Removal of Chromium (VI) from Water Using Orange peel as the Biosorbent: Experimental, Modeling, and Kinetic Studies on Adsorption Isotherms and Chemical Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biosorbent Preparation
- The orange peels were washed with tap water and then with distilled water to remove residual impurities and soluble parts. The washing process was repeated several times until clear washing water was obtained.
- The orange peels were exposed to the sun for several days until completely dry.
- Once dried, the peels were crushed using an electric household grinder.
- The ground peels were sifted using a sieve with a mesh size of 0.315 mm.
- After sieving, the biosorbent was stored for the experimental period in dry bottles.
- Before each use, the orange peels in powder form were dried in an oven at a temperature of 105 °C to constant weight.
2.2. Biosorbent Characterization
2.2.1. pH Value at the Point of Zero Charge
2.2.2. Contact-Free pH
2.2.3. Iodine Number
- (VB − VS): difference between the titration volumes calculated using the blank test and the biosorbent with VB = 12.9 mL and VS = 9 mL of 0.1 N solution of thiosulfate.
- N: normality of the sodium thiosulfate solution (0.1 N).
- 126.9: the atomic mass of iodine (g/mol).
- m: mass of the biosorbent (0.2 g).
2.3. Adsorption Tests
2.3.1. Chromium Solutions
2.3.2. Operating Procedure
- (1)
- Preparation of a suspension (bio-sorbent/contaminated solution) for a ratio r (S/L) = 1.5 and 10 g/L as the biosorbent dosage;
- (2)
- The initial Cr(VI) was set at the desired concentration, as reported in Section 2.3.1;
- (3)
- The biosorbent suspension was stirred at 300 rpm for 24 h at room temperature (22 ± 1 °C);
- (4)
- Volumes of 5 mL were collected with a syringe from a suspension at different reaction times during the first period (350 min) of experimentation in order to determine the equilibrium time;
- (5)
- The pH was adjusted by adding a HCl or NaOH solution in the range of 2–10;
- (6)
- The samples collected from the suspension were filtrated with a Millipore filter (0.45 µm);
- (7)
- The filtrated fraction was analyzed by a UV–visible spectrometer SHIMADZU UV-160A model.
- C0 = the initial concentration of Cr(VI) in mg/L.
- Ce and Ct = the residual concentrations of Cr(VI) at the equilibrium and “t” times, respectively, in mg/L.
- m = mass of the biosorbent (g).
- V = volume of the Cr solution (mL).
2.4. Effect of the Parameters
2.5. Study of the Effects and Interactions between the Parameters Affecting the Cr(IV) Adsorption Process
Full Factorial Design
2.6. Kinetic Study
- qe (mg/g): adsorbed amount at equilibrium.
- qt, (mg/g): adsorbed amount at time t (min).
- K1 (min−1): equilibrium constant for the adsorption rate of the pseudo-first-order equation.
- K2 (g/mg·min): equilibrium constant for the adsorption rate of the pseudo-second-order equation.
- Kin (mg/g·min1/2): equilibrium constant for the adsorption rate of the intra-particle model equation.
2.6.1. Adsorption Isotherms
- Ce (mg/L): equilibrium concentration.
- qe (mg/g): adsorbed amount at equilibrium.
- qmax (mg/g): adsorbed maximum amount.
- KL, KF, and KE are, respectively, the Langmuir constant (L/mg), Freundlich constant (mg(1−n)·Ln/g), and Elovich constant (L/mg).
- n: constant relating to energy.
3. Results
3.1. Biosorbent Characterization
3.1.1. FTIR Analysis
3.1.2. pH Value at the Point of Zero Charge
- (1)
- At pH < pHpzc, the orange peel surface is positively charged;
- (2)
- At pH = pHpzc, the orange peel surface is not charged (neutral);
- (3)
- At pH > pHpzc, the orange peel surface is negatively charged.
3.1.3. Contact-Free pH
3.1.4. Iodine Number
3.1.5. Thermogravimetric Analysis
3.1.6. XRD Analysis
3.1.7. SEM Analysis
3.1.8. BET Surface Area Analysis
3.2. Equilibrium Study
3.3. Adsorption Process Performance
3.3.1. Effect of the Biosorbent Dosage
3.3.2. Effect of the Contact Time
3.3.3. Effect of the pH
3.3.4. Effect of the Initial Concentration of Cr(VI)
3.4. Results of the Full Factorial Design
- m: mass of the biosorbent (mg);
- C0: the initial concentration of Cr(VI) (mg/L);
- t: contact time (min);
- ζ: residual error.
