Toxic Element Contamination Sources in the Surface and Groundwater of the Elbrus Region: Geochemistry and Health Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling and Chemical Analysis
2.3. Data Processing
2.4. Risk Assessment
3. Results
3.1. Water and Gas Chemistry
3.2. Levels and Distribution of Heavy Metals in Waters
3.3. Rock Chemistry and Mineralogy
Sample ID | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
Rock | ppm | Granite | Schist | Schist | Schist | Carbonate | Carbonate |
Ba | 337.8 | 388.7 | 615.4 | 218.5 | 28.7 | 28.1 | |
Mo | 0.437 | 0.307 | 0.459 | 0.339 | 0.259 | 0.214 | |
W | 1.364 | 1.034 | 0.502 | 0.608 | 0.309 | 0.376 | |
Cu | 16.58 | 30.16 | 22.73 | 20.49 | 25.41 | 7.813 | |
Zn | 56.23 | 96.21 | 138.5 | 157.1 | 10.54 | 20.06 | |
As | 1.483 | 3.343 | 8.028 | 2.403 | 0.529 | 4.237 | |
Pb | 35.48 | 12.60 | 29.19 | 13.18 | 7.815 | 1.307 |
3.4. Geochemical Relations
3.4.1. Surface Water
3.4.2. Groundwater
3.4.3. Baksan River
3.5. Chemical Evolution of the Water and Equilibrium with Minerals
3.6. Risk of Adverse Health Effects from Exposure to Heavy Metals and As in Water
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Europe’s Tallest Volcano: Mount Elbrus. 2017, Posted by Albert, October 15. Available online: https://www.volcanocafe.org/europes-tallest-volcano-mount-elbrus/ (accessed on 22 February 2024).
- Bortnikov, N.S.; Gurbanov, A.G.; Dokuchaev, A.Y. Tailing dumps of the tyrnyauz tungsten–molybdenum mining and processing complex: Current state and outlooks. Glob. J. Ecol. 2020, 5, 088–097. [Google Scholar] [CrossRef]
- Lim, H.S.; Lee, J.S.; Chon, H.T.; Sager, M. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. J. Geochem. Explor. 2008, 96, 223–230. [Google Scholar] [CrossRef]
- Jamieson, H.E. Geochemistry and mineralogy of solid mine waste: Essential knowledge for predicting environmental impact. Elements 2011, 7, 381–386. [Google Scholar] [CrossRef]
- Alexakis, D.E.; Kiskir, K.; Gamvroul, D.; Emmanouil, C.; Psomopoulos, S.C. Evaluating toxic element contamination sources in groundwater bodies of two Mediterranean sites. Environ. Sci. Pollut. Res. 2021, 28, 34400–34409. [Google Scholar] [CrossRef] [PubMed]
- Vanderschee, C.R.; Kuter, D.; Bolt, A.M.; Lo, F.; Feng, R.; Thieme, J.; Chen-Wiegart, Y.K.; Williams, G.; Mann, K.K.; Bohle, D.S. Accumulation of persistent tungsten in bone as in situ generated polytungstate. Commun. Chem. 2018, 1, 8. [Google Scholar] [CrossRef]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Levy, D.; Factor-Litvak, P.; Kline, J.; Van Geen, A.; Slavkovich, V.; LoIacono, N.J. Water manganese exposure and children’s intellectual function inaraihazar, bangladesh. Environ. Health Perspect. 2006, 114, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Bansal, O.P.; Nduka, J.K.; Rashed, M.N. Health Risks of Potentially Toxic Metals Contaminated Water. In Heavy Metal Toxicity in Public Health; IntechOpen: London, UK, 2020; Chapter 5. [Google Scholar] [CrossRef]
- US EPA. Toxicological review of barium and compounds. In Support of Summary Information on the Integrated Risk Information System (IRIS); US Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- WHO Guidelines for Drinking-Water Quality, Human Health Effects of Molybdenum in Drinking Water; World Health Organization: Geneva, Switzerland, 2011. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/2000Z0FV.TXT (accessed on 10 February 2024).
