Recharge Assessment in Greek Karst Systems: Methodological Considerations and Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background Information and Geological Overview of the Study Sites
2.2. Application of the APLIS Method
2.2.1. Assessing Recharge with APLIS and Modified APLIS in the Karst System of Ziria
2.2.2. Application of Modified APLIS to Planitero and Xiromero
3. Results and Discussion
3.1. Comparison of the Results That Each Version of the APLIS Method Provided in the Karst System of Ziria
3.2. Statistical and Spatial Comparison of the Annual Recharge Rates in All Three Karst Sites Utilizing Modified APLIS
3.3. Implications/Limitations and Future Works
4. Conclusions
- -
- The discretization of formation permeability increases the reliability of recharge rate determinations.
- -
- Modified APLIS, compared to the initial method, provided extended zones with Very Low (<20%) and High (60–80%) recharge rates.
- -
- The modified APLIS method estimated a relatively lower recharge rate (41.4%) compared to the initial method (42.7%) in Ziria, mainly due to the imported parameter of permeability.
- -
- The cross-comparison of the results between the different karst systems revealed that the coverage of karst aquifers determines the recharge rate.
- -
- The highest mean recharge rate was estimated in the Planitero karst system (48.6%) due to the absence of coverage of the karstified rocks.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wada, Y.; Van Beek, L.P.H.; Van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water Security in a Changing Environment: Concept, Challenges and Solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2012, 3, 322–329. [Google Scholar] [CrossRef]
- Jia, Z.; Zang, H.; Zheng, X.; Xu, Y. Climate Change and Its Influence on the Karst Groundwater Recharge in the Jinci Spring Region, Northern China. Water 2017, 9, 267. [Google Scholar] [CrossRef]
- Lukač Reberski, J.; Rubinić, J.; Terzić, J.; Radišić, M. Climate Change Impacts on Groundwater Resources in the Coastal Karstic Adriatic Area: A Case Study from the Dinaric Karst. Nat. Resour. Res. 2020, 29, 1975–1988. [Google Scholar] [CrossRef]
- Klaas, D.K.S.Y.; Imteaz, M.A.; Sudiayem, I.; Klaas, E.M.E.; Klaas, E.C.M. Assessing climate changes impacts on tropical karst catchment: Implications on groundwater resource sustainability and management strategies. J. Hydrol. 2020, 582, 124426. [Google Scholar] [CrossRef]
- Sivelle, V.; Jourde, H.; Bittner, D.; Mazzilli, N.; Tramblay, Y. Assessment of the relative impacts of climate changes and anthropogenic forcing on spring discharge of a Mediterranean karst system. J. Hydrol. 2021, 598, 126396. [Google Scholar] [CrossRef]
- Taheri, K.; Taheri, M.; Parise, M. Impact of intensive groundwater exploitation on an unprotected covered karst aquifer: A case study in Kermanshah Province, western Iran. Environ. Earth Sci. 2016, 75, 1221. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Y.; Zhang, Y.; Guo, L.; Wang, Z.; Zheng, Q. Impact of groundwater overexploitation on karst aquifer and delineation of the critical zones: Case study of Jinci spring in Shanxi, China. Carbonates Evaporites 2022, 37, 68. [Google Scholar] [CrossRef]
