Revealing the Sources of Nutrients in the Surface Waters of the Selenga River Watershed Using Hydrochemical and Geospatial Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Research Design
2.3. Data Collection, Preparation and Assessment
2.4. Nutrient Export Calculation
2.5. Mapping Procedures
3. Results and Discussion
3.1. Spatial Distribution of TON Concentrations
3.2. Spatial Distribution of IP Concentrations
3.3. Spatial Distribution of TON Export
3.4. Spatial Distribution of IP Export
3.5. Identification of Hydrologically Sensitive Areas on the Basis of Spatial Distribution of FA/TWI Ratio Values
3.6. Identification of Critical Source Areas on the Basis of Data on Spatial Distribution of HSAs and Land Use
3.7. Implications of the Obtained Data for Water Quality Management and Environmental Conservation
4. Conclusions
- Obtained estimates of the nutrient export rates are not precise due to the use of summer baseflow concentrations instead of flow-weighted mean concentrations. At the same time, the locations of nutrient source areas were identified quite precisely because baseflow concentrations reflect the groundwater chemistry which is an indicator of chronic pollution.
- Since the study is based on the evaluation of nutrient export rates, its main limitations are associated with determining the physical properties of the watershed such as water discharge, watershed area and watershed boundary. The second most important limitation is associated with the choice of nutrient concentration values used for nutrient export calculations.
- Taking into account the scales of the maps and the quality of the chemical data used in the present study, it is clear that further research is needed to detail the picture of spatial distribution of nutrient export rates and nutrient source areas.
- Due to less precipitation, the TON and IP concentrations in the surface waters of the Mongolian part of the Selenga watershed are much higher than those in the waters of the Russian part.
- The values of TON export in both parts of watershed were approximately in the range 0–1000 kg/km2/yr; however, the values calculated for 95% of the territory under study were in the range 0–50 kg/km2/yr.
- The values of IP export were approximately in the range 0–223 kg/km2/yr, but the values calculated for most of the basin are in the range 0–5 kg/km2/yr.
- The lowest concentrations of TON and IP in surface waters, as well as the highest values of TON and IP export from watershed, were observed in the lowest part of the Selenga watershed, not far from Baikal.
- TON in surface waters of Selenga watershed originated mostly from urban sources, whereas IP originated mostly from rural sources.
- Hydrologically sensitive areas characterized by FA/TWI values within the range 70,000–80,000 can be used for the identification of critical source areas in the lower Selenga basin.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lund, J.W.G. Proceedings of the Royal Society of London. Eutrophication 1972, 180, 371–382. [Google Scholar]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Khan, F.A.; Ansari, A.A. Eutrophication: An Ecological Vision. Bot. Rev. 2005, 71, 449–482. Available online: http://www.jstor.org/stable/4354503 (accessed on 3 July 2023). [CrossRef]
- Gibson, G.; Carlson, R.; Simpson, J.; Smeltzer, E.; Gerritson, J.; Chapra, S.; Heiskary, S.; Jones, J.; Kennedy, R. Nutrient Criteria Technical Guidance Manual—Lakes and Reservoirs; Protection Agency: Washington, DC, USA, 2000; pp. 9-1–9-17. Available online: https://www.epa.gov/sites/default/files/2018-10/documents/nutrient-criteria-manual-lakes-reservoirs.pdf (accessed on 18 February 2024).