- Bortnikov, N.S.; Gurbanov, A.G.; Bogatikov, O.A. Assessment of the impact of buried industrial waste from the Tyrnauz tungsten-molybdenum combine on the ecological situation (soil and vegetation layer) of the adjacent territories of the Elbrus region (Kabardino-Balkarian Republic, Russia). Geoekologiya Inzhenernaya Geol. Gidrogeol. Geokriol. 2013, 5, 405–416. (In Russian) [Google Scholar]
- Vinokurov, S.F.; Gurbanov, A.G.; Bogatikov, O.A.; Gazeev, V.M.; Sychkova, V.A.; Karamurzov, B.S.; Shevchenko, A.V.; Dolov, S.M.; Dudarov, Z.I. Contraction of spawning areas in the Baksan River and pollution of superficial water of adjacent territories. Dokl. Earth Sci. 2018, 478, 232–236. [Google Scholar] [CrossRef]
- Ermakov, V.V.; Tyutikov, S.F.; Degtyarev, A.P. Formation of biogeochemical anomalies in the Baksan River basin. Geochem. Int. 2020, 58, 1097–1109. [Google Scholar] [CrossRef]
- Khaustov, V.V.; Ustiugov, D.L. Formation of drainage waters of Tyrnyauz deposit in ecological aspect. IOP Conf. Ser. Earth Environ. Sci. 2017, 87, 042006. [Google Scholar] [CrossRef]
- Lavrushin, V.Y. Subsurface Fluids of the Greater Caucasus and Its Surrounding; Transactions of the Geological Institute; Publishers of the USSR Academy of Sciences, Nauka: Moscow, Russia, 2012; p. 348. (In Russian) [Google Scholar]
- Chelnokov, G.A.; Lavrushin, V.Y.; Aidarkozhina, A.S.; Guo, Q. Geochemical behavior of Mo and W in the CO2-rich mineral waters occurring in the East Elbrus area. IOP Conf. Ser. Earth Environ. Sci. 2021, 865, 012037. [Google Scholar] [CrossRef]
- Aydarkozhina, A.S.; Lavrushin, V.Y.; Ermakov, A.V.; Chelnokov, G.A.; Zhang, L. CO2-rich thermal waters of the Neutrino research tunnel (Baksan Neutrino observatory, North Caucasus). Doc. Earth Sci. 2024, in press.
- Pismenniy, A.N.; Pichuzhkov, A.N.; Zarubina, M.A.; Gorbachev, S.A.; Vertiy, S.N.; Grekov, I.I.; Gamasa, Y.N.; Tereschenko, L.A. Explanatory Note to the State Geological Map of the Russian Federation. 1:200,000 Scale, Caucasian Series, K-38-I and VII Map-Sheets; VSEGEI: St. Petersburg, Russia, 2004; p. 354. (In Russian) [Google Scholar]
- Soloviev, S.G.; Kryazhev, S.G.; Dvurechenskaya, S.S.; Kryazhev, V.S.; Emkuzhev, M.S.; Bortnikov, N.S. The superlarge Tyrnyauz skarn W-Mo and stockwork Mo(-W) to Au(-Mo, W, Bi, Te) deposit in the Northern Caucasus, Russia: Geology, geochemistry, mineralization, and fluid inclusion characteristics. Ore Geol. Rev. 2021, 138, 2–26. [Google Scholar] [CrossRef]
- Avdulov, M.V.; Koronovskii, N.V. The geological nature of the Elbrus gravity low. Mosc. Univ. Geol. Bull. Ser. Geol. 1993, 4, 32–39. [Google Scholar]
- Gurbanov, A.G.; Sobisevich, A.L.; Sobisevich, L.E.; Nechaev, Y.N.; Arbuzkin, V.N.; Prutskii, N.I.; Trofimenko, E.A.; Grekov, I.I. Activity of Elbrus Volcano (North Caucasus). Russ. J. Ear. Sci. 2004, 6, 279–291. [Google Scholar] [CrossRef]
- Emkuzhev, A.S.; Dzhubuev, N.S. The mineral resource base of the Kabardino-Balkarian Republic. Mineral Resour. Russ. Econ. Manag. 2012, 1, 42–55. (In Russian) [Google Scholar]
- Khain, V.E. Regional Geotectonics. Alpian-Mediterranean Belt; Nedra: Moscow, Russia, 1984; 344p. (In Russian) [Google Scholar]
