Treatment of Slaughterhouse Wastewater through a Series System: Upflow Anaerobic Reactor and Artificial Wetland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Experimental System
2.2. Operation of the Experimental System
2.2.1. UASB Inoculation
2.2.2. System Start-Up
2.2.3. Wetland Setup
2.2.4. System Operation
2.2.5. Analytical Methods
3. Results and Discussion
3.1. Sludge Characteristics
3.2. Operational Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saghir, A.; Hajjar, S. Biological treatment of slaughterhouse wastewater using Up Flow Anaerobic Sludge Blanket (UASB)—Anoxic-aerobic system. Sci. Afr. 2022, 16, e01236. [Google Scholar] [CrossRef]
- Rahomi, A.; Razman, M.; Sohaili, J.; Nur, A.; Krishna, S. Performance of integrated anaerobic / aerobic sequencing batch reactor treating poultry slaughterhouse wastewater. Chem. Eng. J. 2017, 313, 967–974. [Google Scholar] [CrossRef]
- Dalantai, T.; Rhee, C.; Kim, D.W.; Yu, S.I.; Shin, J.; Triolo, J.M.; Shin, S.G. Complex network analysis of slaughterhouse waste anaerobic digestion: From failure to success of long-term operation. Bioresour. Technol. 2022, 361, 127673. [Google Scholar] [CrossRef] [PubMed]
- Caldera, Y.; Gutiérrez, E.; Luengo, M.; Chávez, J.; Ruesga, L. Wastewater treatment system evaluation of a poultry industry. Rev. Científica 2010, 20, 409–416. [Google Scholar]
- Ratanatamskul, C.; Siritiewsri, T. A compact on-site UASB-EGSB system for organic and suspended solid digestion and biogas recovery from department store wastewater. Int. Biodeterior. Biodegrad. 2015, 102, 2–430. [Google Scholar] [CrossRef]
- López-López, A.; Vallejo-Rodriguez, R.; Méndez-Romero, D.C. Evaluation of a combined anaerobic and aerobic system for the treatment of slaughterhouse wastewater. Environ. Technol. 2010, 31, 319–326. [Google Scholar] [CrossRef]
- Aziz, A.; Basheer, F.; Sengar, A.; Khan, S.U.; Farooqi, I.H. Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater. Sci. Total Environ. 2019, 686, 681–708. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. J. Environ. Manag. 2015, 161, 287–302. [Google Scholar] [CrossRef]
- Tong, S.; Wang, S.; Zhao, Y.; Feng, C.; Xu, B.; Zhu, M. Enhanced alure-type biological system (E-ATBS) for carbon, nitrogen and phosphorus removal from slaughterhouse wastewater: A case study. Bioresour. Technol. 2019, 274, 244–251. [Google Scholar] [CrossRef]
- Vidal, J.; Carvajal, A.; Huiliñir, C.; Salazar, R. Slaughterhouse wastewater treatment by a combined anaerobic digestion/solar photoelectro-Fenton process performed in semicontinuous operation. Chem. Eng. J. 2019, 378, 122097. [Google Scholar] [CrossRef]
- Rittmann, B.E.; McCarty, P.L. Environmental Biotechnology: Principles and Applications; Tata McGraw: New Delhi, India, 2012; Available online: https://www.worldcat.org/title/environmental-biotechnology-principles-and-applications/oclc/847108341?referer=di&ht=edition#.YuKxITRoaJw.mendeley (accessed on 28 July 2022).
