Weldeab, S.; Lea, D.W.; Schneider, R.R.; Andersen, N. 155,000 years of West African monsoon and ocean thermal evolution. Science 2007, 316, 1303–1307. [Google Scholar] [CrossRef]
- Corredor, F.; Shaw, J.H.; Bilotti, F.; Tuttle, M.L.W.; Charpentier, R.R.; Brownfield, M.E. Structural styles in the deep-water fold and thrust belts of the Niger Delta (June, pg 753, 2005). Aapg Bull. 2013, 97, 2102. [Google Scholar]
- Atkinson, B.W. Atmosphere, Weather And Climate, 6th Edition—Barry, Rg, Chorley, RJ. Appl. Geogr. 1993, 13, 373. [Google Scholar] [CrossRef]
- Marret, F. Distribution of dinoflagellate cysts in recent marine-sediments from the east equatorial atlantic (gulf of guinea). Rev. Palaeobot. Palynol. 1994, 84, 1–22. [Google Scholar] [CrossRef]
- Dada, O.A.; Li, G.; Qiao, L.; Ding, D.; Ma, Y.; Xu, J. Seasonal shoreline behaviours along the arcuate Niger Delta coast: Complex interaction between fluvial and marine processes. Cont. Shelf Res. 2016, 122, 51–67. [Google Scholar] [CrossRef]
- Heaton, T.J.; Koehler, P.; Butzin, M.; Bard, E.; Reimer, R.W.; Austin, W.E.N.; Ramsey, C.B.; Grootes, P.M.; Hughen, K.A.; Kromer, B.; et al. MARINE20—The marine radiocarbon age calibration curve (0–55,000 CAL BP). Radiocarbon 2020, 62, 779–820. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Zhang, C.L.; Liu, X.-L.; Li, L.; Hinrichs, K.-U.; Noakes, J.E. Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth Planet. Sci. Lett. 2011, 307, 525–534. [Google Scholar] [CrossRef]
- Sinninghe Damsté Jaap, S.; Rijpstra, W.I.C.; Hopmans Ellen, C.; Jung, M.-Y.; Kim, J.-G.; Rhee, S.-K.; Stieglmeier, M.; Schleper, C. Intact Polar and Core Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Group I.1a and I.1b Thaumarchaeota in Soil. Appl. Environ. Microbiol. 2012, 78, 6866–6874. [Google Scholar] [CrossRef]
- Damste, J.S.S.; Ossebaar, J.; Abbas, B.; Schouten, S.; Verschuren, D. Fluxes and distribution of tetraether lipids in an equatorial African lake: Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochim. Cosmochim. Acta 2009, 73, 4232–4249. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, C.; Dang, X.; Ruan, X.; Lu, X.; Xie, S.; Li, X.; Yao, Y.; Yang, H. Assessing hydroxylated isoprenoid GDGTs as a paleothermometer for the tropical South China Sea. Org. Geochem. 2018, 115, 156–165. [Google Scholar] [CrossRef]
- Emerson, S.; Hedges, J.I. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 1988, 3, 621–634. [Google Scholar] [CrossRef]
- Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 1997, 27, 213–250. [Google Scholar] [CrossRef]
- Schoeninger, M.J.; Deniro, M.J. Nitrogen and carbon isotopic composition of bone-collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 1984, 48, 625–639. [Google Scholar] [CrossRef]
- Liu, M.; Hou, L.J.; Xu, S.Y.; Ou, D.N.; Yang, Y.; Yu, J.; Wang, Q. Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China. Mar. Pollut. Bull. 2006, 52, 1625–1633. [Google Scholar] [CrossRef]
- Goni, M.A.; Ruttenberg, K.C.; Eglinton, T.I. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Geochim. Cosmochim. Acta 1998, 62, 3055–3075. [Google Scholar] [CrossRef]
- Herfort, L.; Schouten, S.; Boon, J.P.; Damste, J.S.S. Application of the TEX86 temperature proxy to the southern North Sea. Org. Geochem. 2006, 37, 1715–1726. [Google Scholar] [CrossRef]
- Sobrinho, R.d.L.; Bernardes, M.C.; de Rezende, C.E.; Kim, J.-H.; Schouten, S.; Damste, J.S.S. A multiproxy approach to characterize the sedimentation of organic carbon in the Amazon continental shelf. Mar. Chem. 2021, 232, 103961. [Google Scholar] [CrossRef]
- Weijers, J.W.H.; Schouten, S.; Spaargaren, O.C.; Sinninghe Damsté, J.S. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index. Org. Geochem. 2006, 37, 1680–1693. [Google Scholar] [CrossRef]
- Collins, J.A.; Schefuss, E.; Heslop, D.; Mulitza, S.; Prange, M.; Zabel, M.; Tjallingii, R.; Dokken, T.M.; Huang, E.; Mackensen, A.; et al. Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years. Nat. Geosci. 2011, 4, 42–45. [Google Scholar] [CrossRef]
- Weldeab, S.; Lea, D.W.; Schneider, R.R.; Andersen, N. Centennial scale climate instabilities in a wet early Holocene West African monsoon. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Alley, R.B.; Agustsdottir, A.M. The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quat. Sci. Rev. 2005, 24, 1123–1149. [Google Scholar] [CrossRef]