- Sosson, M.; Stephenson, R.; Sheremet, Y.; Rolland, Y.; Adamia, S.; Melkonian, R.; Kangarli, T.; Yegorova, T.; Avagyan, A.; Galoyan, G.; et al. The eastern Black Sea-Caucasus region during the Cretaceous: New evidence to constrain its tectonic evolution. Comp. Rendus Geosci. 2016, 348, 23–32. [Google Scholar] [CrossRef]
- Dokuchaev, A.Y.; Nosova, A.A. Ore mineralization in the Tyrnyauz deep drill hole (Northern Caucasus). Geol. Ore Depos. 1994, 36, 218–229. [Google Scholar]
- Grigoriev, N.A.; Pogorelsky, N.S. North Caucasus (Krasnodar Krai, Stavropol Krai, Chechen-Ing. ASSR, Kabard.-Balk. ASSR, North Ossetian ASSR, Dag. ASSR, Dag. ASSR) Hydrogeology of the USSR; Nedra: Moscow, Russia, 1968; Volume 9, p. 479. (In Russian) [Google Scholar]
- Fletcher, P.J.; Jacobus, F.S. Determination of carbonate and hydrogencarbonate by titration using sequential injection analysis. Anal. Chim. Acta 2003, 485, 187–194. [Google Scholar] [CrossRef]
- Karandashev, V.K.; Leikin, A.Y.; Khvostikov, V.A.; Kutseva, N.K.; Pirogova, S.V. Water Analysis by Inductively Coupled Plasma Mass Spectrometry. Inorg. Mater. 2016, 52, 1391–1404. [Google Scholar] [CrossRef]
- Guo, Q.; Planer-Friedrich, B.; Yan, K. Tungstate thiolation promoting the formation of high-tungsten geothermal waters and its environmental implications. J. Hydrol. 2021, 603 Pt B, 127016. [Google Scholar] [CrossRef]
- Giggenbach, W.F.; Goguel, R.L. Collection and analysis of geothermal and volcanic water and gas discharges. N. Z. DSIR Chem. Rep. 1989, 2401, 1–82. [Google Scholar]
- Arnorsson, S.; Bjarnasson, J.O.; Giroud, N.; Gunnarsson, I.; Stefansson, A. Sampling and analysis of geothermal fluids. Geofluids 2006, 6, 203–216. [Google Scholar] [CrossRef]
- Chelnokov, G.A.; Lavrushin, V.Y.; Bragin, I.V.; Pavlov, A.A.; Chelnokova, B.I. Radon Concentrations in Mineral Waters of the Sikhote-Alin, Primorsky Krai Russian. J. Pacif. Geol. 2023, 17, 284–296. [Google Scholar] [CrossRef]
- Belkhiri, L.; Boudoukha, A.; Mouni, L. A multivariate statistical analysis of groundwater chemistry data. International journal of environmental research. Int. J. Environ. Res. 2011, 5, 537–544. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. A Computer Program+ for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey: Denver, CO, USA, 1999; p. 312. [Google Scholar]
- USEPA. Exposure Factors Handbook: 2011 Edition; EPA/600/R-09/052F; Office of Research and Development, United States Environmental Protection Agency: Washington, DC, USA, 2011. Available online: http://www.epa.gov/ncea/efh/report.html (accessed on 10 February 2024).
- USEPA. Guidelines for Exposure Assessment; EPA/600/Z-92/001; Office of Research and Development, United States Environmental Protection Agency: Washington DC, USA, 1992. Available online: http://www.epa.gov/NCEA/raf/pdfs/exposure.pdf. (accessed on 10 February 2024).
- USEPA. Guidelines for Carcinogen Risk Assessment; 630/P-03/001F; U.S. Environmental Protection Agency, Risk Assessment Forum: Washington, DC, USA, 2005. Available online: https://www.epa.gov/sites/default/files/2013-09/documents/cancer_guidelines_final_3-25-05.pdf (accessed on 10 February 2024).
- USEPA. United States Environmental Protection Agency. Integrated Risk Information System (IRIS). 2021. Available online: https://cfpub.epa.gov/ncea/iris2/atoz.cfm (accessed on 15 January 2023).