3.5. Kinetic Study
3.6. Adsorption Isotherm Modeling
- (a)
- 0 < RL < 1, the adsorption is favorable;
- (b)
- RL > 1, the adsorption is unfavorable;
- (c)
- RL = 0, the adsorption is irreversible;
- (d)
- RL = 1, the isothermal representation is linear [78].
3.7. Chemical Structure Considerations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Achouri, O.; Bencheikh-Lehocine, M.; Panico, A.; Derbal, K.; Pirozzi, F. Effect of Chemical Coagulation Pretreatment on Anaerobic Digestion of Tannery Wastewater. J. Environ. Eng. 2019, 9, 1–5. [Google Scholar] [CrossRef]
- Priyadharshini, M.R.; Soundhirajan, K. Removal of Chromium (VI) from Textile Waste Water by Using Activated Carbon Prepared from Neem Leaves and Garlic Husk. Middle East J. Appl. Sci. Technol. 2021, 4, 19–28. [Google Scholar] [CrossRef]
- Phan, T.; Ullah, A.; Khatri, M.; Ngoc, N. A Review on the Fabrication of Several Carbohydrate Polymers into Nanofibrous Structures Using Electrospinning for Removal of Metal Ions and Dyes. Carbohydr. Polym. 2021, 252, 117175. [Google Scholar] [CrossRef]
- Selatnia, A.A.A.; Khodja, H.E.S.M.; Daoud, S.M.N. Biosorption of Hexavalent Chromium and Congo Red Dye onto Pleurotus Mutilus Biomass in Aqueous Solutions. Int. J. Environ. Sci. Technol. 2021, 19, 2477–2492. [Google Scholar] [CrossRef]
- Ghaedi, M.; Hossainian, H.; Montazerozohori, M.; Shokrollahi, A.; Shojaipour, F.; Soylak, M.; Purkait, M.K. A Novel Acorn Based Adsorbent for the Removal of Brilliant Green. Desalination 2011, 281, 226–233. [Google Scholar] [CrossRef]
- Nomanbhay, S.M. Removal of Heavy Metal from Industrial Wastewater Using Chitosan Coated Oil Palm Shell Charcoal Removal of Heavy Metal from Industrial Wastewater Using Chitosan Coated Oil Palm Shell Charcoal. Electron. J. Biotechnol. 2005, 8, 43–53. [Google Scholar] [CrossRef]
- Raji, C.; Anirudhan, T.S. Batch Cr(VI) Removal by Polyacrylamide-Grafted Sawdust: Kinetics and Thermodynamics. Water Res. 1998, 32, 3772–3780. [Google Scholar] [CrossRef]
- Richard, F.C.; Bourg, A.C.M. Aqueous Geochemistry of Chromium: A Review. Water Res. 1991, 25, 807–816. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; ISBN 978-92-4-154815-1. [Google Scholar]
- Jung, C.; Heo, J.; Han, J.; Her, N.; Lee, S.J.; Oh, J.; Ryu, J.; Yoon, Y. Hexavalent Chromium Removal by Various Adsorbents: Powdered Activated Carbon, Chitosan, and Single/Multi-Walled Carbon Nanotubes. Sep. Purif. Technol. 2013, 106, 63–71. [Google Scholar] [CrossRef]
- Owlad, M.; Aroua, M.K.; Daud, W.A.W.; Baroutian, S. Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review. Water Air Soil Pollut. 2009, 200, 59–77. [Google Scholar] [CrossRef]
- Saha, R.; Nandi, R.; Saha, B. Sources and Toxicity of Hexavalent Chromium. J. Coord. Chem. 2011, 64, 1782–1806. [Google Scholar] [CrossRef]
- Oze, C.; Bird, D.K.; Fendorf, S. Genesis of Hexavalent Chromium from Natural Sources in Soil and Groundwater. Proc. Natl. Acad. Sci. USA 2007, 104, 6544–6549. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.R.; Zhang, G.; Fang, J.; Dou, X. Enhanced Chromium Recovery from Tanning Wastewater. J. Clean. Prod. 2006, 14, 75–79. [Google Scholar] [CrossRef]