- Moukazis, I.; Pellera, F.M.; Gidarakos, E. Slaughterhouse by-products treatment using anaerobic digestion. Waste Manag. 2018, 71, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Loganath, R.; Mazumder, D. Performance study on organic carbon, total nitrogen, suspended solids removal and biogas production in hybrid UASB reactor treating real slaughterhouse wastewater. J. Environ. Chem. Eng. 2018, 6, 3474–3484. [Google Scholar] [CrossRef]
- Rajakumar, R.; Meenambal, T.; Saravanan, P.M.; Ananthanarayanan, P. Treatment of poultry slaughterhouse wastewater in hybrid upflow anaerobic sludge blanket reactor packed with pleated poly vinyl chloride rings. Bioresour. Technol. 2012, 103, 116–122. [Google Scholar] [CrossRef]
- Nair, A.T.; Ahammed, M.M. Water treatment sludge for phosphate removal from the effluent of UASB reactor treating municipal wastewater. Process Saf. Environ. Prot. 2015, 94, 105–112. [Google Scholar] [CrossRef]
- Travieso, L.; Benítez, F.; Sánchez, E.; Borja, R.; León, M.; Raposo, F.; Rincón, B. Evaluation of UASB effluent post-treatment in pilot-scale by microalgae HRP and macrophytes pond for nutrient recovery. J. Clean. Prod. 2022, 357, 985–992. [Google Scholar] [CrossRef]
- Rodrigues-Silva, F.; Masceno, G.P.; Panicio, P.P.; Imoski, R.; Prola, L.D.T.; Vidal, C.B.; Xavier, C.R.; Ramsdorf, W.A.; Passig, F.H.; de Liz, M.V. Removal of micropollutants by UASB reactor and post-treatment by Fenton and photo-Fenton: Matrix effect and toxicity responses. Environ. Res. 2022, 212, 113396. [Google Scholar] [CrossRef]
- Khan, A.A.; Gaur, R.Z.; Tyagi, V.K.; Khursheed, A.; Lew, B.; Mehrotra, I.; Kazmi, A.A. Sustainable options of post treatment of UASB effluent treating sewage: A. review. Resour. Conserv. Recycl. 2011, 55, 1232–1251. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, Y.; Doherty, L.; Hu, Y.; Hao, X. A review of incorporation of constructed wetland with other treatment processes. Chem. Eng. J. 2015, 279, 220–230. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Rengers, E.E.; da Silva, J.B.; Paulo, P.L.; Janzen, J.G. Hydraulic performance of a modified constructed wetland system through a CFD-based approach. J. Hydro-Environ. Res. 2016, 12, 91–104. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- El-Khateeb, M.A.; Al-Herrawy, A.Z.; Kamel, M.M.; El-Gohary, F.A. Use of wetlands as post-treatment of anaerobically treated effluent. Desalination 2009, 245, 50–59. [Google Scholar] [CrossRef]
- Shehzadi, M.; Afzal, M.; Khan, M.U.; Islam, E.; Mobin, A.; Anwar, S.; Khan, Q.M. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res. 2014, 58, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lissner, J.; Mendelssohn, I.A.; Brix, H.; Lorenzen, B.; McKee, K.L.; Miao, S. Nutrient and growth responses of cattail (Typha domingensis) to redox intensity and phosphate availability. Ann. Bot. 2010, 105, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Di Luca, G.A.; Mufarrege, M.M.M.; Hadad, H.R.; Maine, M.A. Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland. Sci. Total Environ. 2019, 650, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Vinícius, M.; Gomes, T.; Rodrigues, R.; Souza, D.; Silva, V.; Araújo, É. Chemosphere Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere 2014, 103, 228–233. [Google Scholar] [CrossRef]
- Mojiri, A.; Ziyang, L.; Tajuddin, R.M.; Farraji, H.; Alifar, N. Co-treatment of landfill leachate and municipal wastewater using the ZELIAC/zeolite constructed wetland system. J. Environ. Manag. 2016, 166, 124–130. [Google Scholar] [CrossRef]
- Alufasi, R.; Gere, J.; Chakauya, E.; Lebea, P.; Chingwaru, W. Mechanisms of pathogen removal by macrophytes in constructed wetlands. Environ. Technol. Rev. 2017, 2515, 135–144. [Google Scholar] [CrossRef]
- Tong, S.; Zhao, Y.; Zhu, M.; Wei, J.; Zhang, S.; Li, S.; Sun, S. Effect of the supernatant reflux position and ratio on the nitrogen removal performance of anaerobic-aerobic slaughterhouse wastewater treatment process. Environ. Eng. Res. 2020, 25, 309–315. [Google Scholar] [CrossRef]
- Abyar, H.; Younesi, H.; Bahramifar, N.; Zinatizadeh, A.A. Biological CNP removal from meat-processing wastewater in an innovative high rate up-flow A2O bioreactor. Chemosphere 2018, 213, 197–204. [Google Scholar] [CrossRef]
- Ghangrekar, M.M.; Asolekar, S.R.; Joshi, S.G. Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation. Water Res. 2005, 39, 1123–1133. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, J.; Qian, G.; Liu, J. Effective anaerobic biodegradation of municipal solid waste fresh leachate using a novel pilot-scale reactor: Comparison under different seeding granular sludge. Bioresour. Technol. 2014, 165, 152–157. [Google Scholar] [CrossRef]
- Bohdziewicza, J.; Kwarciakb, A. The application of hybrid system UASB reactor-RO in landfill leachate treatment. Desalination 2009, 248, 123–130. [Google Scholar] [CrossRef]
- Yan, L.; Ye, J.; Zhang, P.; Xu, D.; Wu, Y.; Liu, J.; Zhang, H.; Fang, W.; Wang, B.; Zeng, G. Bioresource Technology Hydrogen sulfide formation control and microbial competition in batch anaerobic digestion of slaughterhouse wastewater sludge: Effect of initial sludge pH. Bioresour. Technol. 2018, 259, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Apha. APHA (2012) Standard Methods for the Examination of Water and Waste Water, 22nd ed.; American Public Health Association, American Water Works Association, Water Environment Federation, American Journal of Public Health and the Nations Health: Washington, DC, USA, 2012; Available online: http://www.sciepub.com/reference/226577 (accessed on 28 July 2022).