- Rixen, T.; Baum, A.; Sepryani, H.; Pohlmann, T.; Jose, C.; Samiaji, J. Dissolved oxygen and its response to eutrophication in a tropical black water river. J. Environ. Manag. 2010, 91, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Hanjaniamin, A.E.; Tabrizi, M.S.; Babazadeh, H. Dissolved oxygen concentration and eutrophication evaluation in Yamchi dam reservoir, Ardabil, Iran. Appl. Water Sci. 2023, 13, 9. [Google Scholar] [CrossRef]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of Lake Waters in China: Cost, Causes, and Control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, M.; Dong, J.; Yang, H.; Van Zwieten, L.; Lu, H.; Alshameri, A.; Zhan, Z.; Chen, X.; Jiang, X.; et al. A Critical Review of Methods for Analyzing Freshwater Eutrophication. Water 2021, 13, 225. [Google Scholar] [CrossRef]
- Kobanova, G.I.; Takhteev, V.V.; Rusanovskaya, O.O.; Timofeyev, M.A. Lake Baikal ecosystem faces the threat of eutrophication. Int. J. Ecol. 2016, 401, 6058082. [Google Scholar] [CrossRef]
- Kravtsova, L.S.; Izhboldina, L.A.; Khanaev, I.V.; Pomazkina, G.V.; Rodionova, E.V.; Domysheva, V.M.; Sakirko, M.V.; Tomberg, I.V.; Kostornova, T.Y.; Kravchenko, O.S.; et al. Nearshore benthic blooms of filamentous green algae in Lake Baikal. J. Great Lakes Res. 2014, 40, 441–448. [Google Scholar] [CrossRef]
- Timoshkin, O.A.; Samsonov, D.P.; Yamamuro, M.; Moore, M.V.; Belykh, O.I.; Malnik, V.V.; Sakirko, M.V.; Shirokaya, A.A.; Bondarenko, N.A.; Domysheva, V.M.; et al. Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world’s greatest freshwater biodiversity in danger? J. Great Lakes Res. 2016, 42, 487–497. [Google Scholar] [CrossRef]
- Panizzo, V.N.; Swann, G.E.A.; Mackay, A.W.; Vologina, E.; Alleman, L.; André, L.; Pashley, V.; Horstwood, M.S.A. Constraining modern-day silicon cycling in Lake Baikal. Glob. Biogeochem. Cycles 2017, 31, 556–574. [Google Scholar] [CrossRef]
- O’Donnell, D.R.; Wilburn, P.; Silow, E.A.; Yampolsky, L.Y.; Litchman, E. Nitrogen and phosphorous colimitation of phytoplankton in Lake Baikal: Insights from a spatial survey and nutrient enrichment experiments. Limnol. Oceanogr. 2017, 62, 1383–1392. [Google Scholar] [CrossRef]
- Chebykin, E.P.; Sorokovikova, L.M.; Tomberg, I.V.; Rasskazov, S.V.; Khodzher, T.V.; Grachev, M.A. Current state of the Selenga River waters in the Russian territory concerning major components and trace elements. Chem. Sustain. Dev. 2012, 20, 561–580. [Google Scholar]
- Khodzher, T.V.; Domysheva, V.M.; Sorokovikova, L.M.; Sakirko, M.V.; Tomberg, I.V. Current chemical composition of Lake Baikal water. Inland Waters 2017, 7, 250–258. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Semenov, Y.M.; Silaev, A.V.; Begunova, L.A. Assessing the Self-Purification Capacity of Surface Waters in Lake Baikal Watershed. Water 2019, 11, 1505. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Snytko, V.A.; Silaev, A.V.; Semenov, M.Y. Complex Assessment of Permissible Pollutant Loads for Freshwater and Terrestrial Ecosystems Using the Selenga River Basin as an Example. Dokl. Earth Sci. 2020, 492, 455–463. [Google Scholar] [CrossRef]
- Malnik, V.V.; Timoshkin, O.A.; Suturin, A.N.; Onishchuk, N.A.; Sakirko, M.V.; Tomberg, I.V.; Gorshkova, A.S.; Zabanova, N.S. Anthropogenic Changes in the Hydrochemical and Sanitary–Microbiological Characteristics of Water Quality in Southern Baikal Tributaries: Listvennichnyi Bay. Water Resour. 2019, 46, 748–758. [Google Scholar] [CrossRef]
- Sorokovikova, L.M.; Tomberg, I.V.; Sinyukovich, V.N.; Ivanov, V.G. Dynamics of nutrient concentrations and eutrophication of the waters in Barguzin Bay (Lake Baikal). Limnol. Freshw. Biol. 2020, 4, 890–891. [Google Scholar] [CrossRef]
- United States Statutes at Large. The Clean Water Act, 33 U.S.C. §1251 et seq. of 1972; Based on the Federal Water Pollution Control Act of 1948 (Ch. 758; P.L. 845); U.S. Government Printing Office: Washington, DC, USA, 1973.