- Li, M.; Jia, X.; Wang, J.; Wang, Y.; Chen, Y.; Wu, J.; Wang, Y.; Shen, M.; Xue, H. Quantitative Analysis of the Research Development Status and Trends of Tannery Wastewater Treatment Technology. Catalysts 2022, 12, 1317. [Google Scholar] [CrossRef]
- Hintermeyer, B.H.; Lacour, N.A.; Perez Padilla, A.; Tavani, E.L. Separation of the Chromium(III) Present in a Tanning Wastewater by Means of Precipitation, Reverse Osmosis and Adsorption. Lat. Am. Appl. Res. 2008, 38, 63–71. [Google Scholar]
- Wang, D.; He, S.; Shan, C.; Ye, Y.; Ma, H.; Zhang, X.; Zhang, W.; Pan, B. Chromium Speciation in Tannery Effluent after Alkaline Precipitation: Isolation and Characterization. J. Hazard. Mater. 2016, 316, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.; Abdulla, H.M.; Mohamed, A.H.; El-Bassuony, A.D. Remediation and Recycling of Chromium from Tannery Wastewater Using Combined Chemical–Biological Treatment System. Process Saf. Environ. Prot. 2016, 104, 1–10. [Google Scholar] [CrossRef]
- Abdulla, H.M.; Kamal, E.M.; Mohamed, A.H.; El-bassuony, A.D. Chromium Removal From Tannery Wastewater Using Chemical and Biological Techniques Aiming Zero Discharge of Pollution. In Proceeding of Fifth Scientific Environmental Conference, Zagazig, Egypt, 21–23 December 2010; pp. 171–183. [Google Scholar]
- Ifthikar, J.; Shahib, I.I.; Jiang, W.; Senthilnithy, R.; Elkhlifi, Z.; Wang, J.; Chen, Z. Review on Technologies for the Development of Effective and Practical Chromate Removal from Wastewaters. J. Environ. Chem. Eng. 2023, 11, 11. [Google Scholar] [CrossRef]
- Younas, F.; Younas, S.; Bibi, I.; Farooqi, Z.U.R.; Hameed, M.A.; Mohy-Ud-Din, W.; Shehzad, M.T.; Hussain, M.M.; Shakil, Q.; Shahid, M.; et al. A Critical Review on the Separation of Heavy Metal(Loid)s from the Contaminated Water Using Various Agricultural Wastes. Int. J. Phytoremediation 2023, 26, 349–368. [Google Scholar] [CrossRef]
- Abidli, A.; Huang, Y.; Rejeb, Z.B.; Zaoui, A.; Park, C.B. Sustainable and Efficient Technologies for Removal and Recovery of Toxic and Valuable Metals from Wastewater: Recent Progress, Challenges, and Future Perspectives. Chemosphere 2022, 292, 292. [Google Scholar] [CrossRef]
- Cavaco, S.A.; Fernandes, S.; Quina, M.M.; Ferreira, L.M. Removal of Chromium from Electroplating Industry Effluents by Ion Exchange Resins. J. Hazard. Mater. 2007, 144, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Kusku, O.; Rivas, B.L.; Urbano, B.F.; Arda, M.; Kabay, N.; Bryjak, M. A Comparative Study of Removal of Cr(VI) by Ion Exchange Resins Bearing Quaternary Ammonium Groups. J. Chem. Technol. Biotechnol. 2014, 89, 851–857. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Wang, C.; Ji, M. Cr(VI) Removal by a New Type of Anion Exchange Resin DEX-Cr: Adsorption Affecting Factors, Isotherms, Kinetics, and Desorption Regeneration. Environ. Prog. Sustain. Energy 2014, 33, 676–680. [Google Scholar] [CrossRef]
- Akoulih, M.; Tigani, S.; Saadane, R.; Tazi, A. Electrocoagulation Based Chromium Removal Efficiency Classification Using Logistic Regression. Appl. Sci. 2020, 10, 5179. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Othman, M.H.D.; Adam, M.R.; Liang, X.; Goh, H.; Anouzla, A.; Sillanpää, M.; Mohyuddin, A.; Chew, K.W. Chromium Removal from Aqueous Solution Using Natural Clinoptilolite. Water 2023, 15, 1667. [Google Scholar] [CrossRef]