- Taylor, A.A.; Tsuji, J.S.; McArdle, M.E.; Adams, W.J.; Goodfellow, W.L. Recommended Reference Values for Risk Assessment of Oral Exposure to Copper. Risk Anal. 2022, 43, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Soldatova, E.; Sidkina, E.; Dong, Y. Arsenic in groundwater of the Poyang Lake area (China): Aqueous species and health risk assessment. Environ. Geochem. Health 2023, 45, 2917–2933. [Google Scholar] [CrossRef] [PubMed]
- Apollaro, C.; Caracausi, A.; Paternoster, M.; Randazzo, P.; Aiuppa, A.; De Rosa, R.; Fuoco, I.; Mongelli, G.; Muto, F.; Vanni, E.; et al. Fluid geochemistry in a low-enthalpy geothermal field along a sector of southern Apennines chain (Italy). J. Geochem. Exp. 2020, 219, 106618. [Google Scholar] [CrossRef]
- Torres-Ceron, D.A.; Acosta-Medina, C.D.; Restrepo-Parra, E. Geothermal and mineralogic analysis of hot springs in the Puracé-La Mina sector in Cauca, Colombia. Geofluids 2019, 2019, 3191454. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupre, B.; Louvat, P.; Allegre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- White, A.F.; Schulz, M.S.; Lowenstern, J.B.; Vivit, D.V.; Bullen, T.D. The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis. Geochim. Cosmochim. Acta 2005, 69, 1455–1471. [Google Scholar] [CrossRef]
- Worthington, M.; Thurston, O.; Rahn, J.; Manon Garver, J.I. Radon Potential and uranium redistribution in the Lucerne and Gouldsboro granites, Maine. In Proceedings of the Geological Society of America, Northeastern Section, Bretton Woods, NH, USA, 21 March 2015; Volume 47. [Google Scholar]
- U.S. Environmental Protection Agency. EPA Assessment of Risk from Radon in Homes; EPA402-R-03; U.S. EPA: Washington, DC, USA, 2003. [Google Scholar]
- World Health Organization. Arsenic. 2018. Available online: http://www.who.int/news-room/fact-sheets/detail/arsenic (accessed on 10 February 2024).
- Reimer, P.S. Environmental Effects of Manganese and Proposed Freshwater Guidelines to Protect Aquatic Life in British Columbia. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 1999. [Google Scholar]
- Howe, P.; Malcolm, H.; Dobson, S. World Health Organization Manganese and Its Compounds: Environmental Aspects; Concise International Chemical Assessment Document No 63; World Health Organization: Geneva, Switzerland, 2004; Available online: https://inchem.org/documents/cicads/cicads/cicad63.htm (accessed on 10 February 2024).
- The National Standards of the People’s Republic of China: Environmental Quality Standards for Surface Water. Ministry of Ecology and Environment. 2006 Archived from the Original on 2023-01-10. Available online: https://english.mee.gov.cn/SOE/soechina1997/water/standard.htm (accessed on 10 February 2024).
- Order of the Ministry of Agriculture of Russia from 13.12.2016 N 552 (ed. from 22.08.2023) on Approval of Water Quality Standards of Water Bodies of Fishery Importance, Including Standards of Maximum Permissible Concentrations of Harmful Substances in the Waters of Water Bodies of Fishery Importance (Registered in the Ministry of Justice of Russia 13.01.2017 N 45203). Available online: http://publication.pravo.gov.ru/Document/View/0001201701160006?index=1 (accessed on 10 February 2024).
- Sanitary Rules and Regulations SanPiN 1.2.3685-21 Hygienic Norms and Requirements to Ensure the Safety and (or) Harmlessness Environmental Factors for Humans. 2021. Available online: https://dou.su/files/docs/SP123685_21.pdf (accessed on 10 February 2024). (In Russian).