- Dworsky, L.B. Analysis of Federal Water Pollution Control Legislation, 1948–1966. J. Am. Water Work. Assoc. 1967, 59, 651–680. Available online: https://www.jstor.org/stable/41265049 (accessed on 1 July 2023). [CrossRef]
- Griffiths, M. The European Water Framework Directive: An Approach to Integrated River Basin Management; European Water Management Online, European Water Association: Hennef, Germany, 2002. [Google Scholar]
- Law of the People’s Republic of China on Prevention and Control of Water Pollution. Available online: http://www.bjqixingguan.gov.cn/zfbm/swj/zcwj_5713012/202204/t20220424_73571170.html (accessed on 5 June 2023).
- Russian Ministry of Health. San Pin 2.1.4.1074-01. Drinking Water. Hygienic Requirements for Water Quality of Centralized Drinking Water Supply Systems. Quality Control (Instead San Pin 2.1.4.559-96). Available online: https://www.fao.org/faolex/results/details/ru/c/LEX-FAOC187270/ (accessed on 26 July 2023).
- Manuel, J. Nutrient pollution: A persistent threat to waterways. Environ. Health Perspect. 2014, 122, A304–A309. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Daniel, T.C.; Edwards, D.R. Phosphorus movement in the landscape. J. Prod. Agric. 1993, 6, 492–500. [Google Scholar] [CrossRef]
- Walter, M.T.; Walter, M.F.; Brooks, E.S.; Steenhuis, T.S.; Boll, J.; Weiler, K. Hydrologically sensitive areas: Variable source area hydrology implications for water quality risk assessment. J. Soil Water Conserv. 2000, 55, 277–284. [Google Scholar]
- Agnew, L.J.; Lyon, S.; Gérard-Marchan, T.P.; Collins, V.B.; Lembo, A.J.; Steenhuis, T.S.; Walter, M.T. Identifying hydrologically sensitive areas: Bridging the gap between science and application. J. Environ. Manag. 2006, 78, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, M. Hydrograph modelling strategies. In Processes in Physical and Human Geography: Bristol Essays; Peel, R., Chisholm, M., Hagget, P., Eds.; Heinemann Educational: London, UK, 1975. [Google Scholar]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Unmodèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Young, R.A.; Onstad, C.A.; Boesch, D.D.; Anderson, W.P. AGNPS—A nonpoint source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 1989, 44, 168–173. [Google Scholar]
- Haith, D.A.; Shoemaker, L.L. Generalized watershed loading functions for stream-flow nutrients. Water Resour. Res. 1987, 23, 471–478. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil & Water Assessment Tool: Input/Output Documentation; Version 2012, TR-439; Texas Water Resources Institute: College Station, TX, USA, 2012; p. 650. [Google Scholar]
- Wang, Y.; Hua, C.; Fan, M.; Yao, J.; Zhou, L.; Cai, C.; Zhong, N. Spatial and temporal distribution characteristics of typical pollution loads based on SWAT model across Tuojiang River watershed located in Sichuan Province, Southwest of China. Environ. Monit. Assess. 2023, 195, 865. [Google Scholar] [CrossRef]
- Ubugunov, L.L.; Badmaev, N.B.; Ubugunova, V.I.; Gyninova, A.B.; Balsanova, L.D.; Ubugunov, V.L.; Gonchikov, B.N.; Tsybikdorzhiev, T.D.-T. Soil map of Buryatia. Scale 1:3,000,000; Institute of General and Experimental Biology SB RAS: Ulan-Ude, Russia, 2011. [Google Scholar]
- Ecological Atlas of the Baikal Basin. Available online: http://bic.iwlearn.org/en/atlas/atlas (accessed on 26 July 2023).