- Golbaz, S.; Jafari, A.J.; Rafiee, M.; Kalantary, R.R. Separate and Simultaneous Removal of Phenol, Chromium, and Cyanide from Aqueous Solution by Coagulation/Precipitation: Mechanisms and Theory. Chem. Eng. J. 2014, 253, 251–257. [Google Scholar] [CrossRef]
- Dittert, I.M.; de Lima Brandão, H.; Pina, F.; da Silva, E.A.B.; De Souza, S.M.A.G.U.; de Souza, A.Ô.A.U.; Botelho, C.M.S.; Boaventura, R.A.R.; Vilar, V.J.P. Integrated Reduction/Oxidation Reactions and Sorption Processes for Cr(VI) Removal from Aqueous Solutions Using Laminaria Digitata Macro-Algae. Chem. Eng. J. 2014, 237, 443–454. [Google Scholar] [CrossRef]
- Arora, R. ScienceDirect Adsorption of Heavy Metals—A Review. Mater. Today Proc. 2019, 18, 4745–4750. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, Y.; Li, T. Adsorption and Desorption of Heavy Metals from Water Using Aminoethyl Reduced Graphene Oxide. Environ. Eng. Sci. 2018, 35, 978–987. [Google Scholar] [CrossRef]
- Gallouze, H.; Akretche, D.; Daniel, C.; Coelhoso, I. Removal of Synthetic Estrogen from Water by Adsorption on Modified Bentonites. Environ. Eng. Sci. 2021, 38, 4–14. [Google Scholar] [CrossRef]
- Bailey, S.E.; Trudy, J.O.; Bricka, R.M.; Adrian, D.D. A Review of Potentially Low-Cost Sorbents for Heavy Metals. Water Res. 1999, 33, 2469–2479. [Google Scholar] [CrossRef]
- Mittal, A.; Kurup, L.; Gupta, V.K. Use of Waste Materials—Bottom Ash and De-Oiled Soya, as Potential Adsorbents for the Removal of Amaranth from Aqueous Solutions. J. Hazard. Mater. 2005, 117, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Rastogi, A.; Dwivedi, M.K. Process Development for the Removal of Zinc and Cadmium from Wastewater Using Slag—A Blast Furnace Waste Material. Sep. Sci. Technol. 1997, 32, 2883–2912. [Google Scholar] [CrossRef]
- Hadi, M.; Sanaei, D.; Ali, I.; Bhatnagar, A. Removal of Chromium (VI) from Aqueous Solution Using Treated Waste Newspaper as a Low-Cost Adsorbent: Kinetic Modeling and Isotherm Studies. J. Mol. Liq. 2016, 215, 671–679. [Google Scholar] [CrossRef]
- Al-Homaidan, A.A.; Al-Qahtani, H.S.; Al-Ghanayem, A.A.; Ameen, F.; Ibraheem, I.B.M. Potential Use of Green Algae as a Biosorbent for Hexavalent Chromium Removal from Aqueous Solutions. Saudi J. Biol. Sci. 2018, 25, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Amel, K.; Hassena, M.A.; Kerroum, D. Isotherm and Kinetics Study of Biosorption of Cationic Dye onto Banana Peel. Energy Procedia 2012, 19, 286–2952012. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Meniai, A.H. Application of Chemically Modified Orange Peels for Removal of Copper(II) from Aqueous Solutions. Theor. Found. Chem. Eng. 2012, 46, 732–739. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Bendjamaa, I.; Bensid, T.; Meniai, A.H.; Derbal, K. Effect of Calcination on Orange Peels Characteristics: Application of an Industrial Dye Adsorption. Chem. Eng. Trans. 2014, 38, 361–366. [Google Scholar] [CrossRef]