- Sanchez Sanchez, A. Combining Submerged Membrane Technology with Anaerobic and Aerobic Wastewater Treatment. 2013. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=113296&info=resumen&idioma=ENG (accessed on 19 October 2022).
- Zhang, X.; Qiu, W.; Chen, H. Enhancing the hydrolysis and acidification of steam-exploded cornstalks by intermittent pH adjustment with an enriched microbial community. Bioresour. Technol. 2012, 123, 30–35. [Google Scholar] [CrossRef]
- Si, B.; Li, J.; Zhu, Z.; Shen, M.; Lu, J.; Duan, N.; Zhang, Y.; Liao, Q.; Huang, Y.; Liu, Z. Science of the Total Environment Inhibitors degradation and microbial response during continuous anaerobic conversion of hydrothermal liquefaction wastewater. Sci. Total Environ. 2018, 630, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Bandera, L. Treatment of Wastewater from the Municipal Slaughterhouse of Riohacha using a Pilot Scale UASB Reactor; Research project; Faculty of Engineering, University of La Guajira and University of Zulia: La Guajira, Colombia, 2016; 171p. [Google Scholar]
- Sarioglu, M.; Begüm, Ö. Investigation of the treatability of molasses and industrial oily wastewater mixture by an anaerobic membrane hybrid system. J. Environ. Manag. 2018, 224, 298–309. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, L.; Huang, S.; Zeeman, G.; Rijnaarts, H.; Liu, Y. Improving the energy efficiency of a pilot-scale UASB-digester for low temperature domestic wastewater treatment. Biochem. Eng. J. 2018, 135, 71–78. [Google Scholar] [CrossRef]
- Ruiz, I.; Díaz, M.A.; Crujeiras, B.; García, J.; Soto, M. Solids hydrolysis and accumulation in a hybrid anaerobic digester-constructed wetlands system. Ecol. Eng. 2010, 36, 1007–1016. [Google Scholar] [CrossRef]
- Cao, W.; Mehrvar, M. Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes. Chem. Eng. Res. Des. 2011, 89, 1136–1143. [Google Scholar] [CrossRef]
- Schmidt, T.; Mccabe, B.K.; Harris, P.W.; Lee, S. Bioresource Technology Effect of trace element addition and increasing organic loading rates on the anaerobic digestion of cattle slaughterhouse wastewater. Bioresour. Technol. 2018, 264, 51–57. [Google Scholar] [CrossRef]
- De la Varga, D.; Díaz, M.A.; Ruiz, I.; Soto, M. Heavy metal removal in an UASB-CW system treating municipal wastewater. Chemosphere 2013, 93, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Carrasquero Ferrer, S.J.; Marquina Gelvez, D.C.; Soto López, J.G.; Viloria Rincón, S.; Pire Sierra, M.C.P.; Diaz Montiel, A.R.D. Nutrient removal in wastewater from a beef slaughterhouse using a sequential biological reactor. Cienc. Ing. Neogranadina 2015, 25, 43. [Google Scholar] [CrossRef]