- Kazakis, N.; Chalikakis, K.; Mazzilli, N.; Ollivier, C.; Manakos, A.; Voudouris, K. Management and research strategies of karst aquifers in Greece: Literature overview and exemplification based on hydrodynamic modelling and vulnerability assessment of a strategic karst aquifer. Sci. Total Environ. 2018, 643, 592–609. [Google Scholar] [CrossRef]
- Voudouris, K.S. Status and codification of karst aquifer systems in Greece. Bull. Geol. Soc. Greece 2021, 57, 23–51. [Google Scholar] [CrossRef]
- Seiler, K.P.; Gat, J.R. Groundwater Recharge from Run-Off, Infiltration and Percolation; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Sappa, G.; Vitale, S.; Ferranti, F. Identifying Karst Aquifer Recharge Areas using Environmental Isotopes: A Case Study in Central Italy. Geosciences 2018, 8, 351. [Google Scholar] [CrossRef]
- Dar, F.A.; Jeelani, G.; Perrin, J.; Ahmed, S. Groundwater recharge in semi-arid karst context using chloride and stable water isotopes. Groundw. Sustain. Dev. 2021, 14, 100634. [Google Scholar] [CrossRef]
- Iacurto, S.; Grelle, G.; De Filippi, F.M.; Sappa, G. Karst Recharge Areas Identified by Combined Application of Isotopes and Hydrogeological Budget. Water 2021, 13, 1965. [Google Scholar] [CrossRef]
- Petitta, M.; Banzato, F.; Lorenzi, V.; Matani, E.; Sbarbati, C. Determining recharge distribution in fractured carbonate aquifers in central Italy using environmental isotopes: Snowpack cover as an indicator for future availability of groundwater resources. Hydrogeol. J. 2022, 30, 1619–1636. [Google Scholar] [CrossRef]
- Radulovic, M.; Stevanovic, Z.; Radulovic, M. A new approach in assessing recharge of highly karstified terrains-Montenegro case studies. Environ. Earth Sci. 2012, 65, 2221–22230. [Google Scholar] [CrossRef]
- Hartmann, A.; Barbera, J.A.; Lange, J.; Andreo, B.; Weiler, M. Progress in the hydrologic simulation of time variant recharge areas of karst systems—Exemplified at a karst spring in Southern Spain. Adv. Water Resour. 2013, 54, 149–160. [Google Scholar] [CrossRef]
- Malard, A.; Sinreich, M.; Jeannin, P.-Y. A novel approach for estimating karst groundwater recharge in mountainous regions and its application in Switzerland. Hydrol. Process. 2016, 30, 2153–2166. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Ataie-Ashtiani, B.; Simmons, C.T. Spring hydrograph simulation of karstic aquifers: Impacts of variable recharge area, intermediate storage and memory effects. J. Hydrol. 2017, 552, 225–240. [Google Scholar] [CrossRef]
- Jukić, D.; Denić-Jukić, V.; Lozić, A. An alternative method for groundwater recharge estimation in karst. J. Hydrol. 2021, 600, 126671. [Google Scholar] [CrossRef]
- Messerschmid, C.; Aliewi, A. Spatial distribution of groundwater recharge, based on regionalised soil moisture models in Wadi Natuf karst aquifers, Palestine. Hydrol. Earth Syst. Sci. 2022, 26, 1043–1061. [Google Scholar] [CrossRef]
- Berthelin, R.; Olarinoye, T.; Rinderer, M.; Mudarra, M.; Demand, D.; Scheller, M.; Hartmann, A. Estimating karst groundwater recharge from soil moisture observations—A new method tested at the Swabian Alb, southwest Germany. Hydrol. Earth Syst. Sci. 2023, 27, 385–400. [Google Scholar] [CrossRef]