- Wibowo, N.; Setyadhi, L.; Wibowo, D.; Setiawan, J.; Ismadji, S. Adsorption of Benzene and Toluene from Aqueous Solutions onto Activated Carbon and Its Acid and Heat Treated Forms: Influence of Surface Chemistry on Adsorption. J. Hazard. Mater. 2007, 19, 237–242. [Google Scholar] [CrossRef]
- Laggoun, Z.; Khalfaoui, A.; Benalia, A.; Ghomrani, A.F.; Bouchareb, R.; Mahfouf, A.; Pizzi, A.; Panico, A.; Derbal, K. Applied Sciences Application of Response Surface Design for Optimization of Direct Red Dye Biosorption onto Cockleshells. Appl. Sci. 2023, 13, 12333. [Google Scholar] [CrossRef]
- Bencheikh, I.; Azoulay, K.; Mabrouki, J.; El Hajjaji, S.; Dahchour, A.; Moufti, A.; Dhiba, D. The Adsorptive Removal of MB Using Chemically Treated Artichoke Leaves: Parametric, Kinetic, Isotherm and Thermodynamic Study. Sci. Afr. 2020, 9, e00509. [Google Scholar] [CrossRef]
- Kolasniski, K.W. Zur Theorie Der Sogenannten Adsorption Geloster Stofe”, Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1–39. [Google Scholar]
- Blanchard, G.; Maunaye, M.; Martin, G. Removal of Heavy Metals from Waters by Means of Natural Zeolites. Water Res. 1984, 18, 1501–1507. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surface of Glass”, Mica and Olatinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.E.; Saad, E.A.; El-khatib, A.M.; Soliman, M.A.; Allam, E.A. Green Solid Synthesis of Polyaniline-Silver Oxide Nanocomposite for the Adsorptive Removal of Ionic Divalent Species of Zn/Co and Their Radioactive Isotopes 65Zn/60Co. Environ. Sci. Pollut. Res. 2018, 25, 22120–22135. [Google Scholar] [CrossRef] [PubMed]
- Benalia, A. Extraction et Valorisation Des Produits Actifs Des Plantes Naturelles En Tant Que Bio Coagulants Utiles Dans l’amelioration de Qualite Des Eaux. Ph.D. Thesis, University of Constantine 3, El Khroub, Algeria, 2023. [Google Scholar]
- Shakoor, S.; Nasar, A. Utilization of Punica Granatum Peel as an Eco-Friendly Biosorbent for the Removal of Methylene Blue Dye from Aqueous Solution. J. Appl. Biotechnol. Bioeng. 2018, 5, 242–249. [Google Scholar] [CrossRef]
- Bouchareb, R.; Derbal, K.; Benalia, A. Optimization of Active Coagulant Agent Extraction Method from Moringa Oleifera Seeds for Municipal Wastewater Treatment. Water Sci. Technol. 2021, 84, 393–403. [Google Scholar] [CrossRef]
- Benalia, A.; Derbal, K.; Khalfaoui, A.; Pizzi, A.; Medjahdi, G. The Use of Aloe Vera as Natural Coagulant in Algerian Drinking Water Treatment Plant. J. Renew. Mater. 2022, 10, 625–637. [Google Scholar] [CrossRef]
- Benalia, A.; Derbal, K.; Khalfaoui, A.; Bouchareb, R.; Panico, A.; Gisonni, C.; Crispino, G.; Pirozzi, F.; Pizzi, A. Use of Aloe Vera as an Organic Coagulant for Improving Drinking Water Quality. Water 2021, 13, 2024–2039. [Google Scholar] [CrossRef]
- Benalia, A.; Derbal, K. Etude Expérimentale et Modélisation Du Processus de La Coagulation Floculation: Application Aux Eaux Destinée a La Consommation. Master’s Thesis, University of Constantine 3, El Khroub, Algeria, 2015. [Google Scholar]