- Batuev, A.R.; Beshentsev, A.N.; Bogdanov, V.N.; Dorjgotov, D.; Korytny, L.M.; Plyusnin, V.M. Ecological atlas of the Baikal basin: Cartographic innovation. Geogr. Nat. Resour. 2015, 36, 1–12. [Google Scholar] [CrossRef]
- Gunin, P.D.; Vostokova, E.A.; Dorofeyuk, N.I.; Tarasov, P.E.; Black, C.C. Vegetation dynamics of Mongolia; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Dulamsuren, C.; Hauck, M.; Mühlenberg, M. Ground Vegetation in the Mongolian Taiga Forest-Steppe Ecotone Does Not Offer Evidence for the Human Origin of Grasslands. Appl. Veg. Sci. 2005, 8, 149–154. [Google Scholar] [CrossRef]
- Chalov, S.; Zavadsky, A.; Belozerova, E.; Bulacheva, M.; Jarsjö, J.; Thorslund, J.; Yamkhin, J. Suspended and dissolved matter fluxes in the upper Selenga River basin. Geogr. Environ. Sustain. 2012, 5, 78–94. [Google Scholar] [CrossRef]
- Ochirbold, B.-E.; Tserendorj, A.; Westphal, K.; Karthe, D. Hygienic Condition of Different Water Sources in the Kharaa River Basin, Mongolia in the Light of a Rapid Warming Trend. Atmosphere 2020, 11, 1113. [Google Scholar] [CrossRef]
- Khazheeva, Z.I.; Plyusnin, A.M. Discharge of biogenic substances with river runoff in Selenga basin. Water Resour. 2012, 39, 420–431. [Google Scholar] [CrossRef]
- Khazheeva, Z.I.; Plyusnin, A.M. The regime of dissolved gases and organic matter in Selenga basin rivers. Water Resour. 2013, 40, 61–73. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Semenov, Y.M.; Silaev, A.V.; Begunova, L.A. Source Apportionment of Inorganic Solutes in Surface Waters of Lake Baikal Watershed. Sustainability 2021, 13, 5389. [Google Scholar] [CrossRef]
- GOST 33045-2014; Water. (ISO 6777:1984, NEQ) Methods for Determination of Nitrogen-Containing Matters. Standartinform: Moscow, Russia, 2019. Available online: https://files.stroyinf.ru/Data2/1/4293766/4293766954.pdf (accessed on 25 December 2023).
- GOST 18309-2014; Water. (ISO 6878:2004, NEQ) Methods for Determination of Phosphorus-Containing Matters. Standartinform: Moscow, Russia, 2019. Available online: https://files.stroyinf.ru/Data/584/58485.pdf (accessed on 25 December 2023).
- Sorokovikova, L.M.; Sinyukovich, V.N.; Tomberg, I.V.; Marinaite, I.I.; Khodzher, T.V. Assessing the water quality in the tributary streams of Lake Baikal from chemical parameters. Geogr. Nat. Resour. 2015, 36, 31–39. [Google Scholar] [CrossRef]
- Hosoda, K.; Murata, T.; Mochizuki, A.; Katano, T.; Tanaka, Y.; Mimura, T.; Mitamura, O.; Nakano, S.; Sugiyama, Y.; Satoh, Y.; et al. Biogeochemical characteristics of the Hövsgöl–Ustilimsk water system in Mongolia and Russia: The effect of environmental factors on dissolved chemical components. Limnology 2022, 23, 385–402. [Google Scholar] [CrossRef]
- Batbayar, G.; Pfeiffer, M.; von Tümpling, W.; Kappas, M.; Karthe, D. Chemical water quality gradients in the Mongolian sub-catchments of the Selenga River basin. Environ. Monit. Assess. 2017, 189, 420. [Google Scholar] [CrossRef]
- Sorokovikova, L.M.; Tomberg, I.V.; Stepanova, O.G.; Marinaite, I.I.; Bashenkhaeva, N.V.; Khash-Erdene, S.; Fedotov, A.P. Chemical composition and quality of water of the Selenga River and its tributaries in Mongolia. Limnol. Freshw. Biol. 2019, 6, 332–338. [Google Scholar] [CrossRef]
- Hofmann, J.; Karthe, D.; Ibisch, R.; Schäffer, M.; Avlyush, S.; Heldt, S.; Kaus, A. Initial Characterization and Water Quality Assessment of Stream Landscapes in Northern Mongolia. Water 2015, 7, 3166–3205. [Google Scholar] [CrossRef]
- Zagdragchaa, O.; Bold, A.; Mizunoya, T.; Yabar, H.; Utsumi, M.; Lei, Z.; Zhang, Z.; Sugiura, N.; Shimizu, K. Seasonal Dynamics of Surface Water Quality and River Water Quality Deterioration in an Urban Area of Mongolia. Jpn. J. Water Treat. Biol. 2021, 57, 91–102. [Google Scholar] [CrossRef]
- Hofmann, J.; Hürdler, J.; Ibisch, R.; Schaeffer, M.; Borchardt, D. Analysis of recent nutrient emission pathways, resulting surface water quality and ecological impacts under extreme continental climate: The Kharaa River Basin (Mongolia). Int. Rev. Hydrobiol. 2011, 96, 484–519. [Google Scholar] [CrossRef]
- Wellmitz, J.; Gluschke, M. Leitlinie zur Methodenvalidierung. Texte 01/05 ISSN 0722-186X. 2005. Available online: http://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/2832.pdf (accessed on 7 July 2023).