- White, W.B. Conceptual models for karstic aquifers. In Karst Modeling; Palmer, A.N., Palmer, M.V., Sasowsky, I.D., Eds.; The Karst Waters Institute: Charles Town, WV, USA, 1999; pp. 11–16. [Google Scholar]
- Bakalowicz, M. Karst groundwater: A challenge for a new resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Andreo, B.; Vías, J.; Durán, J.J.; Jiménez, P.; López-Geta, J.A.; Carrasco, F. Methodology for groundwater recharge assessment in carbonate aquifers: Application to pilot sites in southern Spain. Hydrogeol. J. 2008, 16, 911–925. [Google Scholar] [CrossRef]
- Marín, A.I. Los Sistemas de Información Geográfica Aplicados a la Evaluación de Recursos Hídricos y a la Vulnerabilidad a la Contaminación de Acuíferos Carbonatados: Caso de la Alta Cadena (Provincia de Málaga). Ph.D. Thesis, University of Malaga, Malaga, Spain, 2009. [Google Scholar]
- Zagana, E.; Tserolas, P.; Floros, G.; Katsanou, K.; Andreo, B. First outcomes from groundwater recharge estimation in evaporate aquifer in Greece with the use of APLIS method. In Advances in the Research of Aquatic Environment; Lambrakis, N., Stournaras, G., Katsanou, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2, pp. 89–96. [Google Scholar]
- Martos-Rosillo, S.; Rodriguez-Rodriguez, M.; Pedrera, A.; Cruz- SanJulian, J.J.; Rubio, J.C. Groundwater recharge in semi-arid carbonate aquifers under intensive use: The Estepa Range aquifers (Seville, southern Spain). Environ. Earth Sci. 2013, 70, 2453–2468. [Google Scholar] [CrossRef]
- Hartmann, A.; Mudarra, M.; Andreo, B.; Marín, A.; Wagener, T.; Lange, J. Modeling spatiotemporal impacts of hydroclimatic extremes on groundwater recharge at a Mediterranean karst aquifer. Water Resour. Res. 2014, 50, 6507–6521. [Google Scholar] [CrossRef]
- Mudarra, M.; Hartmann, A.; Andreo, B. Combining Experimental Methods and Modeling to Quantify the Complex Recharge Behavior of Karst Aquifers. Water Resour. Res. 2019, 55, 1384–1404. [Google Scholar] [CrossRef]
- Farfán, H.; Corvea, J.L.; De Bustamante, I. Sensitivity Analysis of ALPIS Method to Compute Spatial Variability of Karst Aquifers Recharge at the national Park of Viñales (Cuba). In Advances in Research in Karst Media; Andreo, B., Carrasco, F., Durán, J.J., LaMoreaux, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 19–24. [Google Scholar]
- Espinoza, K.; Marina, M.; Fortuna, J.H.; Altamirano, F. Comparison of the APLIS and Modified-APLIS methods to estimate the recharge in fractured karst aquifer, Amazonas, Peru. In Hydrogeological and Environmental Investigations in Karst Systems; Andreo, B., Carrasco, F., Durán, J.J., Jiménez, P., LaMoreaux, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 1, pp. 83–90. [Google Scholar]
- Alem, H.; Soudejani, A.E.; Farmanieh, S.N. Ground water recharge assessment in the karst aquifers of North Khorasan, Iran using APLIS method. Acta Carsologica 2017, 46, 283–294. [Google Scholar] [CrossRef]
- Special Secretariat for Water. Management Plans of Northern Peloponnese River Basin District; Ministry of Environment and Energy: Athens, Greece, April 2013.