- Mazumder, D. Simultaneous COD and Ammonium Nitrogen Removal from a High-strength Wastewater in a Shaft-type Aerobic Hybrid Bioreactor. Int. J. Environ. Sci. Dev. 2010, 1, 327–332. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Li, P.; Zhang, J.; Xie, H.; Zhang, B. Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. Ecol. Eng. 2011, 4, 560–568. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.Q.; Dong, J.W.; Tan, S.K. Constructed wetlands for wastewater treatment in cold climate—A review. J. Environ. Sci. 2017, 57, 293–311. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Mehrvar, M. Treatment of actual slaughterhouse wastewater by combined anaerobic-aerobic processes for biogas generation and removal of organics and nutrients: An optimization study towards a cleaner production in the meat processing industry. J. Clean. Prod. 2017, 141, 278–289. [Google Scholar] [CrossRef]
Hydraulic Retention Time: 7.5 Days | |||||
---|---|---|---|---|---|
HRT (h) 36 | Component | (°C) ± σ | pH ± σ | Alk P (mg/L) ± σ | Alk T (mg/L) ± σ |
Influent | 28.1 ± 2 | 8.54 ± 0.22 | 347 ± 144 | 520 ± 203 | |
Effluent UASB | 31.1 ± 1.36 | 7.43 ± 0.88 | 766 ± 492 | 933 ± 499 | |
Hydraulic Retention Time: 5.0 days | |||||
HRT (h) | Component | T (°C) ± σ | pH ± σ | Alk P (mg/L) ± σ | Alk T (mg/L) ± σ |
24 | Influent | 28.8 ± 1.31 | 8.49 ± 0.36 | 557 ± 154 | 799 ± 157 |
Effluent UASB | 30.5 ± 0.96 | 7.79 ± 0.22 | 1700 ± 319 | 2006 ± 346 | |
Hydraulic Retention Time: 2.5 days | |||||
HRT (h) | Component | T (°C) ± σ | pH ± σ | Alk P (mg/L) ± σ | Alk T (mg/L) ± σ |
12 | Influent | 27.9 ± 1.57 | 8.65 ± 0.20 | 538 ± 190 | 756 ± 226 |
Effluent UASB | 31.1 ± 0.87 | 8.01 ± 0.17 | 1462 ± 430 | 1736 ± 448 |
Parameter | EPA, USA | EU | India | China | Canada | Australia | Colombia | UASB–Wetland HRT 7.5 d, Riohacha | |
---|---|---|---|---|---|---|---|---|---|
A | B | ||||||||
pH | 6–9 | - | 6.5–8.5 | 6–9 | 6–9 | 5–9 | 6.00–9.00 | 5.00–9.00 | 7.23–8.38 |
COD (mg/l) | - | 125 | 250 | 100–300 | - | 40 | 900 | 1350 | 340 |
BOD (mg/l) | 16–26 | 25 | 30 | 20–100 | 5–30 | 5–20 | 450 | 675 | 375 |
NT (mg/l) | 4–8 | 10–15 | - | 15–20 | 1.25 | 10–20 | - | - | 0.4 |
PT (mg/l) | - | 1–2 | - | 0.1–1 | 1 | 2 | - | - | 0.23 |
F&O (mg/L) | - | - | 10 | - | - | - | 50 | 75 | 50 |
TSSs (mg/L) | 20–30 | 35–60 | 50 | 20–30 | 5–30 | 5–20 | 200 | 300 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galindo Montero, A.A.; Berrio Arrieta, Y.M.; Pimienta Serrano, E.V. Treatment of Slaughterhouse Wastewater through a Series System: Upflow Anaerobic Reactor and Artificial Wetland. Water 2024, 16, 700. https://doi.org/10.3390/w16050700
Galindo Montero AA, Berrio Arrieta YM, Pimienta Serrano EV. Treatment of Slaughterhouse Wastewater through a Series System: Upflow Anaerobic Reactor and Artificial Wetland. Water. 2024; 16(5):700. https://doi.org/10.3390/w16050700
Chicago/Turabian StyleGalindo Montero, Andrés A., Yeison M. Berrio Arrieta, and Estefany V. Pimienta Serrano. 2024. "Treatment of Slaughterhouse Wastewater through a Series System: Upflow Anaerobic Reactor and Artificial Wetland" Water 16, no. 5: 700. https://doi.org/10.3390/w16050700
APA StyleGalindo Montero, A. A., Berrio Arrieta, Y. M., & Pimienta Serrano, E. V. (2024). Treatment of Slaughterhouse Wastewater through a Series System: Upflow Anaerobic Reactor and Artificial Wetland. Water, 16(5), 700. https://doi.org/10.3390/w16050700