- Murata, A.; Aoyama, M.; Cheong, C.; Miura, T.; Fujii, T.; Mitsuda, H.; Kitao, T.; Sasano, D.; Nakano, T.; Nagai, N.; et al. Current situation and future perspective for environmental standards of seawater: Commencing with certified reference materials (CRMs) for nutrients. Oceanogr. Jpn. 2019, 29, 153–187. (In Japanese) [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M. Renzoku Nagare Bunsekihou (The Continuous Flow Analysis); Kankyoshimbunsya: Tokyo, Japan, 2009. (In Japanese) [Google Scholar]
- Thompson, M.E.; Stephen, L.R.; Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- ISO 13395:1996; Water Quality—Determination of Nitrite Nitrogen and Nitrate Nitrogen and the Sum of Both by Flow Analysis (CFA and FIA) and Spectrometric Detection. International Organization for Standardization: Geneva, Switzerland, 1996.
- ISO 15681-2:2018; Determination of Orthophosphate and Total Phosphorus Contents by Flow Analysis (FIA and CFA)—Part 2: Method by Continuous Flow Analysis (CFA). International Organization for Standardization: Geneva, Switzerland, 2018.
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated geoscientific analyses (SAGA). Geosci. Model Dev. 2015, 8, 107–122. [Google Scholar] [CrossRef]
- Kasimov, N.S.; Kosheleva, N.; Lychagin, M.; Chalov, S.; Alexeenko, A.; Bazilova, V.; Beshentsev, A.; Bogdanova, M.; Chernov, A.; Dorjgotov, D. Environmental Atlas-Monograph “Selenga-Baikal”; Faculty of Geography of Lomonosov Moscow State University: Moscow, Russia, 2019; (In Russian). Available online: https://www.researchgate.net/publication/335567904_Environmental_Atlas-monograph_SelengaBaikal (accessed on 7 July 2023).