- WFD. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, L 327, 1–72. [Google Scholar]
- De Wever, P.; Dercourt, J.; Fleury, J.J. Kandhila Sheet. 1:50.000; Institute of Geology and Mineral Exploration: Athens, Greece, 1982. [Google Scholar]
- Tataris, A.; Maragoudakis, N.; Kounis, G.; Christodoulou, G.; Tsaila-Monopoli, S. Nemea Sheet. 1:50.000; Institute for Geology and Subsurface Research: Athens, Greece, 1970. [Google Scholar]
- Hötzl, H.; Merkler, G.; Reichert, B.; Röckel, T.; Watzel, R. Interpretation of geophysical measurements in the poljes of Alea-Scotini and Stymfalia. In Karst Hydrogeology of the Central and Eastern Peloponnesus (Greece), Proceedings of the 5th International Symposium on Underground Water Tracing, Athens, Greece, 22–27 September 1986; Steirische Beiträge zur Hydrogeologie; Morfis, A., Zojer, H., Eds.; Springer: Cham, Switzerland, 1986; Volumes 37/38, pp. 44–54. [Google Scholar]
- Meilliez, F.; Flament, J.M.; De Wever, P.; Dercourt, J.; Fleury, J.J. Dhafni Sheet. 1:50.000; Institute of Geology and Mineral Exploration: Athens, Greece, 1978. [Google Scholar]
- Psonis, K.; Skourtsi-Koroneou, V.; Carras, N.; Varti-Mataragha, M. Aeghion Sheet. 1:50.000; Institute of Geology and Mineral Exploration: Athens, Greece, 2013. [Google Scholar]
- Psonis, K.; Tsapralis, V.; Skourtsi-Koroneou, V. Astakos Sheet. 1:50.000; Institute of Geology and Mineral Exploration: Athens, Greece, 1986. [Google Scholar]
- Kouris, C.; Tsaila-Monopolis, S. Echinades Sheet. 1:50.000; Institute of Geology and Mineral Exploration: Athens, Greece, 1989. [Google Scholar]
- Gofa, F.; Mamara, A.; Anadranistakis, M.; Flocas, H. Developing gridded climate data sets of precipitation for Greece based on homogenized time series. Climate 2019, 7, 68. [Google Scholar] [CrossRef]
- Kakavas, M.; Nikolakopoulos, K.G.; Kyriou, A.; Zagana, H. Assessment of freely available DSMs for automatic karst feature detection. Arab. J. Geosci. 2018, 11, 388. [Google Scholar] [CrossRef]
- Morfis, A.; Zojer, H. (Eds.) Karst Hydrogeology of the Central and Eastern Peloponnesus (Greece), Proceedings of the 5th International Symposium on Underground Water Tracing, Athens, Greece, 22–27 September 1986; Steirische Beiträge zur Hydrogeologie; Springer: Cham, Switzerland, 1986; Volumes 37/38, pp. 1–301. [Google Scholar]
- Zervogiannis, G. Final Hydrogeological Study for the Reformation of the Stymphalian Springs in the Prefecture of Corinth; Ministry of Agriculture: Athens, Greece, 1991. (In Greek)
- Röckel, T.; Hötzl, H. Polje of Stymfalia. In Karst Hydrogeology of the Central and Eastern Peloponnesus (Greece), Proceedings of the 5th International Symposium on Underground Water Tracing, Athens, Greece, 22–27 September 1986; Steirische Beiträge zur Hydrogeologie; Morfis, A., Zojer, H., Eds.; Springer: Cham, Switzerland, 1986; Volumes 37/38, pp. 127–152. [Google Scholar]
- Katakouzinos, D.S. Soil Map of Greece. 1:1.000.000; Ministry of Agriculture: Athens, Greece, 1967.
- FAO; UNESCO. Soil Map of the World. 1:5.000.000; UNESCO: Paris, France, 1978. [Google Scholar]
- European Soil Bureau Network. Soil Atlas of Europe; European Commission: Luxembourg, 2005; p. 128.