- Seal, R.R.; Hammarstrom, J.M. Geoenvironmental models of mineral deposits: Examples from massive sulfide and gold deposits. Environ. Asp. Mine Wastes 2003, 31, 11–50. [Google Scholar]
- Nordstrom, D.K. Mine waters: Acidic to circumneutral. Elements 2011, 7, 393–398. [Google Scholar] [CrossRef]
- Casagrande, J.C.; Alleoni, L.R.F.; de Camargo, O.A.; Arnone, A.D. Effects of pH and Ionic Strength on Zinc Sorption by a Variable Charge Soil. Commun. Soil Sci. Plant Anal. 2005, 35, 2087–2095. [Google Scholar] [CrossRef]
- Zuddas, P. Water-Rock Interaction Processes Seen through Thermodynamics. Elements 2010, 6, 305–308. [Google Scholar] [CrossRef]
- Drever, J.I. The Geochemistry of Natural Waters, 2nd ed.; Prentice-Hall: Englewood, NJ, USA, 1988. [Google Scholar]
- Langmuir, D. Aqueous Environmental Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1997; p. 601. [Google Scholar]
- Ayşe, O. Evolution of the Mo-Rich Scheelite Skarn Mineralization at Kozbudaklar, Western Anatolia, Turkey: Evidence from mineral chemistry and fluid inclusions. Ore Geol. Rev. 2017, 80, 141–165. [Google Scholar]
- Chappaz, A.; Glass, J.B.; Lyons, T.W. Molybdenum. In Encyclopedia of Geochemistry; White, W., Ed.; Encyclopedia of Earth Sciences Series; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Wagemann, R. Some theoretical aspects of stability and solubility of inorganic arsenic in the freshwater environment. Water Res. 1978, 12, 139–145. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, X.; Xie, Q.; Chen, Y.; Wang, D.; Liang, Y.; Lu, J. Solubility and stability of barium arsenate and barium hydrogen arsenate at 25 C. J. Hazard. Mater. 2005, 120, 37–44. [Google Scholar] [CrossRef]
- Frankenthal, R. Equilibrium constants. In Handbook of Analytical Chemistry, 1st ed.; McGraw-Hill: New York, NY, USA, 1963. [Google Scholar]
- Jang, Y.C.; Somanna, Y.; Kim, H. Source, distribution, toxicity and remediation of arsenic in the environment—A review. Int. J. Appl. Environ. Sci. 2016, 11, 559–581. [Google Scholar]
- Frisbie, S.H.; Mitchell, E.J. Arsenic in drinking water: An analysis of global drinking water regulations and recommendations for updates to protect public health. PLoS ONE 2022, 17, e0263505. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Arsenic; Draft for Public Comment; ATSDR: Atlanta, GA, USA, 2007. Available online: http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=22&tid=3 (accessed on 10 February 2024).
- Human Health Risk Assessment from Environmental Chemicals (R 2.1.10.1920–04); Federal Center for Gossanepidnadzor of the Ministry of Health of Russia: Moscow, Russia, 2004; Available online: https://ohranatruda.ru/upload/iblock/cb0/4293853015.pdf (accessed on 10 February 2024). (In Russian)
- Shakya, A.; Dodson, M.; Artiola, J.F.; Ramirez-Andreotta, M.; Root, R.A.; Ding, X.; Chorover, J.; Maier, R.M. Arsenic in Drinking Water and Diabetes. Water 2023, 15, 1751. [Google Scholar] [CrossRef] [PubMed]
- Huntsman, S.A.; Sunda, W.G. The Role of Trace Metals in Regulating Phytoplankton. In The Physiological Ecology of Phytoplankton; Morris, I., Ed.; University of California: Berkeley, CA, USA, 1980; pp. 285–328. [Google Scholar]
- Cuppett, J.D.; Duncan, S.E.; Dietrich, A.M. Evaluation of Copper Speciation and Water Quality Factors That Affect Aqueous Copper Tasting Response. Chem. Sens. 2006, 31, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J. Aquatic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Dixit, S.; Hering, J.G. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182–4189. [Google Scholar] [CrossRef]
- Scott, D.T.; McKnight, D.M.; Voelker, B.M.; Hrncir, D.C. Redox processes controlling manganese fate and transport in a mountain stream. Environ. Sci. Technol. 2002, 36, 453–459. [Google Scholar] [CrossRef]
- Savage, K.S.; Tingle, T.N.; O’Day, P.A.; Waychunas, G.A.; Bird, D.K. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Appl. Geochem. 2000, 15, 1219–1244. [Google Scholar] [CrossRef]