- Bazarzhapov, T.Z.; Shiretorova, V.G.; Radnaeva, L.D.; Nikitina, E.P.; Sodnomov, B.V.; Tsydypov, B.Z.; Batomunkuev, V.S.; Taraskin, V.V.; Dong, S.; Li, Z.; et al. Trend Analysis of Precipitation, Runoff and Major Ions for the Russian Part of the Selenga River Basin. Water 2023, 15, 197. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 20, 25–36. [Google Scholar] [CrossRef]
- Stubblefield, A.; Chandra, S.; Eagan, D.; Tuvshinjargal, G.; Davaadorzh, D.; Gilroy, J.; Sampson, J.; Thorne, B.; Allen, Z.; Hogan, Z. Impacts of gold mining and land use alterations on the water quality of central Mongolian rivers. Integr. Environ. Assess. Manag. Int. J. 2005, 4, 365–373. [Google Scholar] [CrossRef]
- Farrington, J.D. Environmental problems of placer gold mining in Zaamar Goldfield, Mongolia. World Placer J. 2000, 1, 107–128. [Google Scholar]
- Battogtokh, B.; Lee, J.M.; Woo, N. Contamination of water and soil by the Erdenet copper-molybdenum mine in Mongolia. Environ. Earth Sci. 2014, 71, 3363–3374. [Google Scholar] [CrossRef]
- Jordan, S.J.; Stoffer, J.; Nestlerode, J.A. Wetlands as Sinks for Reactive Nitrogen at Continental and Global Scales: A Meta-Analysis. Ecosistems 2011, 14, 144–155. [Google Scholar] [CrossRef]
- Baron, J.S.; Hall, E.K.; Nolan, B.T.; Finlay, J.C.; Bernhardt, E.S.; Harrison, J.A.; Chan, F.; Boyer, E.W. The Interactive Effects of Excess Reactive Nitrogen and Climate Change on Aquatic Ecosystems and Water Resources of the United States. Beogeochemistry 2013, 114, 71–92. [Google Scholar] [CrossRef]
- Thorslund, J.; Jarsjö, J.; Belozerorva, E.; Chalov, S. Assessment of the gold mining impact on riverine heavy metal transport in a sparsely monitored region: The upper Lake Baikal Basin case. J. Environ. Monit. 2012, 14, 2780–2792. [Google Scholar] [CrossRef] [PubMed]
- Dalantai, S.; Sumiya, E.; Bao, Y.; Otgonbayar, M.; Mandakh, U.; Batsaikhan, B.; Natsagdorj, B. Spatial-temporal changes of land degradation caused by natural and human induced factors: Case study of bulgan province in Central Mongolia. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2021, 43, 79–85. [Google Scholar] [CrossRef]
- Munkhtsengel, B.; Byambaa, J.; Tamiraa, A. Phosphate Deposits. In Mineral Resources of Mongolia: Modern Approaches in Solid Earth Sciences; Gerel, O., Pirajno, F., Batkhishig, B., Dostal, J., Eds.; Springer: Singapore, 2021; p. 19. [Google Scholar] [CrossRef]
- Ubugunov, L.L.; Enkhtuyaa, B.; Merkusheva, M.G. The content of available mineral phosphorus compounds in chestnut soils of Northern Mongolia upon application of different forms of phosphorite. Eurasian Soil Sci. 2015, 48, 634–642. [Google Scholar] [CrossRef]
- Mayorga, E.; Seitzinger, S.P.; Harrison, J.A.; Dumont, E.; Beusen, A.H.W.; Bouwman, A.F.; Fekete, B.M.; Kroeze, C.; Van Drecht, G. Global Nutrient Export from Water Sheds 2 (NEWS 2): Model development and implementation. Environ. Model. Softw. 2010, 25, 837–853. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Marinaite, I.I.; Silaev, A.V.; Begunova, L.A. Composition, Concentration and Origin of Polycyclic Aromatic Hydrocarbons in Waters and Bottom Sediments of Lake Baikal and Its Tributaries. Water 2023, 15, 2324. [Google Scholar] [CrossRef]
- Eriksen, J.; Askegaard, M.; Soegaard, K. Residual effect and nitrate leaching in grass-arable rotations: Effect of grassland proportion, sward type and fertilizer history. Soil Use Manag. 2008, 24, 373–382. [Google Scholar] [CrossRef]
- Harrison, J.A.; Bouwman, A.F.; Mayorga, E.; Seitzinger, S. Magnitudes and sources of dissolved inorganic phosphorus inputs to surface fresh waters and the coastal zone: A new global model. Global Biogeochem. Cycles 2010, 24, GB1003. [Google Scholar] [CrossRef]