- Kendall, R.A.; Mitrovica, J.X.; Milne, G.A.; Tornqvist, T.E.; Li, Y. The sea-level fingerprint of the 8.2 ka climate event. Geology 2008, 36, 423–426. [Google Scholar] [CrossRef]
- Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev. 2000, 19, 189–211. [Google Scholar] [CrossRef]
- Cole, J.M.; Goldstein, S.L.; Demenocal, P.B.; Hemming, S.R.; Grousset, F.E. Contrasting compositions of Saharan dust in the eastern Atlantic Ocean during the last deglaciation and African Humid Period. Earth Planet. Sci. Lett. 2009, 278, 257–266. [Google Scholar] [CrossRef]
- Blaga, C.I.; Reichart, G.-J.; Heiri, O.; Damste, J.S.S. Tetraether membrane lipid distributions in water-column particulate matter and sediments: A study of 47 European lakes along a north-south transect. J. Paleolimnol. 2009, 41, 523–540. [Google Scholar] [CrossRef]
- Weijers, J.W.H.; Lim, K.L.H.; Aquilina, A.; Damste, J.S.S.; Pancost, R.D. Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane flux. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef]
- Li, J.; Pancost, R.D.; Naafs, B.D.A.; Yang, H.; Zhao, C.; Xie, S. Distribution of glycerol dialkyl glycerol tetraether (GDGT) lipids in a hypersaline lake system. Org. Geochem. 2016, 99, 113–124. [Google Scholar] [CrossRef]
- Kallweit, W.; Mollenhauer, G.; Zabel, M. Multi-proxy reconstruction of terrigenous input and sea-surface temperatures in the eastern Gulf of Guinea over the last similar to 35 ka. Mar. Geol. 2012, 319, 35–46. [Google Scholar] [CrossRef]
- Kang, S.; Shin, K.-H.; Kim, J.-H. Occurrence and distribution of hydroxylated isoprenoid glycerol dialkyl glycerol tetraethers (OH-GDGTs) in the Han River system, South Korea. Acta Geochim. 2017, 36, 367–369. [Google Scholar] [CrossRef]
- Park, E.; Hefter, J.; Fischer, G.; Mollenhauer, G. TEX86 in sinking particles in three eastern Atlantic upwelling regimes. Org. Geochem. 2018, 124, 151–163. [Google Scholar] [CrossRef]
- Pitcher, A.; Wuchter, C.; Siedenberg, K.; Schouten, S.; Damste, J.S.S. Crenarchaeol tracks winter blooms of ammonia-oxidizing Thaumarchaeota in the coastal North Sea. Limnol. Oceanogr. 2011, 56, 2308–2318. [Google Scholar] [CrossRef]
- Wei, B.; Jia, G.; Hefter, J.; Kang, M.; Park, E.; Wang, S.; Mollenhauer, G. Comparison of the U-37(K’), LDI, TEX86H, and RI-OH temperature proxies in sediments from the northern shelf of the South China Sea. Biogeosciences 2020, 17, 4489–4508. [Google Scholar] [CrossRef]
- Timmermann, A.; Sachs, J.; Timm, O.E. Assessing divergent SST behavior during the last 21 ka derived from alkenones and G. ruber-Mg/Ca in the equatorial Pacific. Paleoceanography 2014, 29, 680–696. [Google Scholar] [CrossRef]
- Weldeab, S.; Schneider, R.R.; Kolling, M.; Wefer, G. Holocene African droughts relate to eastern equatorial Atlantic cooling. Geology 2005, 33, 981–984. [Google Scholar] [CrossRef]
Depth (cm) | 14C Age (yr BP) | Calibrated Age (yr BP) |
---|---|---|
13 | 1080 ± 30 | 914 ± 146 |
37 | 1860 ± 30 | 1733 ± 157 |
67 | 3720 ± 30 | 4056 ± 175 |
109 | 5230 ± 30 | 5857 ± 168 |
142 | 6520 ± 30 | 7276 ± 140 |
182 | 7510 ± 30 | 8225 ± 145 |
199 | 7740 ± 30 | 8474 ± 137 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Mao, S.; Cao, Y.; Liu, L.; Zhai, M.; Qiu, Z.; Liu, L. Holocene Paleoclimate Records in Equatorial West Africa: Insights Based on the Characterization of Glycerol Dialkyl Glycerol Tetraethers. Water 2024, 16, 771. https://doi.org/10.3390/w16050771
Yang P, Mao S, Cao Y, Liu L, Zhai M, Qiu Z, Liu L. Holocene Paleoclimate Records in Equatorial West Africa: Insights Based on the Characterization of Glycerol Dialkyl Glycerol Tetraethers. Water. 2024; 16(5):771. https://doi.org/10.3390/w16050771
Chicago/Turabian StyleYang, Peining, Shengyi Mao, Yiyun Cao, Li Liu, Mengyue Zhai, Zhongyan Qiu, and Lihua Liu. 2024. "Holocene Paleoclimate Records in Equatorial West Africa: Insights Based on the Characterization of Glycerol Dialkyl Glycerol Tetraethers" Water 16, no. 5: 771. https://doi.org/10.3390/w16050771
APA StyleYang, P., Mao, S., Cao, Y., Liu, L., Zhai, M., Qiu, Z., & Liu, L. (2024). Holocene Paleoclimate Records in Equatorial West Africa: Insights Based on the Characterization of Glycerol Dialkyl Glycerol Tetraethers. Water, 16(5), 771. https://doi.org/10.3390/w16050771