- DeSisto, S.L.; Jamieson, H.E.; Parsons, M.B. Subsurface variations in arsenic mineralogy and geochemistry following long-term weathering of gold mine tailings. Appl. Geochem. 2016, 73, 81–97. [Google Scholar] [CrossRef]
- Haffert, L.; Craw, D.; Pope, J. Climatic and compositional controls on secondary arsenic mineral formation in high-arsenic mine wastes, South Island, New Zealand. N. Z. J. Geol. Geophys. 2010, 53, 91–101. [Google Scholar] [CrossRef]
- Jamieson, H.E.; Walker, S.R.; Parsons, M.B. Mineralogical characterization of mine waste. Appl. Geochem. 2015, 57, 85–105. [Google Scholar] [CrossRef]
- Vergasova, L.P.; Krivovichev, S.V.; Britvin, S.N.; Burns, P.N.; Ananiev, V.V. Filatovite, K[(Al, Zn)2(As, Si)2O8], a new mineral species from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur. J. Mineral. 2004, 16, 533–536. [Google Scholar] [CrossRef]
- Fuoco, I.; De Rosa, R.; Barca, D.; Figoli, A.; Gabriele, B.; Apollaro, C. Arsenic polluted waters: Application of geochemical modelling as a tool to understand the release and fate of the pollutant in crystalline aquifers. J. Environ. Manag. 2022, 301, 113796. [Google Scholar] [CrossRef]
Mineral | W | Ba | Mn | Mo | Pb | Zn | Cu | As |
---|---|---|---|---|---|---|---|---|
Water is equilibrated or oversaturated with respect to the next minerals: | ||||||||
SI Ferberite (FeWO4) | −7…1 | |||||||
SI Barite [BaSO4] | −1.5…0.7 | |||||||
SI Rhodochrosite, MnCO3 | −1…0.5 | |||||||
SI Powellite, CaMoO4 | −5…0.5 | |||||||
SI Wulfenite, Pb(MoO4)3 | −7…0.5 | |||||||
SI Fe2(MoO4)3 | −8…0.5 | |||||||
SI WO4 | −23…0.02 | |||||||
Water is undersaturated with respect to the next minerals: | ||||||||
SI Cerrusite, PbCO3 | −5…−1.0 | |||||||
SI Witherite, BaCO3 | −5.0…−1.0 | |||||||
SI Smithsonite, Zn(CO3) | −16…−1.5 | |||||||
SI Scheelite, CaWO4 | −6…−1.7 | |||||||
SI Pb(OH)2 | −8…−2 | |||||||
SI CuMoO4 | −10…−2 | |||||||
SI Willemite, Zn2SiO4 | −15…−2 | |||||||
SI Al3(AsO4)2 | −13…−3.4 | |||||||
SI Anglesite, PbSO4 | −10…−4 | |||||||
SI Hübnerite, MnWO4 | −11…−4 | |||||||
SI BaMoO4 | −9…−5 | −9…−5 | −9…−5 | |||||
SI MnWO4 | −11…−6 | |||||||
SI Scorodite FeAsO4 | −15…−7 | |||||||
SI Sphalerite (ZnS) | −60…−7 | |||||||
SI Pyrite, FeS2 | −120…−75 | |||||||
SI Ca3(AsO4)2 | −20…−8 | |||||||
SI Manganite, MnO(OH) | −14…−10 | |||||||
SI Pb3AsO4) | −30…−14 | −30…−14 | ||||||
SI Cu3(AsO4)2 | −26…−15 | −26…−15 | ||||||
SI Realgar, AsS | −40…−15 | |||||||
SI Ba3AsO4 | −32…−16 | −32…−16 | ||||||
SI Arsenolite, As4O6 | −60…−16 | |||||||
SI MoS2 | −160…−20 | |||||||
SI Orpiment, As2S3 | −90…−23 | |||||||
SI Tungstenite, WS2 | −300…−50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chelnokov, G.; Lavrushin, V.; Ermakov, A.; Guo, Q.; Aidarkozhina, A.; Kharitonova, N.; Bragin, I.; Pavlov, A. Toxic Element Contamination Sources in the Surface and Groundwater of the Elbrus Region: Geochemistry and Health Risks. Water 2024, 16, 701. https://doi.org/10.3390/w16050701
Chelnokov G, Lavrushin V, Ermakov A, Guo Q, Aidarkozhina A, Kharitonova N, Bragin I, Pavlov A. Toxic Element Contamination Sources in the Surface and Groundwater of the Elbrus Region: Geochemistry and Health Risks. Water. 2024; 16(5):701. https://doi.org/10.3390/w16050701
Chicago/Turabian StyleChelnokov, George, Vasilii Lavrushin, Aleksandr Ermakov, Qinghai Guo, Altyn Aidarkozhina, Natalia Kharitonova, Ivan Bragin, and Andrey Pavlov. 2024. "Toxic Element Contamination Sources in the Surface and Groundwater of the Elbrus Region: Geochemistry and Health Risks" Water 16, no. 5: 701. https://doi.org/10.3390/w16050701
APA StyleChelnokov, G., Lavrushin, V., Ermakov, A., Guo, Q., Aidarkozhina, A., Kharitonova, N., Bragin, I., & Pavlov, A. (2024). Toxic Element Contamination Sources in the Surface and Groundwater of the Elbrus Region: Geochemistry and Health Risks. Water, 16(5), 701. https://doi.org/10.3390/w16050701