- Khalfaoui, B.; Meniai, A.H.; Borja, R. Removal of Copper from Industrial Wastewater by Raw Charcoal Obtained from Reeds. J. Chem. Technol. Biotechnol. 1995, 64, 153–156. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Khelifi, M.N.; Khelfaoui, A.; Benalia, A.; Derbal, K. The Adsorptive Removal of Bengal Rose by Artichoke Leaves: Optimization by Full Factorials Design. Water 2022, 14, 2251. [Google Scholar] [CrossRef]
- Mashkoor, F.; Nasar, A.; Inamuddin; Asiri, A.M. Exploring the Reusability of Synthetically Contaminated Wastewater Containing Crystal Violet Dye Using Tectona Grandis Sawdust as a Very Low-Cost Adsorbent. Sci. Rep. 2018, 8, 8314. [Google Scholar] [CrossRef]
- Saka, C. BET, TG-DTG, FT-IR, SEM, Iodine Number Analysis and Preparation of Activated Carbon from Acorn Shell by Chemical Activation with ZnCl2. J. Anal. Appl. Pyrolysis 2012, 95, 21–24. [Google Scholar] [CrossRef]
- Baatache, O.; Derbal, K.; Benalia, A.; Aberkane, I.; Guizah, Q.E.; Khalfaoui, A.; Pizzi, A. Valorization of Pine Cones (Pinus nigras) for Industrial Wastewater Treatment and Crystal Violet Removal: A Sustainable Approach Based on Bio-Coagulants and a Bio-Adsorbent. Water 2024, 16, 260. [Google Scholar] [CrossRef]
- Ali, A.; Saeed, K.; Mabood, F. Removal of Chromium (VI) from Aqueous Medium Using Chemically Modified Banana Peels as Efficient Low-Cost Adsorbent. Alex. Eng. J. 2016, 55, 2933–2942. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Ghanam, A.M.; Saad, S.R.; Mohamed, R.H.A. Promoted Removal of Metformin Hydrochloride Anti-Diabetic Drug from Water by Fabricated and Modified Nanobiochar from Artichoke Leaves. Sustain. Chem. Pharm. 2020, 18, 100336. [Google Scholar] [CrossRef]
- Kennedy, L.J.; Vijaya, J.J.; Kayalvizhi, K.; Sekaran, G. Adsorption of Phenol from Aqueous Solutions Using Mesoporous Carbon Prepared by Two-Stage Process. Chem. Eng. J. 2007, 132, 279–287. [Google Scholar] [CrossRef]
- Aini Zakaria, H.; Wan Mansor, W.S.; Shahrin, N. Development of Water Treatment Sachets From the Seeds of Moringa Oleifera and Activated Carbon. MATTER Int. J. Sci. Technol. 2018, 3, 240–252. [Google Scholar] [CrossRef]
- Benalia, A.; Chaibraa, W.; Djeghar, S.; Derbal, K.; Khalfaoui, A.; Mahfouf, A.; Bouchareb, R.; Panico, A.; Pizzi, A. Use of Extracted Proteins from Oak Leaves as Bio-Coagulant for Water and Wastewater Treatment: Optimization by a Fractional Factorial Design. Water 2023, 15, 1984. [Google Scholar] [CrossRef]
- Benalia, A.; Baatache, O.; Derbal, K.; Khalfaoui, A. The Use of Central Composite Design (CCD) to Optimize and Model the Coagulation-Flocculation Process Using a Natural Coagulant: Application in Jar Test and Semi-Industrial Scale. J. Water Process Eng. 2024, 57, 104704. [Google Scholar] [CrossRef]
- Pizzi, A. Chromium Interactions in CCA/CCB Wood Preservatives Part I. Interactions with Wood Carbohydrates. Holzforschung 1990, 44, 373–380. [Google Scholar] [CrossRef]
- Braghiroli, F.L.; Amaral-Labat, G.; Boss, A.F.N.; Lacoste, C.; Pizzi, A. Tannin Gels and Their Carbon Derivatives: A Review. Biomolecules 2019, 9, 587. [Google Scholar] [CrossRef]
- Morales-Barrera, L.; Cristiani-Urbina, E. Hexavalent Chromium Removal by a Trichoderma Inhamatum Fungal Strain Isolated from Tannery Effluent. Water. Air. Soil Pollut. 2008, 187, 327–336. [Google Scholar] [CrossRef]