- Voudouris, K.; Panagopoulos, A.; Markantonis, K. Hydrological balance and possibilities of sustainable water resources management in Stimfalia basin (prefecture of Korinthos). In Proceedings of the 6th Pan-Hellenic Geographical Conference of the Hellenic Geographical Society, Thessaloniki, Greece, 3–6 October 2002; Volume 2, pp. 327–334. [Google Scholar]
- Rad, M.M.; Mokhtari, L.G.; Bahrami, S.; Asadi, M.Z. Assessment of infiltration potential using the AHP, APLIS and modified APLIS models (Case study: Esfarayen Basin). Quant. Geomorphol. Res. 2018, 7, 117–139. [Google Scholar]
- Kirn, L.; Mudarra, M.; Marín, A.; Andreo, B.; Hartmann, A. Improved assessment of groundwater recharge in a Mediterranean karst region: Andalusia, Spain. In EuroKarst 2016, Neuchâtel; Renard, P., Bertrand, C., Eds.; Springer: Cham, Switzerland, 2017; pp. 117–125. [Google Scholar]
- Malov, A.I. Groundwater resources of the White Sea Basin (NW Russia). In The Arctic: Current Issues and Challenges; Malov, A.I., Pokrovsky, O.S., Kirpotin, S.N., Eds.; Nova Science Publishers: New York, NY, USA, 2020; pp. 239–266. [Google Scholar]
Scoring | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Altitude (m) | - | - | (600–900] | (900–1200] | (1200–1500] | (1500–1800] | (1800–2100] | (2100–2400] | - | - |
Slope (%) | ||||||||||
APLIS | >100 | (76–100] | (46–76] | (31–46] | (21–31] | - | (16–21] | (8–16] | (3–8] | <3 |
Modified APLIS | >100 | (65–100] | (45–65] | (30–45] | (20–30] | (15–20] | (10–15] | (5–10] | (3–5] | <3 |
Lithology (L) | Scoring | Infiltration Landforms (I) | Scoring |
---|---|---|---|
Argillaceous sediment | 1 | Rest of the area | 1 |
Metamorphic bedrock | 2 | Carbonates/karstic landforms filled with sediment | 5 |
Breccia | 3 | Doline/Swallow hole | 10 |
Cone of Debris | 4 | Soil Type (S) | Scoring |
Conglomerate | 7 | Chromic luvisols | 3 |
Cretaceous Limestone (Pindos) | 9 | Calcareous regosols and fluvisols | 6 |
Limestone/Dolomite (Tripoli) | 10 | Leptosols | 10 |
Lithology (L) | Scoring | Infiltration Landforms (I) | Scoring |
---|---|---|---|
Flysch/Argillaceous sediment | 1 | Rest of the area | 1 |
Metamorphic bedrock | 2 | Carbonates/karstic landforms filled with sediment | 5 |
Quaternary deposits | 3 | Doline | 10 |
Talus Cone/Scree | 4 | Soil Type (S) | Scoring |
Chromic luvisols | 3 | ||
Carbonates (Pindos Zone) | 9 | Calcareous regosols and fluvisols | 6 |
Carbonates (Tripolis Zone) | 10 | Leptosols | 10 |
Lithology (L) | Scoring | Infiltration Landforms (I) | Scoring |
---|---|---|---|
Quaternary Sediment | 1 | Rest of the area | 1 |
Evaporites/non karstified limestones | 2 | Karstified Limestone/Breccia | 5 |
Talus Cone/Scree | 3 | Doline | 10 |
Alluvial Deposit | 4 | Soil Type (S) | Scoring |
Fluvisols | 6 | ||
Dolomite | 7 | Calcareous Lithosols | 6 |
Triassic Limestone/Breccia | 9 | Leptosols | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nanou, E.-A.; Perdikaris, K.; Tserolas, P.; Zagana, E. Recharge Assessment in Greek Karst Systems: Methodological Considerations and Implications. Water 2024, 16, 568. https://doi.org/10.3390/w16040568
Nanou E-A, Perdikaris K, Tserolas P, Zagana E. Recharge Assessment in Greek Karst Systems: Methodological Considerations and Implications. Water. 2024; 16(4):568. https://doi.org/10.3390/w16040568
Chicago/Turabian StyleNanou, Eleni-Anna, Konstantinos Perdikaris, Panagiotis Tserolas, and Eleni Zagana. 2024. "Recharge Assessment in Greek Karst Systems: Methodological Considerations and Implications" Water 16, no. 4: 568. https://doi.org/10.3390/w16040568
APA StyleNanou, E. -A., Perdikaris, K., Tserolas, P., & Zagana, E. (2024). Recharge Assessment in Greek Karst Systems: Methodological Considerations and Implications. Water, 16(4), 568. https://doi.org/10.3390/w16040568