- Belozertseva, I.A.; Ekimovskaya, O.A.; Lopatina, D.N. Soils of natural, arable and fallow Lands of the Selenga River delta. IOP Conf. Ser. Earth Environ. Sci. 2019, 381, 012009. [Google Scholar] [CrossRef]
- Tulokhonov, A.K. (Ed.) The Selenga River Delta—Natural Biofilter and Indicator of the Condition of Lake Baikal; Publishing House of SB RAS: Novosibirsk, Russia, 2008; p. 292. [Google Scholar]
- Sharapova, E.; Efimova, L.; Denisova, I.; Ermekova, A.; Lychagin, M.; Chalov, S. Spatial variability of biogenic elements and organic carbon content in the tributaries of Lake Baikal. E3S Web Conf. 2020, 163, 05012. [Google Scholar] [CrossRef]
- Tuvdendorj, B.; Wu, B.; Zeng, H.; Batdelger, G.; Nanzad, L. Determination of Appropriate Remote Sensing Indices for Spring Wheat Yield Estimation in Mongolia. Remote Sens. 2019, 11, 2568. [Google Scholar] [CrossRef]
- Wesche, K.; Ronnenberg, K. Effects of NPK fertilisation in arid southern Mongolian desert steppes. Plant. Ecol. 2010, 207, 93–105. [Google Scholar] [CrossRef]
- Wei, Y.; Lin, Z. The dynamics of livestock and its influencing factors on the Mongolian Plateau. Environ. Dev. 2020, 34, 100518. [Google Scholar] [CrossRef]
- Inam, E.; Khantotong, S.; Kim, K.W.; Tumendemberel, B.; Erdenetsetseg, S.; Puntsag, T. Geochemical distribution of trace element concentrations in the vicinity of Boroo gold mine, Selenge Province, Mongolia. Environ. Geochem. Health 2011, 33 (Suppl. S1), 57–69. [Google Scholar] [CrossRef] [PubMed]
- Chalov, S.R.; Jarsjö, J.; Kasimov, N.S.; Romanchenko, A.O.; Pietroń, J.; Thorslund, J.; Promakhova, E.V. Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environ. Earth Sci. 2015, 73, 663–680. [Google Scholar] [CrossRef]
- Jugder, D.; Gantsetseg, B.; Davaanyam, E.; Shinoda, M. Developing a soil erodibility map across Mongolia. Nat. Hazards 2018, 92, 71–94. [Google Scholar] [CrossRef]
- Batkhishig, O. Soil classification of Mongolia. Mongolian J. Soil. Sci. 2016, 1, 18–31. [Google Scholar]
Min | 25th * | Median | 75th | Max | Mean | STD ** | |
---|---|---|---|---|---|---|---|
TON | 0.43 | 6.80 | 27.5 | 78.2 | 702 | 47.6 | 52.3 |
IP | 0.25 | 1.35 | 2.33 | 3.37 | 159 | 3.59 | 4.35 |
TON Export, kg/m2/yr | |||||
---|---|---|---|---|---|
0 | 0–1 | 1–10 | 10–50 | 50–500 | >500 |
Occupied area,% | |||||
12.3 | 14.4 | 45.6 | 25.0 | 1.47 | 1.25 |
IP Export, kg/m2/yr | |||||
---|---|---|---|---|---|
0 | 0–1 | 1–5 | 5–20 | 20–200 | >200 |
Occupied area,% | |||||
8.13 | 63.7 | 19.9 | 5.54 | 2.35 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenov, M.Y.; Silaev, A.V.; Semenov, Y.M.; Begunova, L.A. Revealing the Sources of Nutrients in the Surface Waters of the Selenga River Watershed Using Hydrochemical and Geospatial Data. Water 2024, 16, 630. https://doi.org/10.3390/w16050630
Semenov MY, Silaev AV, Semenov YM, Begunova LA. Revealing the Sources of Nutrients in the Surface Waters of the Selenga River Watershed Using Hydrochemical and Geospatial Data. Water. 2024; 16(5):630. https://doi.org/10.3390/w16050630
Chicago/Turabian StyleSemenov, Mikhail Y., Anton V. Silaev, Yuri M. Semenov, and Larisa A. Begunova. 2024. "Revealing the Sources of Nutrients in the Surface Waters of the Selenga River Watershed Using Hydrochemical and Geospatial Data" Water 16, no. 5: 630. https://doi.org/10.3390/w16050630
APA StyleSemenov, M. Y., Silaev, A. V., Semenov, Y. M., & Begunova, L. A. (2024). Revealing the Sources of Nutrients in the Surface Waters of the Selenga River Watershed Using Hydrochemical and Geospatial Data. Water, 16(5), 630. https://doi.org/10.3390/w16050630