- Hossain, M.A.; Kumita, M.; Michigami, Y.; Mori, S. Optimization of Parameters for Cr(VI) Adsorption on Used Black Tea Leaves. Adsorption 2005, 11, 561–568. [Google Scholar] [CrossRef]
- Memon, J.R.; Memon, S.Q.; Bhanger, M.I.; Khuhawar, M.Y. Banana Peel: A Green and Economical Sorbent for Cr(III) Removal. Adsorption 2008, 11, 20–25. [Google Scholar]
- Ramakrishnaiah, C.R.; Prathima, B. Hexavalent Chromium Removal From Industrial Watsewater by Chemical Precipitation Method. Int. J. Eng. Res. Appl. 2012, 2, 599–603. [Google Scholar]
- Tran, H.N.; You, S.; Chao, H. Effect of Pyrolysis Temperatures and Times on the Adsorption of Cadmium onto Orange Peel Derived Biochar. Waste Manag. Res. 2016, 34, 129–138. [Google Scholar] [CrossRef]
- Sa, M. Adsorbent—Adsorbate Interactions in the Adsorption of Cd (II) and Hg (II) on Ozonized Activated Carbons. Environ. Sci. Technol. 2002, 36, 3850–3854. [Google Scholar] [CrossRef]
- Brito, F.; Ascanio, J.; Mateo, S.; Hernfindez, C.; Araujo, L.; Gili, P.; Martín-Zarza, P.; Domínguez, S.; Mederos, A. Equilibrium of Cr(VI) Species in Acid Medium and Adsorption Studies of These Species. Polyhedron 1997, 16, 3835–3846. [Google Scholar] [CrossRef]
- Gupta, B.V.B.S. Adsorption of Cr(VI) Using Activated Neem Leaves: Kinetic Studies. Adsorption 2008, 14, 85–92. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Ali, R.; Naushad, M. Hexavalent Chromium Removal from Aqueous Medium by Activated Carbon Prepared from Peanut Shell: Adsorption Kinetics, Equilibrium and Thermodynamic Studies. Chem. Eng. J. 2012, 184, 238–247. [Google Scholar] [CrossRef]
- Reddad, Z. Methods of Removing Metal Ions by Adsorption on a Natural Polysaccharide-Experimental Study and Modeling. Ph.D. Thesis, National School of Industrial Techniques and Mines of Nantes, Nantes, France, 2002. [Google Scholar]
- Pizzi, A. Chromium Interactions in CCA/CCB Wood Preservatives. Part II. Interactions with Lignin. Holzforschung 1990, 44, 419–424. [Google Scholar] [CrossRef]
- Pizzi, A. Wood Waterproofing and Lignin Crosslinking by Means of Chromium Trioxide/Guajacyl Units Complexes. J. Appl. Polym. Sci. 1980, 25, 2547–2553. [Google Scholar] [CrossRef]
- Ostmeyer, J.G.; Elder, T.J.; Littrell, D.M.; Tatarchuk, B.J.; Winandy, J.E. Spectroscopic Analysis of Southern Pine Treated with Chromated Copper Arsenate. I. X-Ray Photoelectron Spectroscopy (Xps)-17. J. Wood Chem. Technol. 1988, 8, 413–439. [Google Scholar] [CrossRef]
- Pizzi, A. A New Approach to the Formulation and Application of CCA Preservatives. Wood Sci. Technol. 1983, 17, 303–319. [Google Scholar] [CrossRef]
- Del Menezzi, C.; Amirou, S.; Pizzi, A.; Xi, X.; Delmotte, L. Reactions with Wood Carbohydrates and Lignin of Citric Acid as a Bond Promoter of Wood Veneer Panels. Polymers 2018, 10, 833. [Google Scholar] [CrossRef]
Variables | Symbols | Domain and Levels | |
---|---|---|---|
−1 | +1 | ||
Mass (mg) | X1 | 500 | 2000 |
pH | X2 | 2 | 10 |
Contact time (min) | X3 | 5 | 90 |
Initial concentration of Cr(VI) (mg/L) | X4 | 10 | 200 |
Test | m (mg) | X1 | pH | X2 | t (min) | X3 | C0 (mg/L) | X4 | YCr (%) |
---|---|---|---|---|---|---|---|---|---|
1 | 500 | −1 | 2 | −1 | 5 | −1 | 10 | −1 | 99.05 |
2 | 2000 | +1 | 2 | −1 | 5 | −1 | 10 | −1 | 99.18 |
3 | 500 | −1 | 10 | +1 | 5 | −1 | 10 | −1 | 93.89 |
4 | 2000 | +1 | 10 | +1 | 5 | −1 | 10 | −1 | 98.50 |
5 | 500 | −1 | 2 | −1 | 90 | +1 | 10 | −1 | 99.42 |
6 | 2000 | +1 | 2 | −1 | 90 | +1 | 10 | −1 | 99.29 |
7 | 500 | −1 | 10 | +1 | 90 | +1 | 10 | −1 | 94.88 |
8 | 2000 | +1 | 10 | +1 | 90 | +1 | 10 | −1 | 98.87 |
9 | 500 | −1 | 2 | −1 | 5 | −1 | 200 | +1 | 97.82 |
10 | 2000 | +1 | 2 | −1 | 5 | −1 | 200 | +1 | 98.10 |
11 | 500 | −1 | 10 | +1 | 5 | −1 | 200 | +1 | 97.80 |
12 | 2000 | +1 | 10 | +1 | 5 | −1 | 200 | +1 | 98.03 |
13 | 500 | −1 | 2 | −1 | 90 | +1 | 200 | +1 | 98.11 |
14 | 2000 | +1 | 2 | −1 | 90 | +1 | 200 | +1 | 98.70 |
15 | 500 | −1 | 10 | +1 | 90 | +1 | 200 | +1 | 98.01 |
16 | 2000 | +1 | 10 | +1 | 90 | +1 | 200 | +1 | 98.64 |
Pseudo-First Order | Pseudo-Second Order | Intra-Particle Model | ||||
---|---|---|---|---|---|---|
C0 (mg/L) | Correlation Factor (R2) | K1 (min−1) | Correlation Factor (R2) | K2 (g/mg‧min) | Correlation Factor (R2) | Kint (mg/g·min1/2) |
10 | 0.065 | 0.002 | 1 | −55.608 | 0.009 | 0.153 |
20 | 0.525 | 0.003 | 0.9999 | 13.033 | 0.712 | 0.301 |
30 | 0.599 | 0.009 | 0.999 | 1.855 | 0.257 | 0.447 |
50 | 0.549 | 0.004 | 0.9998 | 16.797 | 0.576 | 0.751 |
60 | 0.071 | 0.004 | 1 | 20.231 | 0.674 | 0.903 |
80 | 0.201 | 0.003 | 0.9999 | −26.633 | 0.183 | 1.209 |
100 | 0.088 | 0.002 | 0.9999 | −22.271 | 0.234 | 1.509 |
Isotherm Type | Linearization of the Equations | Constants | R | R2 |
---|---|---|---|---|
Langmuir | = | qmax = 5.46149 KL = 1.17597 | 0.92 | 0.85 |
Freundlich | ·ln (Ce) | n = 1.36479 Kf = 2.66038 | 0.92 | 0.85 |
Elovich | ln ln (keqm) | qm = 130.03901 Ke = 0.01899 | −0.057 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalfaoui, A.; Benalia, A.; Selama, Z.; Hammoud, A.; Derbal, K.; Panico, A.; Pizzi, A. Removal of Chromium (VI) from Water Using Orange peel as the Biosorbent: Experimental, Modeling, and Kinetic Studies on Adsorption Isotherms and Chemical Structure. Water 2024, 16, 742. https://doi.org/10.3390/w16050742
Khalfaoui A, Benalia A, Selama Z, Hammoud A, Derbal K, Panico A, Pizzi A. Removal of Chromium (VI) from Water Using Orange peel as the Biosorbent: Experimental, Modeling, and Kinetic Studies on Adsorption Isotherms and Chemical Structure. Water. 2024; 16(5):742. https://doi.org/10.3390/w16050742
Chicago/Turabian StyleKhalfaoui, Amel, Abderrezzaq Benalia, Zineb Selama, Amira Hammoud, Kerroum Derbal, Antonio Panico, and Antonio Pizzi. 2024. "Removal of Chromium (VI) from Water Using Orange peel as the Biosorbent: Experimental, Modeling, and Kinetic Studies on Adsorption Isotherms and Chemical Structure" Water 16, no. 5: 742. https://doi.org/10.3390/w16050742
APA StyleKhalfaoui, A., Benalia, A., Selama, Z., Hammoud, A., Derbal, K., Panico, A., & Pizzi, A. (2024). Removal of Chromium (VI) from Water Using Orange peel as the Biosorbent: Experimental, Modeling, and Kinetic Studies on Adsorption Isotherms and Chemical Structure. Water, 16(5), 742. https://doi.org/10.3390/w16050742